Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Design and Analysis of Experiments - Volume 1 الثلاثاء 11 يناير 2022, 1:58 am | |
|
أخواني في الله أحضرت لكم كتاب Design and Analysis of Experiments - Volume 1 Introduction to Experimental Design Second Edition Klaus Hinkelmann Virginia Polytechnic Institute and State University Department of Statistics Blacksburg, VA Oscar Kempthorne Iowa State University Department of Statistics Ames, IA
و المحتوى كما يلي :
Contents Preface to the Second Edition Preface to the First Edition xxi 1 The Processes of Science 1.1 INTRODUCTION . 1.1 . 1 Observations in Science 1.1.2 Two Types of Observations . 1.1.3 From Observation to Law . 1.2 DEVELOPMENT OF THEORY 1.2.1 The Basic Syllogism 1.2.2 Induction, Deduction, and Hypothesis . 1.3 THE NATURE AND ROLE OF THEORY IN SCIENCE . 1.3.1 What Is Science? 1.3.2 Two Types of Science . 1.4 VARIETIES OF THEORY . 1.4.1 Two Types of Theory 1.4.2 What Is a Theory? . THE PROBLEM OF GENERAL SCIENCE 1.5.1 Two Problems . 1 S.2 The Role of Data Analysis . 1 S.3 The Problem of Inference . 1.6 CAUSALITY 1.6.1 Defining Cause. Causation. and Causality . 1.6.2 The Role of Comparative Experiments . 1.7 THEUPSHOT . 1.8 WHAT IS AN EXPERIMENT? Absolute and Comparative Experiments 1.8.2 Three Types of Experiments 1.9 STATISTICAL INFERENCE 1.9.1 Drawing Inference . 1.9.2 Notions of Probability . 1.9.3 Variability and Randomization . 1.5 1.8.1 1 1 1 2 3 5 5 6 8 8 9 11 11 12 14 15 15 16 16 17 19 21 21 22 23 24 24 25 26 vi CONTENTS 2 Principles of Experimental Design 29 2.1 CONFIRMATORY AND EXPLORATORY EXPERIMENTS 29 2.2 STEPS OF DESIGNED INVESTIGATIONS . 30 2.2.1 Statement of the Problem 31 2.2.2 Subject Matter Model . 32 2.2.3 Three Aspects of Design 33 2.2.4 Modeling the Response . 35 2.2.5 Choosing the Response . 36 2.2.6 Principles of Analysis . 36 2.3 THE LINEAR MODEL . 37 2.3.1 Three Types of Effects . 37 2.3.2 Experimental and Observational Units . 38 2.3.3 Outline of a Model . 40 2.4.1 The Questions and Hypotheses . 41 2.4.2 The Experiment and a Model 41 2.4.3 Analysis 42 2.4 ILLUSTRATING INDIVIDUAL STEPS: STUDY 1 . 41 2.4.4 Alternative Experimental Setup 44 2.5 THREE PRINCIPLES OF EXPERIMENTAL DESIGN 45 2.6 THE STATISTICAL TRIANGLE: STUDY 2 . 46 2.6.1 Statement of the Problem 46 2.6.2 Four Experimental Situations . 46 2.7 PLANNING THE EXPERIMENT: THINGS TO THINK ABOUT 5 1 2.8 COOPERATION BETWEEN SCIENTIST AND STATISTICIAN . . 53 2.9 GENERAL PRINCIPLE OF INFERENCE AND TYPES OF STATISTICAL ANALYSES 56 2.9.1 General Model . 56 2.9.2 Outline of the ANOVA . 56 2.10 OTHER CONSIDERATIONS FOR EXPERIMENTAL DESIGNS . . 58 3 Survey of Designs And Analyses 61 3.1 INTRODUCTION . 61 3.2 ERROR-CONTROL DESIGNS 62 3.3 TREATMENT DESIGNS 64 3.4 COMBINING IDEAS FROM ERROR-CONTROL AND TREATMENT DESIGNS 65 3.5 SAMPLING DESIGNS . 68 3.6 ANALYSIS AND STATISTICAL SOFTWARE 68 3.7 SUMMARY., . 69 4 Linear Model Theory 71 4.1 INTRODUCTION . 71 4.1.1 The Concept of a Model 71 4.1.2 Comparative and Absolute Experiments 73 4.2 REPRESENTATION OF LINEAR MODELS . 73 4.3 FUNCTIONAL AND CLASSIFICATORY LINEAR MODELS . 74 CONTENTS vii 4.3.1 Functional Models . 74 4.3.2 Classificatory Models . 74 4.3.3 Components 75 4.4 THE FITTING OF y = Xp 76 4.4.1 The Notion of Identifiability 76 4.4.3 The Method of Least Squares . 77 4.4.4 Theory of Linear Equations 81 4.5 MOORE-PENROSE GENERALIZED INVERSE . 84 4.6 CONDITIONED LINEAR MODEL 85 4.6.1 Affine Linear Model 85 4.6.2 Normal Equations for the Conditioned Model . 87 4.6.3 Different Types of Conditions . 88 4.6.4 General Case 89 4.7 TWO-PART LINEAR MODEL 90 4.7.1 Ordered Linear Models . 90 4.7.2 Using Orthogonal Projections . 91 4.7.3 Orthogonal ANOVA 93 Models with Classificatory and Functional 4.4.2 The Notion of Estimability . 77 4.8 SPECIAL CASE OF A PARTITIONED MODEL . 94 4.9 THREE-PART MODELS 94 4.10 TWO-WAY CLASSIFICATION WITHOUT INTERACTION 95 4.1 1 K-PART LINEAR MODEL . 97 4.11.1 The General Model and Its Sums of Squares 97 4.1 1.2 The Means Model . 99 4.12 BALANCED CLASSIFICATORY STRUCTURES 100 4.12.1 Factors, Levels, and Partitions . 101 4.12.2 Nested, Crossed, and Confounded Factors . 101 4.12.3 The Notion of Balance . 102 4.12.4 Balanced One-way Classification . 102 4.12.5 Two-way Classification with Equal Numbers . 103 4.12.6 Experimental versus Observational Studies 104 4.12.7 General Classificatory Structure 106 4.12.8 The Well-Formulated Model 109 112 4.13.1 Two-Fold Nested Classification 112 4.13.2 Two-way Cross-Classification . 113 4.13.3 Two-way Classification without Interaction 116 4.14 ANALYSIS OF COVARIANCE MODEL . 118 4.14.1 The Question of Explaining Data . 118 4.14.2 Obtaining the ANOVA Table 120 4.14.3 The Case of One Covariate . 