Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Elementary Numerical Analysis - An Algorithmic Approach الأربعاء 27 أكتوبر 2021, 1:45 am | |
|
أخواني في الله أحضرت لكم كتاب Elementary Numerical Analysis - An Algorithmic Approach Updated with MATLAB S. D. Conte, Carl de Boor
و المحتوى كما يلي :
CONTENTS Preface to the Classics Edition xiii Preface xv Introduction xvii Errata xix Chapter 1 Number Systems and Errors 1 1.1 The Representation of Integers 1 1.2 The Representation of Fractions 4 1.3 Floating-Point Arithmetic 7 1.4 Loss of Significance and Error Propagation; Condition and Instability 12 1.5 Computational Methods for Error Estimation 18 1.6 Some Comments on Convergence of Sequences 19 1.7 Some Mathematical Preliminaries 25 Chapter 2 Interpolation by Polynomial 31 2.1 Polynomial Forms 31 2.2 Existence and Uniqueness of the Interpolating Polynomial 38 2.3 The Divided-Difference Table 41 *2.4 Interpolation at an Increasing Number of Interpolation Points 46 2.5 The Error of the Interpolating Polynomial 51 2.6 Interpolation in a Function Table Based on Equally Spaced Points 55 *2.7 The Divided Difference as a Function of Its Arguments and Osculatory Interpolation 62 ·Sections marked with an asterisk may be omitted without loss of continuity. ixx CONTENTS Chapter 3 The Solution of Nonlinear Equations 72 3.1 A Survey of Iterative Methods 74 3.2 Fortran Programs for Some Iterative Methods 81 3.3 Fixed-Point Iteration 88 3.4 Convergence Acceleration for Fixed-Point Iteration 95 ·3.5 Convergence of the Newton and Secant Methods 100 3.6 Polynomial Equations: Real Roots 110 ·3.7 Complex Roots and Muller's Method 120 Chapter 4 Matrices and Systems of Linear Equations 128 4.1 Properties of Matrices 128 4.2 The Solution of Linear Systems by Elimination 147 4.3 The Pivoting Strategy 157 4.4 The Triangular Factorization 160 4.5 Error and Residual of an Approximate Solution; Norms 169 4.6 Backward-Error Analysis and Iterative Improvement 177 ·4.7 Determinants 185 *4.8 The Eigenvalue Problem 189 Olapter ·S Systems of Equations and Unconstrained Optimization 208 *5.1 Optimization and Steepest Descent 209 ·5.2 Newton's Method 216 ·5.3 Fixed-Point Iteration and Relaxation Methods 223 Chapter 6 Approximation 235 6.1 Uniform Approximation by Polynomials 235 6.2 Data Fitting 245 ·6.3 Orthogonal Polynomials 251 ·6.4 Least..Squares Approximation by Polynomials 259 ·6.5 Approximation by Trigonometric Polynomials 268 ·6.6 Fast Fourier Transforms 277 6.7 Piecewise-Polynomial Approximation 284 Chapter 7 Differentiation and Integration 294 7.1 Numerical Differentiation 295 7.2 Numerical Integration: Some Basic Rules 303 7.3 Numerical Integration: Gaussian Rules 311 7.4 Numerical Integration: Composite Rules 319 7.5 Adaptive Quadrature 328 ·7.6 Extrapolation to the Limit 333 ·7.7 Romberg Integration 340Chapter 8 The Solution of Differential Equations Mathematical Preliminaries Simple Difference Equations Numerical Integration by Taylor Series Error Estimates and Convergence of Euler's Method Runge-Kutta Methods Step-Size Control with Runge-Kutta Methods Multistep Formulas Predictor-Corrector Methods The Adams-Moulton Method Stability of Numerical Methods Round-off-Error Propagation and Control Systems of Differential Equations Stiff Differential Equations Boundary Value Problems Finite Difference Methods Shooting Methods Collocation Methods Appendix: Subroutine Libraries Appendix: New MATLAB Programs References Index CONTENTS xi INDEX Acceleration, 95ff. (See also Extrapolation to the limit) Adams-Bashforth