Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Pattern Recognition and Classification Using Matlab السبت 06 نوفمبر 2021, 10:24 pm | |
|
أخواني في الله أحضرت لكم كتاب Pattern Recognition and Classification Using Matlab K. Taylor
و المحتوى كما يلي :
Contents Pattern Recognition 1.1 Pattern Recognition Concepts 1.2 Pattern Recognition and Machine Learning 1.3 Probabilistic Classifiers 1.4 Algorithms 1.4.1 Supervised Algorithms Predicting Categorical Labels 1.5 Characteristics of Classification and Pattern Recognition Algorithms Parametric Pattern Recognition. Discriminant Analysis With Matlab 2.1 What Is Discriminant Analysis? 2.2 Create Discriminant Analysis Classifiers 2.3 Creating a Classifier Using Fitcdiscr 2.3.1 Weighted Observations 2.4 How the Predict Method Classifies 2.4.1 Posterior Probability 2.4.2 Prior Probability 2.4.3 Cost2.5 Create and Visualize Discriminant Analysis Classifier 2.6 Improve a Discriminant Analysis Classifier 2.6.1 Deal with Singular Data 2.6.2 Choose a Discriminant Type 2.6.3 Examine the Resubstitution Error and Confusion Matrix 2.6.4 Cross Validation 2.6.5 Change Costs and Priors 2.7 REGULARIZE A DISCRIMINANT ANALYSIS CLASSIFIER 2.7.1 Load data and create a classifier. 2.7.2 Cross validate the classifier. 2.7.3 Examine the quality of the regularized classifiers. 2.7.4 Choose an optimal tradeoff between model size and accuracy. 2.7.5 Set the regularization parameters. 2.7.6 Heat map plot 2.8 EXAMINE THE GAUSSIAN MIXTURE ASSUMPTION 2.8.1 Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis 2.8.2 Q-Q Plot 2.8.3 Mardia Kurtosis Test of Multivariate Normality 2.9 MATLAB FUNCTIOS POR DISCRIMINANT ANALYSIS 2.9.1 fitcdiscr 2.9.2 predict 2.9.3 templateDiscriminant 2.10 TRAIN DISCRIMINANT ANALYSIS CLASSIFIERS USING CLASSIFICATION LEARNER APP NON PARAMETRIC PATTERN RECOGNITION. CLASSIFICATION TREES 3.1 DECISION TREES 3.2 TRAIN CLASSIFICATION TREE 3.3 TRAIN REGRESSION TREE3.4 VIEWING A CLASSIFICATION OR REGRESSION TREE 3.5 HOW THE FIT METHODS CREATE TREES 3.6 PREDICTION USING CLASSIFICATION AND REGRESSION TREES 3.7 PREDICT OUT-OF-SAMPLE RESPONSES OF SUBTREES 3.8 IMPROVING CLASSIFICATION TREES AND REGRESSION TREES 3.8.1 Examining Resubstitution Error 3.8.2 Cross Validation 3.8.3 Choose Split Predictor Selection Technique 3.8.4 Control Depth or "Leafiness" 3.8.5 Pruning 3.9 ALTERNATIVE: CLASSREGTREE 3.9.1 Train Classification Trees Using classregtree 3.9.2 Train Regression Trees Using classregtree 3.10 MATLAB FUNCTIONS FOR DECISION TREES 3.10.1 fitctree 3.10.2 predict 3.10.3 templateTree 3.11 TRAIN DECISION TREES USING CLASSIFICATION LEARNER APP SUPPORT VECTOR MACHINE CLASSIFICATION 4.1 SUPPORT VECTOR MACHINE 4.1.1 Separable Data 4.1.2 Nonseparable Data 4.1.3 Nonlinear Transformation with Kernels 4.2 USING SUPPORT VECTOR MACHINES 4.2.1 Training an SVM Classifier 4.2.2 Classifying New Data with an SVM Classifier 4.2.3 Tuning an SVM Classifier 4.2.4 Train SVM Classifiers Using a Gaussian Kernel4.2.5 Train SVM Classifier Using Custom Kernel 4.2.6 Optimize a Cross-Validated SVM Classifier Using 4.2.7 Plot Posterior Probability Regions for SVM Classification Models 4.2.8 Analyze Images Using Linear Support Vector Machines 4.3 FUNCTIONS FOR SUPPORT VECTOR MACHINE CLASSIFICATION 4.3.1 fitcsvm 4.3.2 fitSVMPosterior 4.3.3 predict 4.3.4 templateSVM 4.3.5 fitclinear 4.3.6 templateLinear 4.3.7 fitcecoc 4.3.8 templateECOC 4.4 TRAIN SUPPORT VECTOR MACHINES USING CLASSIFICATION LEARNER APP 4.5 TRAIN CLASSIFICATION MODELS IN CLASSIFICATION LEARNER APP 4.5.1 What Is Supervised Machine Learning? 