121 4.14.4 The Case of Several Covariates 121 4.15 FROM DATA ANALYSIS TO STATISTICAL INFERENCE . 122 4.16 SIMPLE NORMAL STOCHASTIC LINEAR MODEL 123 4.16.1 The Notion of Estimability . 123 4.13 UNBALANCED DATA STRUCTURES ... V l l l CONTENTS 4.16.2 Gauss-Markov Linear Model 4.16.3 Ordinary Least Squares and Best Linear Unbiased Estimators 4.16.4 Expectation of Quadratic Forms 4.17.1 Distributional Properties of X'P 4.17.2 Distribution of Sums of Squares 4.17.3 Testing of Hypotheses . 4.18 MIXED MODELS . 4.18.1 The Notion of Fixed, Mixed and Random Models . 4.18.2 Aitken-like Model . 4.18.3 Mixed Models in Experimental Design 4.17 DISTRIBUTION THEORY WITH GXNLM . 5 Randomization 5.1 INTRODUCTION . 5.1.1 Observational versus Intervention Studies . 5.1.2 Historical Controls versus Repetitions . 5.2 THE TEA TASTING LADY 5.3 TRIANGULAR EXPERIMENT 5.3.1 Medical Example 5.3.2 Randomization. Probabilities. and Beliefs . 5.4 SIMPLE ARITHMETICAL EXPERIMENT 5.4.1 Noisy Experiments . Investigative Experiments and Beliefs . 5.4.3 Randomized Experiments . 5.5 RANDOMIZATION IDEAS 5.6 EXPERIMENT RANDOMIZATION TEST 5.7 INTRODUCTION TO SUBSEQUENT CHAPTERS . 5.4.2 6 Completely Randomized Design 6.1 INTRODUCTION AND DEFINITION 6.2 RANDOMIZATION PROCESS Use of Random Numbers 6.2.2 Design Random Variables . 6.3 DERIVED LINEAR MODEL . Conceptual Responses and Observations 6.3.2 Distributional Properties 6.3.3 Additivity in the Broad Sense . 6.3.4 Error Structure . 6.3.5 Summary of Results 6.4 ANALYSIS OF VARIANCE 6.4.1 Deriving the ANOVA Table Obtaining Expected Mean Squares . 6.5 STATISTICAL TESTS . 6.5.1 Enumerating Randomizations . 6.5.2 Randomization Test 6.6 APPROXIMATING THE RANDOMIZATION TEST . 6.2.1 6.3.1 6.4.2 124 126 128 128 128 130 131 132 132 133 134 137 137 137 139 139 140 141 141 142 142 144 145 148 150 151 153 153 154 154 154 157 157 159 161 162 164 165 165 168 171 171 172 174 CONTENTS ix 6.6.1 Moments of the Test Statistic 174 6.6.2 Approximation by the F-Test 177 6.6.3 Simulation Study 177 6.7 CRD WITH UNEQUAL NUMBERS OF REPLICATIONS 179 6.7.1 Randomization . 180 6.7.2 The Model and ANOVA 180 6.7.3 Comparing Randomization Test and F-Test 180 6.8 NUMBER OF REPLICATIONS 180 6.8.1 Power of the F-Test . 182 6.8.2 Smallest Detectable Difference . 184 6.8.3 Practical Considerations 185 6.9 SUBSAMPLING IN A CRD 191 6.9.1 Subsampling Model 191 6.9.2 Inferences with Subsampling 193 6.9.3 Comparison of CRDs without and with Subsampling . 193 6.10 TRANSFORMATIONS . 196 6.10.1 Nonadditivity in the General Sense 196 6.10.2 Nonconstancy of Variances . 197 6.10.3 Choice of Transformation . 198 6.10.4 Power Transformations . 200 6.1 1 EXAMPLES USING SAS@ 201 6.12 EXERCISES 204 7 Comparisons of Treatments 213 7.1 INTRODUCTION . 213 7.2 COMPARISONS FOR QUALITATIVE TREATMENTS . 213 7.2.1 Treatment Contrasts 214 7.2.2 Orthogonal Contrasts 214 7.2.3 Partitioning the Treatment Sum of Squares 215 7.3 ORTHOGONALITY AND ORTHOGONAL COMPARISONS 218 7.4 COMPARISONSFORQUANTITATIVETREATMENTS 219 7.4.1 Comparisons for Treatments with Equidistant Levels . 219 7.4.2 Use of Orthogonal Polynomials 220 7.4.3 Contrast Sums of Squares and the ANOVA 223 7.5 MULTIPLE COMPARISON PROCEDURES . 224 7.5.1 Multiple Comparisons and Error Rates . 224 7.5.2 Least Significant Difference Test 225 7.5.3 Bonferroni t-Statistics . 225 7.5.4 Studentized Range Procedure . 226 7.5.5 Duncan’s Multiple Range Test . 226 7.5.6 Scheffk’s Procedure 227 7.5.7 Comparisons with a Control 227 7.5.8 Alternatives to Tests Based on Normality . 228 7.6 GROUPING TREATMENTS 229 7.7 EXAMPLES USING SAS@ 230 7.8 EXERCISES 236 X CONTENTS 8 Use of Supplementary Information 8.1 INTRODUCTION . 8.2 MOTIVATION OF THE PROCEDURE 8.3 ANALYSIS OF COVARIANCE PROCEDURE 8.3.1 Basic Model 8.3.2 Least Squares Analysis . 8.3.3 Least Squares Means 8.3.4 Formulation in Matrix Notation 8.3.5 ANOVA Table . 8.4 TREATMENT COMPARISONS 8.4.1 Preplanned Comparisons 8.4.2 Multiple Comparison Procedures . 8.5 VIOLATION OF ASSUMPTIONS . 8.5.1 Linear Relationship between x and y 8.5.2 Common Slope . 8.5.3 Covariates Affected by Treatments . 8.5.4 Normality Assumption . 8.6 ANALYSIS OF COVARIANCE WITH SUBS AMPLING 8.7 CASE OF SEVERAL COVARIATES . 8.7.1 General Case 8.7.2 Two Covariates . 8.8 EXAMPLES USING SAS@ 8.9 EXERCISES 9 Randomized Block Designs 9.1 INTRODUCTION . 9.2 RANDOMIZED COMPLETE BLOCK DESIGN . 9.2.1 Definition 9.2.2 Derived Linear Model . 9.2.3 Estimation of Treatment Contrasts . 9.2.4 Analysis of Variance 9.2.5 Randomization Test and F-Test 9.2.6 Additivity in the Broad Sense . 9.2.7 Subsampling in an RCBD . 9.3 RELATIVE EFFICIENCY OF THE RCBD 9.3.1 Question of Effectiveness of Blocking . 9.3.2 Use of Uniformity Trials 9.3.3 Interpretation and Use of Relative Efficiency . 9.4 ANALYSIS OF COVARIANCE 9.4.1 TheModel . 