method, 373-376 predictor form, 383 program, 377 stability of, 392-394 Adams-Moulton method, 382-388 program, 387 stability of ~ 394 for systems, 399 Adaptive quadrature, 328ff. Aitken's algorithm for polynomial interpolation, 50 Aitken's ~2_process, 98, 196,333 algorithm, 98 Aliasing, 273 Alternation in sign, 237 Analytic substitution, 294ff., 339 Angular frequency, 271 Approximation, 235ff. Chebyshev, 235- 244 least-squares (see Least-squares approximation) uniform, 235-244 Back-substitution, 148, 156, 163 algorithm, 148, 163 program, 164 Backward error analysis, 9-11, 19, 160, 179-181 Base of a number system, 1-4 Basis for n-vectors, 140, 141, 196 Bessel interpolation, 288 Bessel's function, zeros of, 124-125, 127 Binary search, 87 Binary system, 1-3 Binomial coefficient, 57 Binomial function, 57, 373 Binomial theorem, 58 Bisection method, 74-75, 81-84 algorithm, 75 program, 81 - 84 Boundary value problems, 406-419 collocation method for, 416-419 finite difference methods for, 406-412 second-order equation, 407ff. shooting methods for, 412-416 Breakpoints of a piecewise-polynomial function, 284,319 Broken-line interpolation, 284- 285 Broyden's method, 222 Central-difference formula, 298, 407 Chain rule, 28 Characteristic equation: of a difference equation, 350~ 391 of a differential equation, 348, 392, 394 of a matrix, 201 Characteristic polynomial of a matrix, 202 Chebyshev approximation (see Approximation, uniform) Chebyshev points, 54, 242-244, 318 Chebyshev polynomials, 32, 239-241, 255-256, 293, 317, 354 nested multiplication for, 258 451452 INDEX Choleski's method, 160, 169 Chopping, 8 Compact schemes, 160, 169 Composite rules for numerical integration, 319ff. Condition, 14-15 . Condition number, 175, 177 Continuation method, 218 Convergence: geometric, 22 linear, 95 order of, 102 quadratic, l00ff. of a sequence, 19ff. of a vector sequence, 191, 223 Convergence acceleration, 95ff. (See also Extrapolation to the limit) Conversion: binary to decimal, 2, 6, 113 decimal to binary, 3, 6 Corrected trapezoid rule, 309, 310, 321, 323 program, 324 Corrector formulas, 379-388 Adams-Moulton, 382-384 Milne's, 385 Cramer's rule, 144, 187 Critical point, 209 Cubic spline, 289, 302 interpolation, 289-293 Damped Newton's method, 219-220 Damping for convergence encouragement, 219 Data fitting, 245ff. Decimal system, 1 Deflation, 117-119, 124, 203 for power method, 207 Degree of polynomial, 29, 32 Descartes' rule of sign, 110- 11C 119 Descent direction, 213 Determinants, 144, 185ff., 201ff. Diagonally dominant (see Matrix) Difference equations, 349ff., 360, 361, 390, 391,392 initial value, 351 linear, 349 Difference operators, 61 Differential equations, 346ff. basic notions, 346-348 boundary value problems, 406-419 Euler's method, 356ff. initial value problems, 347, 354 Differential equations: linear, with constant coefficients t 347- 349 multistep methods, 373ff. Runge-Kutta methods, 362ff. stiff, 401ff. systems of, 398- 401 Taylor's algorithm, 354-359 Differential remainder for Taylor's formula, 28 Differentiation: numerical, 290, 295-303 symbolic, 356 Direct methods for solving linear systems, 147-185, 209 Discrete Fourier transform, 278 Discretization error, 300, 359, 361 t 389 dist, 236 Divided difference, 40, 41ff., 62ff., 79, 236 table, 41ff. Double precision, 7, 11, 18 accumulation, 396 partial, 396 of scalar products, 183 DVERK subroutine for differential equations, 370-372, 400-401 Eigenvalues, 189ff. program for, 194 Eigenvectors, 189, 191, 194 complete set of, 196 EISPACK, 422 