4.5.2 Automated Classifier Training 4.5.3 Manual Classifier Training 4.5.4 Parallel Classifier Training 4.5.5 Compare and Improve Classification Models 4.6 CHOOSE CLASSIFIER OPTIONS 4.6.1 Choose a Classifier Type 4.6.2 Decision Trees 4.6.3 Discriminant Analysis 4.6.4 Logistic Regression 4.6.5 Support Vector Machines 4.6.6 Nearest Neighbor Classifiers 4.6.7 Ensemble Classifiers4.7 ASSESS CLASSIFIER PERFORMANCE IN CLASSIFICATION LEARNER 4.7.1 Check Performance in the History List 4.7.2 Plot Classifier Results 4.7.3 Check Performance Per Class in the Confusion Matrix 4.7.4 Check the ROC Curve NAIVE BAYES 5.1 NAIVE BAYES CLASSIFICATION 5.1.1 Supported Distributions 5.2 FUNCTIONS 5.2.1 fitcnb 5.2.2 predict 5.2.3 templateNaiveBayes CLASSIFICATION ENSEMBLES. BOOSTING, RANDOM FOREST AND BAGGING 6.1 ENSEMBLE METHODS 6.1.1 Put Predictor Data in a Matrix 6.1.2 Prepare the Response Data 6.1.3 Choose an Applicable Ensemble Method 6.1.4 Set the Number of Ensemble Members 6.1.5 Prepare the Weak Learners 6.1.6 Call fitensemble 6.2 BASIC ENSEMBLE EXAMPLES 6.2.1 Train Classification Ensemble 6.2.2 Train Regression Ensemble 6.2.3 Select Predictors for Random Forests 6.2.4 Test Ensemble Quality 6.2.5 Classification with Imbalanced Data 6.2.6 Classification: Imbalanced Data or Unequal Misclassification Costs 6.2.7 Classification with Many Categorical Levels6.2.8 Surrogate Splits 6.2.9 LPBoost and TotalBoost for Small Ensembles 6.2.10 Ensemble Regularization 6.2.11 Tune RobustBoost 6.2.12 Random Subspace Classification 6.2.13 TreeBagger Examples 6.3 CLASSIFICATION ENSEMBLES FUNCTIONS 6.3.1 fitcensemble 6.3.2 predict 6.3.3 oobPredict 6.3.4 templateEnsemble 6.4 BAGGED CLASSIFICATION TREES FUNCTIONS 6.4.1 TreeBagger 6.4.2 fitcensemble 6.4.3 predict 6.4.4 oobPredict 6.5 MULTICLASS ECOC FUNCTIONS 6.5.1 fitcecoc 6.5.2 CompactClassificationECOC class 6.6 TRAIN ENSEMBLE CLASSIFIERS USING CLASSIFICATION LEARNER APP CLASSIFICATION WITH NEAREST NEIGHBORS. KNN CLASSIFIERS 7.1 CLASSIFICATION USING NEAREST NEIGHBORS 7.1.1 Pairwise Distance Metrics 7.1.2 k-Nearest Neighbor Search and Radius Search 7.1.3 Classify Query Data 7.1.4 Find Nearest Neighbors Using a Custom Distance Metric 7.2 K-NEAREST NEIGHBOR CLASSIFICATION FOR SUPERVISED LEARNING 7.2.1 Construct KNN Classifier7.2.2 Examine Quality of KNN Classifier 7.2.3 Predict Classification Using KNN Classifier 7.2.4 Modify KNN Classifier 7.3 NEAREST NEIGHBORS FUNCTIONS 7.3.1 ExhaustiveSearcher 7.3.2 KDTreeSearcher 7.3.3 createns CLASSIFY PATTERNS WITH A NEURAL NETWORK 8.1 NEURAL NETWORK TOOLBOX 8.2 USING NEURAL NETWORK TOOLBOX 8.3 AUTOMATIC SCRIPT GENERATION 8.4 NEURAL NETWORK TOOLBOX APPLICATIONS 8.5 NEURAL NETWORK DESIGN STEPS 8.6 INTRODUCTION TO PATTERNS RECOGNITION WITH NEURAL NETWORKS 8.7 USING THE NEURAL NETWORK PATTERN RECOGNITION TOOL 8.8 USING COMMAND-LINE FUNCTIONS FUNCTIONS FOR PATTERN RECOGNITION AND CLASSIFICATION WITH NEURAL NETWORKS 9.1 INTRODUCTION 9.2 VIEW NEURAL NETWORK 9.3 PATTERN RECOGNITION AND LEARNING VECTOR QUANTIZATION 9.3.1 Pattern recognition network: patternnet 9.3.2 Learning vector quantization neural network: lvqnet 9.4 TRAINING OPTIONS AND NETWORK PERFORMANCE 9.4.1 Receiver operating