9.4.2 Least Squares Analysis . 9.4.3 The ANOVA Table . 9.5 MISSING OBSERVATIONS 9.5.1 Estimating a Missing Observation . 9.5.2 Using the Estimated Missing Observation . 239 239 240 242 242 242 244 245 246 250 250 251 252 252 253 256 257 258 259 260 262 264 274 277 277 278 278 278 282 282 285 286 288 288 288 290 291 292 292 293 294 295 295 297 CONTENTS xi 9.5.3 Several Missing Observations . 298 9.6 NONADDITIVITY IN THE RCBD 300 9.6.1 The Problem of Nonadditivity . 300 9.6.2 General Model for Nonadditivity 300 Nonadditivity 302 9.6.4 Testing for Nonadditivity 303 9.6.6 Generalizations . 305 9.6.7 Several Blocking Factors 306 9.6.8 Dealing with Block-Treatment Interaction . 312 9.7 GENERALIZED RANDOMIZED BLOCK DESIGN . 314 9.7.1 Definition 314 9.7.2 Derived Linear Model . 314 9.7.3 TheANOVATable . 317 9.7.4 Analyzing Block-Treatment Interaction 319 9.7.5 A More General Formulation 323 9.7.6 Random Block Effects . 324 9.7.7 Using Satterthwaite’s Procedure 326 9.8 INCOMPLETE BLOCK DESIGNS 328 Blocks . 328 9.8.2 Balanced Incomplete Block Designs 330 9.8.3 BalancedTreatment IncompleteBlockDesigns 333 9.8.4 Partially Balanced Incomplete Block Designs . 335 9.8.5 Extended Block Designs 337 9.8.6 Some General Remarks . 338 9.9 SYSTEMATIC BLOCK DESIGNS 340 9.9.1 Dealing with Trends 340 9.9.2 Trend-free Designs . 341 9.10 EXAMPLES USING SAS@ 343 9.11 EXERCISES 366 9.6.3 One Blocking Factor: A Specific Model for 9.6.5 Tukey’s Test for Nonadditivity . 303 9.8.1 General Notion of Designs with Incomplete 10 Latin Square Type Designs 373 10.1 INTRODUCTION AND MOTIVATION 373 10.2 LATIN SQUARE DESIGN . 374 10.2.1 Definition 374 10.2.2 Transformation Sets and Randomization 376 10.2.3 Derived Linear Model . 377 10.2.4 Estimation of Treatment Contrasts . 380 10.2.5 Analysis of Variance 382 The Model under Additivity in the Broad Sense 10.2.7 Consequences of Nonadditivity 386 10.2.8 Investigating Nonadditivity . 387 10.2.9 Miscellaneous Remarks 389 10.3 REPLICATED LATIN SQUARES . 390 10.2.6 385 xii CONTENTS 10.3.1 Different Scenarios for Replication 390 10.3.2 Rows and Columns Crossed with 10.3.3 Rows Nested in and Columns Crossed with 10.3.4 Rows and Columns Nested in Replications 392 10.3.5 Replication x Treatment Interaction 392 10.4 LATIN RECTANGLES . 393 10.5 INCOMPLETE LATIN SQUARES 394 10.6 ORTHOGONAL LATIN SQUARES 395 10.6.1 Graco-Latin Squares 395 10.6.2 Mutually Orthogonal Latin Squares 396 10.7.1 Two-Treatment Change-Over Design . 398 10.7.2 Change-Over Designs for More than Two Treatments . 401 10.7.3 Some Variations and Extensions 402 10.9 EXERCISES 414 Replications 391 Replications 391 10.7 CHANGE-OVER DESIGNS 397 10.8 EXAMPLES USING SAS@ 404 11 Factorial Experiments: Basic Ideas 419 11.1 INTRODUCTION . 419 1 1.2 INFERENCES FROM FACTORIAL EXPERIMENTS 420 11.3 EXPERIMENTS WITH FACTORS AT TWO LEVELS 422 11.3.1 Definition of Main Effects and Interactions 422 1 1.3.2 Estimation of Main Effects and Interactions 425 11.3.3 Sums of Squares for Main Effects and Interactions 426 1 1.4 INTERPRETATION OF EFFECTS AND INTERACTIONS . 426 11.5 INTERACTIONS: A CASE STUDY 428 1 1.5.1 The Experiment . 428 1 1.5.2 The Model . 428 1 1 S.3 The Analysis 430 11.5.4 Separate Analyses . 439 1 1 S.5 Blocking by Intrinsic Factor Only . 440 1 1 S.6 Using the Half-normal Plot Technique . 441 1 1 S.7 The Analysis 443 11.5.8 Summary 446 1 1.6 2n FACTORIALS IN INCOMPLETE BLOCKS 446 11.6.1 23 Factorial in Blocks of Size 4 446 11.6.2 23 Factorial in Blocks of Size 2 447 1 1.6.3 Partial Confounding 449 1 1.7 FRACTIONS OF 2n FACTORIALS 451 11.7.1 Rationale for Fractional Replication 451 1 1.7.2 1/2 Fraction of the 23 Factorial . 454 11.7.3 The Alias Structure . 454 11.7.4 1/4 Fraction of the 28 Factorial . 456 11.7.5 Systems of Confounding for Fractional Factorials . 457 CONTENTS Xlll ... 11.8 ORTHOGONAL MAIN EFFECT PLANS FOR 2n FACTORIALS . . 462 11.9 EXPERIMENTS WITH FACTORS AT THREE LEVELS 464 11.9.1 The 3' Factorial 465 11.9.2 Extensions . 468 11.9.4 Systems of Confounding for the 3" Factorial . 470 1 1.9.5 Fractions of 3" Factorials . 472 11.9.6 Highly Fractionated 3" Factorials . 475 11.9.3 Formal Definition of Main Effects and Interactions 468 11.9.7 Systems of Confounding for Fractions of 3n Factorials 475 476 11.10.1 Asymmetrical Factorial Experiments . 476 11 . 10.2 Confounding in 2" x 3n Factorials 477 Blocks of Size 18: . 478 Blocks of Size 12: . 478 Blocks of Size 9: 478 Blocks of Size 6: 478 Blocks of Size 4: 478 479 11.1 1 EXAMPLES USING SAS@ 481 11.12 EXERCISES 492 11.10 FACTORS AT TWO AND THREE LEVELS . 11.10.3 Fractions of 2m x 3n Factorials 12 Response Surface Designs 497 12.2 FORMULATION OF THE PROBLEM 498 12.3 FIRST-ORDER MODELS AND DESIGNS 500 12.3.1 First-Order Regression Model . 