Equivalence of linear systems, 149 Error, 12ff. Euler's formula, 30, 269 Euler's method, 356, 359-362, 373, 379, 395 Exactness of a rule, 311 Exponent of a floating-point number, 7 Exponential growth, 390, 391 Extrapolation, 54 Extrapolation to the limit, 333ff., 366, 410 algorithm, 338-339 (See also Aitken '8 ~2_process) Factorization of a matrix, 160-166, 169, 187, 229 False position method (see Regula falsi) Fast Fourier transform, 277 - 284 program, 281-282 Finite-difference methods, 406-411 Fixed point, 88Fixed-point iteration, 79, 88-99, 108, 223ff., 381 algorithm, 89 for linear systems, 224 - 232 algorithm, 227 for systems, 223 - 234 Floating-point arithmetic, 7ff. Forward difference: formula, 297 operator ~, 56ff., 373 table, 58-61 Forward-shift operator, 57 Fourier coefficients, 269 Fourier series, 269ff. Fourier transform: discrete, 278 fast, 277 - 284 Fraction: binary, 5 decimal, 4 Fractional part of a number, 4 Fundamental theorem of algebra, 29, 202 Gauss elimination, 145, 149ff. algorithm, 152-153 program, 164- 166 for tridiagonal systems, 153- 156 program, 155 Gauss-Seidel iteration, 230-232, 234, 412 algorithm, 230 Gaussian rules for numerical integration, 311-319,325-327 Geometric series, 22 Gershgorin's disks, 200 Gradient ~ 209 Gram-Schmidt algorithm, 250 Hermite interpolation, 286 Hermite polynomials, 256, 318 Hessenberg matrix, 197 Homogeneous difference equation, 350-352 Homogeneous differential equation, 347-348 Homogeneous linear system, 135-140 Homer's method (see Nested multiplication) Householder reflections, ]97 Ill-conditioned, 181, 249 IMSL (International Mathematical and Statistical Library), 370, 421 INDEX 453 Initial-value problem, 347 numerical solution of, 354-405 Inner product (see Scalar product) Instability, 15-17, 117,376,385,389-394, 402 Integral part of a number, 4 Integral remainder for Taylor's formula, 27 Integration, 303 - 345 composite rules, 309, 319ff. corrected trapezoid rule, 309, 321 Gaussian rules, 311 - 318 program for weights and nodes, 316 midpoint rule, 305, 321 rectangle rule, 305, 320 Romberg rule, 340-345 Simpson's rule, 307, 321, 385 trapezoid rule, 305, 321 Intermediate-value theorem for continuous functions, 25, 74, 89 Interpolating polynomial, 38-71, 295 difference formula, 55 - 62 error, 51ff. Lagrange formula, 38, 39-41 Newton formula, 40,41 uniqueness of, 38 Interpolation: broken-line, 284-285 in a function table, 46-50, 55-61 global,293 iterated linear, 50 by polynomials, 31ff. by trigonometric polynomials, 275-276 linear, 39 local,293 optimal, 276 osculatory, 63, 67, 68, 286 quadratic, 120, 202, 213-214, 416 Interval arithmetic, 18 Inverse of a matrix, 133, 166 approximate, 225 calculation of, 166-168 program, 167 Inverse interpolation, 51 Inverse iteration. 193- 195 Iterated linear interpolation, 50 Iteration function for fixed-point iteration, 88, 223 Iteration methods for solving linear systems, 144, 209, 223ff. Iterative improvement, 183-184, 229 algorithm, 183454 INDEX Jacobi iteration, 226, 229, 234 Jacobi polynomials, 317 Jacobian (matrix), 214, 216, 404 Kronecker symbol 8;j, 201 Lagrange form, 38 Lagrange formula for interpolating polynomial, 39,295,312 Lagrange polynomials, 38, 147, 259, 275, 295 Laguerre polynomials, 256, 318 Least-squares approximation, 166, 215, 247-25C 259-267 by polynomials, 259ff., 302 program, 263-264 by trigonometric polynomials, 275 Lebesque function, 243, 244 Legendre polynomials, 255, 259, 260, 315 Leibniz formula for divided difference of a product, 71 Level line, 212 Linear