characteristic: roc 9.4.2 Plot receiver operating characteristic: plotroc 9.4.3 Plot classification confusion matrix: plotconfusion 9.4.4 Neural network performance: crossentropy9.4.5 Construct and Train a Function Fitting Network 9.4.6 Create and train Feedforward Neural Network 9.4.7 Create and Train a Cascade Network 9.5 NETWORK PERFORMANCE 9.5.1 Description 9.5.2 Examples 9.6 FIT REGRESSION MODEL AND PLOT FITTED VALUES VERSUS TARGETS 9.6.1 Description 9.6.2 Examples 9.7 PLOT OUTPUT AND TARGET VALUES 9.7.1 Description 9.7.2 Examples 9.8 PLOT TRAINING STATE VALUES 9.9 PLOT PERFORMANCES 9.10 PLOT HISTOGRAM OF ERROR VALUES 9.10.1 Syntax 9.10.2 Description 9.10.3 Examples 9.11 GENERATE MATLAB FUNCTION FOR SIMULATING NEURAL NETWORK 9.11.1 Create Functions from Static Neural Network 9.11.2 Create Functions from Dynamic Neural Network 9.12 A COMPLETE EXAMPLE: HOUSE PRICE ESTIMATION 9.12.1 The Problem: Estimate House Values 9.12.2 Why Neural Networks? 9.12.3 Preparing the Data 9.12.4 Fitting a Function with a Neural Network 9.12.5 Testing the Neural Network 9.13 AUTOENCODER CLASS 9.13.1 trainAutoencoder9.13.2 Construct Deep Network Using Autoencoders 9.13.3 decode 9.13.4 encode 9.13.5 predict 9.13.6 stack MULTILAYER NEURAL NETWORK 10.1 CREATE, CONFIGURE, AND INITIALIZE MULTILAYER NEURAL NETWORKS 10.1.1 Other Related Architectures 10.2 FUNCTIONS FOR CREATE, CONFIGURE, AND INITIALIZE MULTILAYER NEURAL NETWORKS 10.2.1 Initializing Weights (init) 10.2.2 feedforwardnet 10.2.3 configure 10.2.4 init 10.2.5 train 10.2.6 trainlm 10.2.7 tansig 10.2.8 purelin 10.2.9 cascadeforwardnet 10.2.10 patternnet 10.3 TRAIN AND APPLY MULTILAYER NEURAL NETWORKS 10.3.1 Training Algorithms 10.3.2 Training Example 10.3.3 Use the Network 10.4 TRAIN ALGORITMS IN MULTILAYER NEURAL NETWORKS 10.4.1 trainbr:Bayesian Regularization 10.4.2 trainscg: Scaled conjugate gradient backpropagation 10.4.3 trainrp: Resilient backpropagation 10.4.4 trainbfg: BFGS quasi-Newton backpropagation10.4.5 traincgb: Conjugate gradient backpropagation with Powell-Beale restarts 10.4.6 traincgf: Conjugate gradient backpropagation with Fletcher-Reeves updates 10.4.7 traincgp: Conjugate gradient backpropagation with Polak-Ribiére updates 10.4.8 trainoss: One-step secant backpropagation 10.4.9 traingdx: Gradient descent with momentum and adaptive learning rate backpropagation 10.4.10 traingdm: Gradient descent with momentum backpropagation 10.4.11 traingd: Gradient descent backpropagation CLASSIFICATION WITH NEURAL NETWORKS. EXAMPLES 11.1 CRAB CLASSIFICATION 11.1.1 Why Neural Networks? 11.1.2 Preparing the Data 11.1.3 Building the Neural Network Classifier 11.1.4 Testing the Classifier 11.2 WINE CLASSIFICATION 11.2.1 The Problem: Classify Wines 11.2.2 Why Neural Networks? 11.2.3 Preparing the Data 11.2.4 Pattern Recognition with a Neural Network 11.2.5 Testing the Neural Network 11.3 CANCER DETECTION 11.3.1 Formatting the Data 11.3.2 Ranking Key Features 11.3.3 Classification Using a Feed Forward Neural Network 11.4 CHARACTER RECOGNITION 11.4.1 Creating the First Neural Network 11.4.2 Training the first Neural Network 11.4.3 Training the Second Neural Network11.4.4 Testing Both Neural Networks #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Pattern Recognition and Classification Using Matlab رابط مباشر لتنزيل كتاب Pattern Recognition and Classification Using Matlab
|
|