500 12.3.2 Least Squares Analysis . 12.3.3 Alternative Designs . 503 12.4 SECOND-ORDER MODELS AND DESIGNS 504 12.4.1 Second-Order Linear Regression 504 12.4.2 Possible Designs 505 12.4.3 Central Composite Designs 506 Blocking in Central Composite Designs 12.4.5 Box-Behnken Designs . 509 Hard-to-Change versus Easy-to-Change Factors 12.5 INTEGRATED MEAN SQUARED ERROR DESIGNS 12.5.1 Variance and Bias for the One-Factor Case 514 12.5.2 Choice of Design 12.6 SEARCHING FOR AN OPTIMUM 518 12.7 EXPERIMENTS WITH MIXTURES . 519 12.7.1 Defining the Problem 519 12.7.2 Simplex-Lattice Designs 520 12.7.3 Simplex-Centroid Designs . 521 12.7.4 Axial Designs 521 12.7.5 Canonical Polynomials . 521 12.1 INTRODUCTION . 497 500 12.4.4 12.4.6 507 511 513 517 xiv CONTENTS 12.7.6 Including Process Variables 523 12.8 EXAMPLES USING SAS@ 523 12.9 EXERCISES 531 13 Split-Plot Type Designs 533 13.1 INTRODUCTION . 533 13.2 SIMPLE SPLIT-PLOT DESIGN 534 13.2.1 Superimposing Two Randomized Complete Block Designs . . 534 13.2.2 Derived Linear Model . 537 13.2.3 Testing of Hypotheses . 538 13.2.4 Estimating Treatment Contrasts 539 13.2.5 Testing Hypotheses about Treatment Contrasts 542 13.3 RELATIVEEFFICIENCY OFSPLIT-PLOTDESIGN 543 13.4 OTHER FORMS OF SPLIT-PLOT DESIGNS . 544 13.4.2 Split-Plot Design in Time . 545 13.4.4 SPD(LSD, RCBD) . 548 13.4.5 SPD(CRD, IBD) 549 13.4.6 SPD(GRBD, RCBD) 550 13.4.7 SPD(GRBD, IBD) . 552 13.4.1 SPD(CRD, RCBD) . 545 13.4.3 SPD(CRD, LSD) 547 13.4.8 SPD(IBD, RCBD) . 553 13.4.9 SPD(RCBD, GRBD) 554 13.4.10 Summary 555 13.5.1 The Layout . 555 13.5.2 Linear Model and ANOVA . 557 13.5.3 Estimating Treatment Contrasts 557 13.7 EXAMPLES USING SAS@ 562 13.8 EXERCISES 569 13.5 SPLIT-BLOCK DESIGN 555 13.6 SPLIT-SPLIT-PLOT DESIGN . 560 14 Designs with Repeated Measures 573 14.1 INTRODUCTION . 573 14.2 METHODS FOR ANALYZING REPEATED MEASURES DATA . . 574 14.2.1 Comparisons at Separate Time Points . 574 14.2.2 Use of Summary Measures . 575 14.2.3 Trend Analysis . 575 14.2.4 The ANOVA Method 577 14.2.5 Mixed Model Analysis . 578 14.4 EXERCISES 593 14.3 EXAMPLES USING SAS@ 580 Epilogue 595 CONTENTS Bibliography Abbreviations Author Index Subject Index Author Index Addelman, S., 109,480 Afsarinejad, K., 401-402, 573 Aikins, D., 33 Alcorn, J. S., 308 Algina, J., 574 Alldredge, J. R., 407 Altman, D. G., 574 Amaranthus, M. P., 33 Anderson, V. L., 479 Androne, A. S., 32 Arnold, J. C., 292, 389 Balaam, L. N., 399,403 Balakrishnan, N., 175 Bancroft, T. A., 256,313 Bartlett, M. S., 198 Bechhofer, R. E., 333, 335 Behnken, D. W., 509,511 Belsley, D. A., 258 Beyer, W. H., 221 Birch, J. B., 257 Blaisdell, E. A., Jr., 403 Borkowski, J. J., 51 I Bose, R. C., 335, 396-397 Bowman, K. O., 184, 190, 196,292 Box, G. E. P., 200, 455, 497, 499, 504, Bradley, R. A., 341-342 Buehler, R. J., 519 Burman, J. P., 464 Burton, R. D., 306 506-507,509,5 17-5 19 Calinski, T., 229-230 Campbell, M. J., 575 Carlson, S. R., 307 Carmella, S. G., 38 Carmer, S. G., 225 Carter, W. H., Jr., 497 CASS Principal Investigators, 20 Clatworthy, W. H., 335-336, 509 Cochran, W. G., 239, 253, 331, 395-396, 400,542 Coggin, C. J., 20 Coleman, D. E., 30 Connor, W.J., 479 Conover, W. J., 258 Coons, I., 295, 389 Cornell, J. A., 499, 504, 507, 517-519, Corsten, L. C. A., 229-230,306 Cotterill, P. P., 306 521-522 COX, D. R., 35, 151, 200, 252-253, 260, 292,341 COX, G. M., 331, 395-396,400,542 Craske, M. G., 33 Crowder, M., 573 Daniel, C., 441 Dean, C. A., 306 DCnes, J., 376 De Palluel, C., 374 Dick, I. D., 303 Diers, B. W., 307 Doerfler, T. E., 127, 178, 286 Draper, N. R., 499, 507,509,517-518 Dryden, G. McL., 33 Duncan, D. B., 226 Dunlap, W. P., 230 Dunnett, C. W., 227-228 615 616 AUTHOR INDEX Eisenhart, C., 132, 326 Ellis, R. L., 3, 7 Euler, L., 374 Evans, M. A., 407 Everitt, B. S., 574 Federer, W. T., 59, 338 Feldt, L. S., 545, 577 Finney, D. J., 574, 579 Fisher, L. D.. 20.313. 319 Fisher, R. A., 68, 139-140, 148-150, 177, 221, 225, 239, 278, 286, 374, 377,396,420 Folks, L., 11, 27 Fox, M., 184 Freeman, M. F., 200 Frison, L., 573, 575 Fritz, V. A., 38 Gallie, W. B., 7 Gardner, G. M., 38 Geisser, S., 577 Gersh, B. J., 20 Glass, S., 389 Glenn, W. A., 298 Graybill, F. A., 305-306 Greenhouse, S., 577 Hand, D., 573 Harter, H. L., 226-227 Hartley, H. O., 184, 221, 323, 395 Harville, D. A., 130 Heagerty, P. J., 20, 313, 319 Heath, D. D., 3, 7 Hecht, S. S., 38 Hedayat, A., 338,401,573 Hering, F., 560 Hext, G. R., 519 Hinkelmann, K., xix, 35, 38, 41, 55, 292, Hinsworth, F. R., 519 Hochberg, Y., 225-226, 228, 252 Hocking, R. R., 99-100, 134,258 Hryniewicz, K., 32 Hsu, J. C., 225 Huber, P. J., 228, 257 295,308,389,428,509 Hudaihed, A., 32 Hunter, J. S., 455,499, 506-507 Huynh, H., 545,577 Iman, R. L., 258 Jacroux, M., 342 Jo, J., 509 John, J. A., 366 John, P. W. M., 