combination, 134, 347 Linear convergence, 95, 98 Linear independence, 140, 347, 417 Linear operation, 294 Linear system, 128, 136, 144 numerical solution of, I47ff. Line search, 213-214, 215 LINPACK,422 Local discretization error, 355, 359 Loss of significance, 12-14,32, 116, 121, 265, 300 Lower bound for dist 00 (j, 1TnJ, 236 - 237, 245 Lower-triangular, 131 Maehly's method, 119 Mantissa of a floating-point number, 7 Matrix, 129ff. addition, 133 approximate inverse, 225 bandtype of banded, 350 conjugate transposed, 142 dense, 145 diagonal, 131 diagonally dominant, 184, 201, 217, 225, 230,231,234,250,289 equality, 129 general properties, 128- 144 Hermitian, 142, 206 Hessenberg , 197 Householder reflection, 197 Matrix: identity, 132 inverse, 133, 166-168 invertible, 132, 152, 168, 178, 185, 188 t 229 multiplication, 130 norm, 172 null, 134 permutation, 143, 186 positive definite, 159, 169, 231 similar t 196 sparse, 145, 231 square, 129, 135 symmetric, 141, 198, 206 trace, 146 transpose, 141 triangular, 131, 147, 168, 178, 186,234 triangular factorization, 160- 166 tridiagonal, 153-156, 168, 188, 198, 204-206,217,230 unitary, 197 Matrix-updating methods for solving systems of equations, 221 - 222 Mean-value theorem: for derivatives, 26, 52,79,92,96,102,298, 360 for integrals, 26, 304, 314, 320 Midpoint rule, 305 composite, 321, 341 Milne's method, 378, 385, 389 Minimax approximation (see Approximation, uniform) Minor of a matrix, 188 Modified regula falsi, 77,78, 84-86, 205 algorithm, 77 program, 84 - 86 Muller's method, 12Off., 202-204 Multiplicity of a zero, 36 Multistep methods, 373ff. Murnaghan-Wrench algorithm, 241 Nested form of a polynomial, 33 Nested multiplication, 112 for Chebyshev polynomials, 258 in fast Fourier transform, 279 for Newton form, 33, 112 for orthogonal polynomials, 257 for series, 37 Neville's algorithm, 50 Newton backward-difference formula, 62, 373, 382 Newton form of a polynomial, 32ff. Newton formula for the interpolating polynomial, 40-41Newton formula for the interpolating polynomial: algorithm for calculation of coefficients, 44 program, 45, 68-69 Newton forward-difference formula, 57 Newton's method, 79, 100-102, 104-106, 108, 113ff., 241, 244, 404 algorithm, 79 for finding real zeros of polynomials, 113 program, 115 for systems, 216-222, 223, 224 algorithm, 217 damped, 218-220 modified, 221 quasi-, 223 Node of a rule, 295 Noise, 295 Norm, 17Off. Euclidean, 171 function, 235 matrix, 172 max, 171 vector, 171 Normal equations for least-squares problem, 215,248-251, 260 Normalized floating-point number, 7 Numerical differentiation, 290, 295- 303 Numerical instability (see Instability) Numerical integration (see Integration) Numerical quadrature (see Integration) Octal system, 3 One-step methods, 355 Optimization, 209ff. Optimum step size: in differentiation, 301 in solving differential equations, 366-372, 385,396 Order: of convergence, 20-24, 102 of a root, 36, 109, 110 symbol (I) ( ),20-24, 163, 192,202,221, 337ff., 353ff., 361,363-365, 367,390, 393 symbolo( ), 20-24, 98, 334ff. of a trigonometric polynomial, 268 Orthogonal functions, 250, 252, 270, 418 Orthogonal polynomials, 251ft., 313 generation of, 261- 265 Orthogonal projection, 248 Osculatory interpolation, 62ff., 308 program, 68-69 Overflow, 8 INDEX 455 Parseval's relation, 270 Partial double precision accumulation t 396 Partial pivoting, 159 Permutation, 143 Piecewise-cubic interpolation, 285ff. programs, 285 t 287, 290 Piecewise-parabolic, 293 Piecewise-polynomial functions, 284ff., 319, 418 