338 Johnson, D. E., 305-306, 570-571 Johnson, N. L., 175 Jones, B., 400 Kabelka, E. A., 307 Kastenbaum, M. A., 184, 190, 196,292 Katz, S. D., 32 Keedwell, A. I., 376 Kempthorne, O., xxii, 11, 27, 109, 127, 151, 157, 161, 174, 178, 197- 198, 228, 285- 286, 291, 300, 312, 323-324, 377, 386-387, 419,468,480,519 Kenney, P. M., 38 Kenward, M. G., 400 Keppel, G., 548 Keselman, H. J., 574 Keynes, J. M., 25 Khuri, A. I., 499, 504, 507, 517-518 Kiefer, J., 59 Kii, W. Y., 33 Kirk, R. E., 307 Knott, M., 229 Konnerth, T. K., 230 Kotz, S., 175 Kowalchuk, R. K., 574 Kowalski, S. M., 512 Kramer, C. Y., 226,251-252, 298, 389 Kress, L. W., 41 Kuehl, R. O., 232 Kuh, E., 258 Lane, P. W., 245 Lang, A. J., 33 Lencina, V. B., 134 Lentner, M., 292, 389 AUTHOR INDEX 617 Lucas, H. L., 400,403 Lucas, J. M., 5 11 Lumley, T., 20, 313, 319 Majumdar, D., 342 Mandel, J., 302-303, 305-306,440 Marasinghe, M. G., 306 Mathon, R., 331 Matthews, J. N. S., 575 McCarthy, M. D., 197 McCullagh, P., 253,260 McLean, R. A., 479 Mead, R., 497 Mejza, S., 560 Miller, R. G., 225-228, 251 Milliken, G. A., 245, 570-571 Montgomery, D. E., 30, 499, 507 Myers, R. H., 74, 257-258, 263. 498-499, Myers, W. D., 20 Mystkowski, J. L., 33 507 Nair, K. R., 335 Nair, M. G., 33 Narula, S. C., 224 Nelder, J. A., 134, 245 Neyman, J., 140, 197,341,387 Northrop, F. S. C., 24 Notz, W. I., 342 Nowell-Smith, P. H., 18 Oberman, A., 20 Odeh, R. E., 184,342 Parker, E. T., 396 Parker, P. A., 512 Patterson, H. D., 402-403 Pauling, L., 14 Pearce, S. C., 35,277,333,428 Pearson, E. S., 184, 221 Peirce, C. S., 19 Perry, C. O., 295 Pike, D. J., 497 Pitman, E. J. G., 177,286 Plackett, R. L., 464 Pocock, S. J., 573,575 Powell, R. S., 230 Preece, D. A., 59 Quenouille, M. H., 366 Raghavarao, D., 33 1,403 Rao, C. R. 127 Ratkowsky, D. A., 407 Reid, T. C., 33 Richards, W., 176 Ringland, J. T., 228 Robinson, J., 248, 305, 549-550 Rogers, W. J., 20 Rojas, B. A., 387 Rom, D., 225 Rosa, A., 331 Rosen, C. J., 38 Rosenbaum, P. R., 240 Roux, C. Z . , 303 Rowell, J. G., 575 Roy, R. K., 477 Royston, P., 575 Runes, D. D., 17 Russell, B., 7, 12-13 SAS Institute, Inc., xviii, 69, 86, 98, 154, 180, 185, 201, 343, 451,459, 578 Satterthwaite, F. E., 326, 542, 561 Savage, L. J., 26 Scheffk, H., 184, 228, 260, 303, 305, 388, 519 Scheffler, I., 24 Scott, A. J., 229 Searle, S. F., 245 Shah, B. V., 59, 519 Shah, R. K., 342 Sheffield, L. T., 20 Shrikhande, S. S., 396 Singer, J. M., 134 Skelly, J. M., 41 Smith, C. A. B., 399 Smith, H. F., 240, 256 Snedecor, G. W., 229 Snee, R. D., 312 Spedding, J., 3, 7 618 AUTHOR INDEX Speed, F. M., 100,245 Spendley, W., 5 19 Srivastava, J., 60, 387 Stablein, D. M., 497 Stanek, E. J., 111, 134 Stebbing, L. S., 21 Steinfeld. D., 33 Stevens, W. L., 397 Stewart, M. J., 308 Stoline, M. R., 225 Street, A. P., 374 Street, D. J., 374 Stufken, J., 342 Swanson, M. R., 225 Taguchi, G., 463-464,477 Tamhane, A. C., 225-226, 228, 252, 333, 335 Tang, P. C., 184 Throckmorton, T. N., 109 Tobias, R. D., 225 Tukey, J. W., 200,224,226,302-303,305, 387-388,440 van Belle, G., 20, 313, 319 van Eijnsbergen, A. C., 306 Venn, J., 25 Vining, G. G., 498,512 Voss, D. T., 134 Wagenaar, W. A., 402,547 Walters, D. E., 575 Wampler, J. L., 497 Wang, Y. C., 387 Ward, G. C., 303 Watson, G. S., 127 Webb, D. F., 51 1 Welch, B. L., 177, 286, 384-385 Welsch, R. E., 258 Westfall, P. H., 225 White, R. F., 109 Wilk,M. B., 161,300,317,323-324,386- Williams, E. J., 401,403, 547 Wilson, K. B., 497,499, 506,518-519 Wolfinger, R. D., 225 387 Yates, F., 59,221,290-291,295, 330,377, Yeh, C. M., 341-342 Youden, W. J., 394 Young, S., 479 394-396,420,468, 534, 549 Zahn, D. A., 441 Zedek, S., 548 Zyshnd, G., 107-109, 127,323 Subject Index Additivity in the broad sense, 161, 164, 218, 286, 300,329,385,425 in the strict sense, 158, 161, 164, 171, 218,280,286,300,377 transformation to, 388 unit-treatment, 40, 197, 329, 377, 425, 537 Aitken equation, 125-127 theorem, 125- 127 matrix, 516 structure, 454-455,473-475 approximate, 295 cluster, 229 of data, 29 of experiments, 20-22, 26 mixed model, 578 nonparametric, 68 regression, 220,491. See also statistical, 30, 36, 43, 55-57 trend, 575 Alias Analysis Regression, analysis Analysis of covariance, 118, 121, 239, 242, 258-260, 292, 295, 389 algebra of, 12 1 model, 118 with subsampling, 258 table, 248-249, 294 technique, 295 Analysis of variance (ANOVA), 36, 42- 46, 68, 79, 92, 95, 99-101, 112, 115, 130, 151, 165-166, 177 auxiliary, 122, 242 between-and-within subjects de- CRD, 167 BIBD, 361-364 sign, 566 with orthogonal contrasts, with orthogonal polynom- with repeated measures, with subsampling, 194 with unequal numbers, 182 217,233 ials, 224, 235 58 1 cross-over design, 410 first-order design, 501-502, 525 GRBD, 317-318,324,357 Graco-Latin square, 397 IBD, 330 LSD, 383,405 orthogonal, 93-94 preliminary, 433 replicated, 391-393,408 RCBD, 282-284,344 with crossed blocking fac- tors, 3 11 with nested blocking fac- tors, 309-310, 354 under nonadditivity, 304 with subsampling, 289, 310,349,354 second order design, 505 SPD(BIBD, RCBD), 555 SPD(CRD,BIBD), 551 619 620 SUBJECT INDEX SPD(CRD, LSD), 548 SPD(CRD, RCBD), 545 with repeated measures, 589 SPD(GRBD, BIBD), 553 SPD(GRBD, IBD), 554 SPD(GRBD, RCBD), 552 SPD(LSD, RCBD), 549 SPD(RCBD, GRBD), 556 SPD(RCBD, RCBD), 536 split-block design, 5.58 split-plot design, 536, 563 split-split-plot design, 561 table, 245-246, 259, 301, 430-43 1, 438,448,467 two-way classification, 105 uniformity trial, 291, 544 Anaximander, 12 Anaximenes, 12 Aphorism, 3,7, Aquinas, 13, 17 Aristotle, 9, 12-13, 17 Arrangement(s) existential, 9 random, 340 systematic, 341 first, 336 second, 336 Association scheme, 336 Avicenna, 13 Associates Bacon, 4-7, 13, 19 Balance, 102 Balancedness, 59 Basis inductive, 420 inferential, 64 approach, 123 empirical, 139 hierarchical, 123 calculus, 26 rational, 25 Bayes Belief(s), 141, 144 Bernoulli, 2.5 random variable, 155 trial, 25 Bertrand, 25 Bias, 514-515 Block(s) squared, 5 15 design, see Design effect, see Effect, block incomplete, 328, 446 size, 329 effectiveness of, 288 factors, see Factor(s) orthogonal, 390, 507-508, 5 11 in two directions, 390 inequality, 225 procedure, 225,228 t-statistic, 225-226 Blocking, 61 Bonferroni Borel. 25 Boyle, 13 Causality, 16-19 Causation, see Causality Cause, see Causality Central limit theorem, 148 Classification Aristotelian, 5 models, 74-75 one-way, 102-103, 109 two-fold nested, 109, 112, 193 two-way, 95, 103-106, 109, 112- 116,329 Collinearity, 263 Comparison(s), see also Contrast(s) a priori, 2 13 with a control, 227 multiple, 224, 251-252, 269, 286 orthogonal, 214-215,218 pairwise, 224 preplanned, 213, 219, 250 split-plot treatment, 543-544 treatment, 59, 165, 250, 332, 377 estimated, 21 8 whole-plot treatment, 543-544, 549 post-hoc, 225 SUBJECT INDEX 62 1 Component(s) covariance, 133, 578 design, 56 error, 56 treatment, 56 variance, 133, 578 Comprehensiveness, 420 Computer packages, see SAS Confidence interval(s), 27, 542 estimation, 37 simultaneous, 226-228 complete, 449 partial, 449,452 system of, 447, 457, 472, 475, Confounding 507-508,5 11,552-554 Connectedness, 59, 329 Contrast(s), see also Comparison(s) among treatment effects, 160 cubic, 223 defining, 455-456 orthogonal, 214-215,424 quadratic, 223 single-d.f., 441-442 standardized, 2 15 treatment, 214, 282, 380 historical, 139, 148 local, 45, 278 statistical, 24 paper, 520 system, 519 complete set of, 214 Control Coordinate Copernicus, 13 Correlation, epistemic, 11- 12 Covariate(s), 76, 240, 292 affected by treatments, 256 multiple, 259, 263 Darwin, 3, 9 Data analysis, 5 , 11-12, 15, 100, 122 collection, 34, 38 longitudinal, 573 observational, 137 snooping, 227 structure, 100, See also Structure, data Deduction, 6-7 Degrees of freedom (d.f.), 79, 166, 183 denominator, 195 loss of, 290 Democritus, 12 Descartes, 9, 12 Design. see also Experiment(s), all-bias, 517 all-variance, 5 17 axial, 506-508, 520-521 balanced incomplete block (BIBD), 63, 330-335, 359, 304, 549, 552-554 balanced residual effect, 401 balanced treatment incomplete block (BTIBD), 63,333 between-and-within subjects, 545- 548 binary, 330, 342 Box-Behnken, 65,506 carry-over, 397 central composite (CCD), 506-508, change-over, 397,400 complete block, 341 completely randomized (CRD), 512-514,524, 527-529 34,62, 106, 151-153,218, 529 with subsampling, 191 with unequal numbers, 179,219 connected, 339 construction of, 23 counterbalanced, 397,545 cross-over, 63, 397,573 diagram-balanced, 545 disconnected, 339 economical, 5 1 1 effects, see Effects, equireplicate, 330, 343 equivalent estimation, 5 12 error-control, 33-41, 45, 53-56, 61- 65, 153, 277-278, 298, 328, 622 SUBJECT INDEX 377, 390, 421, 475, 497-499, 573,580 error-reduction, 277,419,446 of experiments, 1, 16, 20-22,26, 29 extended block, 63, 337-338, 554 factorial, see Factorial(s) first-order, 506-507, 513, 525 generalized randomized block (GRBD), 63, 106, 312-314, 323,353,554 Graeco-Latin square, 63-64, 395- 396 incomplete block (IBD), 34,65, 113 134, 295, 328-329, 421-422, 446,457,509, 549,552-554 Kronecker product, 477 Latin rectangle, 62, 393-394 Latin square (LSD), 34, 45, 62-64, 149-151, 374, 377, 387. See also Latin square(s) extended, 395 incomplete, 63-64, 394- mutually orthogonal, 63, replicated, 63, 390, 548 type, 62-63,373-375 395 395-396 lattice, 63-65 mixture, 5 19 model, 260 moments, 506, 515-516 nonorthogonal, 332,422 observation, 333-334,573 optimal, 517 orthogonal, 421,425, 504-506,539 pairwise balanced, 338 parameter, 477 partially balanced