Piecewise-polynomial interpolation, 284ff. Pivotal equation in elimination, 151 Pivoting strategy in elimination, 157, 180 . Polar form of a complex number, 270, 277, 351 Polynomial equations, 11Off. complex roots, 12Off. real roots t 11Off. Polynomial forms: Lagrange, 38 nested, 33 Newton, 32ff. power, 32 shifted power, 32 Polynomial interpolation (see Interpolating polynomial) Polynomials: algebraic, 31ff. trigonometric, 268ff. PORT, 421 Power form of a polynomial, 32 Power method, 192-196 Power spectrum, 271 Predictor-corrector methods, 379ff. Propagation of errors, 14, 395 Quadratic convergence, l00ff. Quadratic formula, 13-14 Quotient polynomial, 35 QR method, 199-200 Rayleigh quotient, 201 Real numbers, 24 Rectangle rule, 305 composite, 320 Reduced or deflated polynomial, 117 Regula falsi, 76 modified (see Modified regula falsi) Relative error, 12 Relaxation, 232-233 Remez algorithm, 241 Residual, 169 Rolle's theorem, 26, 52, 74456 INDEX Romberg integration, 340-345 program, 343-344 Round-off error, 8 in differentiation, 300-302 in integration, 322 propagation of, 9ff., 12ff., 395ff. in solving differential equations, 395-398 in solving equations, 83, 87, 116-117 in solving linear systems, 157, 178- 185 Rounding, 8 Rule, 295 Runge-Kutta methods, 362ff. Fehlberg, 369- 370 order 2, 363-364 order 4, 364 Verner, 370 Sampling frequency, 272 Scalar (or inner) product, 142, 143 of functions, 251, 270, 273 Schur's theorem, 197, 234 Secant method, 78-79, 102-104, 106-109, 412 algorithm, 78 Self-starting, 365, 376 Sequence, 20 Series summation, 37 Shooting methods, 412ff. Significant-digit arithmetic, 18 Significant digits, 12 Similarity transformation, 196ff. into upper Hessenberg form, 197- 199 algorithm, 199 Simpson's rule, 307, 317, 318, 329-332, 385 composite, 320 program, 325 Simultaneous displacement (see Jacobi iteration) Single precision, 7 Smoothing, 271 SOR, 231 Spectral radius, 228 Spectrum: of a matrix (see Eigenvalues) of a periodic function, 271 Spline, 289-293 Stability (see Instability) Stable: absolutely, 394 relatively, 394 strongly, 391, 392 weakly, 393 Steepest descent, 2 IOff. algorithm, 211 Steffensen iteration, 98, 108 algorithm, 98 Step-size control, 366, 384, 394 Sturm sequence, 205 Successive displacement (see Gauss-Seidel iteration) Successive overrelaxation (SOR), 231 Synthetic division by a linear polynomial, 35 Tabulated function, 55 Taylor polynomial, 37,63,64 Taylor series, truncated, 27, 32, 100, 336, 353, 354, 357, 359, 390 for functions of several variables, 29, 216~ 363,414 Taylor's algorithm, 354ff., 362, 366 Taylor's formula with (integral) remainder, 27 (See also Taylor series, truncated) Termination criterion, 81, 85, 122, 194, 227 Three-term recurrence relation, 254 Total pivoting, 159 Trace of a matrix, 146 Trapezoid rule, 272, 305, 317, 340 composite, 321 corrected (see Corrected trapezoid rule) program, 323 Triangle inequality, 171, 176 Triangular factorization, l6Off. program, 165- 166 Tridiagonal matrix (see Matrix, tridiagonal) Trigonometric polynomial. 268ff. Truncation error (see Discretization error) Two-point boundary value problems, 406ff. Underflow, 8 Unit roundoff, 9 Unit vector, 135 Unstable (see Instability) Upper-triangular, 131, 147- 149 Vandermonde matrix, 147 Vector, 129 Wagon wheels, 274 Waltz, 106 Wavelength, 271 Wronskian, 347 Zeitgeist, 432 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Elementary Numerical Analysis - An Algorithmic Approach رابط مباشر لتنزيل كتاب Elementary Numerical Analysis - An Algorithmic Approach
|
|