incomplete block proper, 330, 342 randomized block, 34,62-63,277 replicated, 62-63 randomized complete block (PBIBD), 63,335-337,552 (RCBD), 34, 63, 151, 278, 428,543 with subsampling, 288 repeated measures, 65, 397, 545, balanced, 40 1 resolution 111,455, 475 resolution IV, 457, 475 resolution V, 457,475,505 resolvable, 5 1 1 response surface, 65, 497. See also row-column, 34, 374 sampling, 33-37, 61 second-order, 504-505, 513 simplex, 504 centroid, 520-521 lattice, 520 split-block, 555 incomplete, 560 split-plot, 38,45,512,528,534,539 in strips, 555 in time, 545, 577 type, 39, 65, 151, 511, 533 573,577 Response surface split-split-plot, 51 1, 560 statistical, 30 switch-over, 397 systematic block, 340 treatment, 33-37, 45, 61, 64-65, trend-free block, 341-342 unbalanced, 5 1 1 unbiased, 382, 387 variance balanced, 59,338 Williams, 402 Youden square, 34, 394-395 Dewey, 19 Diagrammatic representation, 109 Difference( s) 390,419,499,573 nearly, 342 minimum, 184 smallest detectable, 184 treatment, 184, 242 standardized, 184 adjusted, 242 Distribution beta, 175-177 chi-squared, 129, 303 noncentral, 13 1 SUBJECT INDEX 623 F-, 132, 177 central, 132 noncentral, 132, 183 joint, 26, 72, 130 mathematical, 10 noninformative prior, 26 normal (Gaussian), 10,72 posterior, 25-26 prior, 26 probability, 26, 139 randomization, 177. See also studentized range, 226 of sum of squares, 130 multivariate, 129-130 Randomization t-, 131, 542 noncentral, 13 1 theory, 129 Effect(s) block, 37-38, 134 random, 324 carry-over, 398,403 design, 37,40, 134 direct, 398-400 error, 37,40,57 fixed, 325 interaction, 37-38,419, 468 learning, 545 linear, 505 linear x linear, 505 main, 37-38,419-425,468-470 multiplicity, 224 order, 548 quadratic, 505 random, 57,134 residual, 398-400 second order, 513,517 simple, 423 size, 184 systematic, 57 treatment, 37,40,46-47 second-order, 403 differential, 171-173 Efficiency, 59 factor, 333, 336 relative (RE), 288-291, 389,543 estimated (ERE), 290-292, 389,543 Einstein, 13 Equation( s) Aitken, 125-127 linear, 81 normal (NE), 77, 80-83, 87, 115- 117, 125 242, 246, 254, 293, 329,500 -like, 133,578 conjugate, 77, 129 reduced (RNE), 90, 121, 329,360 theory of, 81 components, 162 estimation of, 137, 148 experimental, 37-48,68, 163-165, mean squared, 5 14 measurement, 10, 14, 23, 39-40, observational, 24, 39-48, 68, 191, 315 pure, 430, 502, 505 rates, 224 Error 191,258 integrated (IMSE), 516 161-162 comparisonwise, 224-225 familywise, 224-225 sampling, 39,42,48, 68, 161-162 selection, 161 - 162 space, 129 split-plot, 5 12 standard (se), 151 state, 161-162 structure, 162 technical, 161, 164 treatment, 38, 161-162, 315 unit, 40, 160, 239 variance, 5 15 whole-plot, 5 12 Estimability, 77, 123 Estimate ANOVA-type, 133 best linear unbiased (BLUE), 125- 27, 160,242 624 SUBJECT INDEX of error, 137, 148 generalized least squares (GLS), 126 interval, 165 ordinary least squares (OLS), 126- point, 165 Estimation, see also Estimate space, 129 Estimator, see Estimate Expectation, posterior, 25 Experiment( s), see also Experimentation, L I I - , 228, 257 127, 160 Studies absolute, 22, 65, 73 agricultural, 148 agronomic, 65,420, 549, 556 arithmetical, 142 comparative, 14-15, 19-24, 65, 71- confirmatory, 29-30 design of, 16, 20-22, 26, 29 exploratory, 29-30,475 factorial, 59, 64,419-422, 533 73,151,497,523 asymmetrical, 64 fractional, see Factorial(s) symmetrical, 64 investigative, 144 Lady tasting tea, 139-140 mixture, 519, 523 noisy, 142 psychological, 545 randomized, 145 replicated randomized block, 307 triangular, 140 types of, 23 industrial, 30,420,497, 5 1 1, 543 scientific, 30, 46 sequential, 43 Experimentation Explanation, 18 Factor( s) between-subjects, 545 blocking, 32, 35, 106, 278, 306, 313,373,440,580 crossed, 308 nested, 308 classification, 32 confounded, 101 correction, 94 crossed, 101 easy-to-change, 5 11-512,543 efficiency, 333, 336 hard-to-change, 51 1-513,524,543 intrinsic, 35, 38-42,45, 5 1-53, 56, 106, 134, 278, 313-314, 325, 373,440,552 level, 54 nested, 106 nonspecific, 35, 38-42, 45, 56, 134, 278,373 qualitative, 52 quantitative, 52 split-plot, 534 treatment, 32-35,42, 51-53,422 whole-plot, 534 within-subjects, 545 Factorial(s), see also Design, Experiment(s) asymmetrical, 66, 476,479 complete, 5 1 1 fractional, 64-66, 453-455, 462-, 463,472,475,479,505-506 of resolution 111, 503 of resolution IV, 503 of resolution V, 503, 5 1 1 full, 503 highly fractionated, 475 mixed, 476,548 pure, 476 symmetrical, 66, 476 2n, 422,446,462,503,509 3n, 465,472,505,509 Faraday, 13 Fit badness of, 76 lack of, 223, 502,505, 524 proportional, 96 relative, 10 Frequency (ies) Frequentist approach, 123 SUBJECT INDEX 625 Function(s) loss of, 478 estimable, 78, 81, 125, 131, 242, supplementary, 59, 239-242, 248, 459,557 identifiable, 8 1 likelihood, 26 linear, 130 parametric, 137 polynomial, 498 quadratic, 130, 166 Games of chance, 25 Gauss -Markov linear model (GMLM), 124- 125 normal linear model (GMNLM), properties, 147 theorem, 124 128-131, 137, 147 Half-normal plot, 441-443 Heisenberg uncertainty principle, 2, I I Heraclitus, 12 Heterogeneity, 239 elimination of, 395 of experimental units, 160 of groups, 229 Homogeneity, 193 Hume, 9 Huynh-Feldt condition, 545, 577 Hypothesis, 6-7 falsification of, 7 reductionist, 14 research, 32,41-44, 53 statistical, 32, 43 working, 32 Identifiability, 76, 1 14, 120 Induction, 4, 6-7 Inequality Bonferroni. 225 Tchebycheff, 139 Bayesian, 26 statistical, 24, 57, 122, 151 Inference, 16 types of, 7,36 Information inter-block, 134, 553 292 Interaction(s), 419, 470, 475 antidirectional, 319 antagonistic, 3 19 block-treatment, 278, 300-302, 306 codirectional, 313, 319 components, 468-470, 475 effects, see Effects, interaction firs t-order, 42 1 generalized, 449, 456, 474-475 higher order, 420-42 1, 428 linear x linear, 505 lower order, 420 replication x treatment, 39 1-392 row-column, 379 simple, 424 synergistic, 313 three-factor, 457, 47 1, 504 treatment x design, 134 treatment-time, 575, 580 two-factor, 421,456,47 1, 504 unit-treatment, 300-301, 3 14 confidence, 27,217 -308, 312-314, 317-319, 338 plot, 320-321 Interval(s) estimation, 37 simultaneous, 226-227 Intervention, see Studies, intervention statistical, 137 Jeffreys, 26 Kant, 9. 17 Keeton, 17 Kepler, 4, 13 Knut Vik square, 149-150 Lagrange multipliers, 87 Latin rectangle, 393-394 Latin square(s), 62, 376, 548 completely counterbalanced, 402 complete orthogonalized, 397 cyclic, 402 626 SUBJECT INDEX design (LSD), see Design, Latin square diagram-balanced, 547 Graeco-, 396 incomplete, 394,402 mutually orthogonal (MOLS), 397, 403 orthogonal, 395 principle, 62-64, 390, 393 reduced, 376 Lavoisier, 13 Law(s) Kepler’s, 4 Mendel’s, 4 of succession, 25 analysis, 293-297, 335, 500 fitting, 76, 80,86, 119 generalized (GLS). 126, 512 mean (LSM), 244, 325-326, method of, 37,57,77,220-221, ordinary (OLS), 126, 512 Least squares 332,422 242,466 Leucippus, 132 Level( s) coded, 500 equidistant, 219 significance, 172-173, 177-179, 183 function, 26 residual maximum (REML), 580 affine, 85-86 approximative, 77 classificatory, 74-75 conditional, 85, 99 derived, 68, 127, 159, 164, 278, 3 14,537 functional, 74 Gaussian, 26 Gauss-Markov (GMLN), 124-125 k-part, 97 ordered, 90-94 stochastic, 74, 77, 123 Likelihood, 11 Linear model, 37-38,44-46, 71-73 128-131, 137, 147 theory, 7 1 3-part, 94,329 Locke, 9 Logic, Aristotelian, 9 Loss 2 - p ~ t , 90 of degrees of freedom, 290 of information, 253 of power, 290 of sensitivity, 290 Mathematics, foundations of, 6 Matrix design, 506 design-model, 466, 504 generalized inverse, 81-83, 125,332 idempotent symmetric (sip), 78, 84,87 incidence, 118, 329,333, 339, 509 information, 330 model, 73 Moore-Penrose (M-P) inverse, orthogonal, 126, 216 projection, 91 variance-covariance, 124- 125, 578 84-86, 124 Maxwell, 13 Mean, admissible, 107-108, 115 Mean square(s) expected, 168 synthetic error, 326-327 repeated, 23, 573-574, 578 summary, 575 process, 10,22-24 repeated, 23-24, 573 scale of, 34, 197 variability, 24 Measure(s), Measurement(s) Mendel, 4 Method(s) ANOVA, 580 delta, 198 of parallel tangents (PARTAN), 5 19 of statistical differentials, 198 of steepest ascent, 518 SUBJECT INDEX 627 Mill, 18 Model(s), see also Linear model approximate, 71, 74 classificatory, 34, 74 conditioned, 85-87 first-order, 500 fitting a, 76 fixed, 132-133, 323 full, 430 means, 99, 114 misspecification, 5 13 mixed, 132- 134,325 multiplicative, 303 nonlinear, 34 nonorthogonal, 332 overparameterized, 100, 115 partitioned, 94 polynomial, 5 19 probability, 10 random, 132-133, 325 randomization, 159 regression, 34 first-order, 500 second-order, 504 relative frequency, 10 statistical, 30, 34 testing of, 7 stochastic, 74, 128, 138 subject matter, 32, 35, 51, 54 subsampling, 191 three-part, 94 two-way classification, 329 well-formulated, 109-1 10, 115 Monte Car10 studies, 178 Multicollinearity, 74-75 Newton, 17 Nonadditivity, 196, 300-302, 312, 386- 387 testing for, 303 195 Noncentrality parameter, 131-132, 183, Nonorthogonality, 400 Normality assumption, 257 adjusted, 241 high-leverage, 258 missing, 55, 295-298, 389 multivariate, 34 process, 1-2, 10 supplementary, 258 types of, 3 univariate, 34 validation of, 2 estimated, 297 Optimality, 59 A-, 59 D-, 59 E-, 59 Orthogonal array, 463-464 Orthogonality, 59, 218, 400-402 Period, extra, 400 pre-, 400 wash-out, 398 main effect, 455,480 Plan orthogonal, 462-463 saturated, 464 Plato, 12-13 Plot(s) half-normal, 44 1-443 interaction, 320-321 split, 534, 537, 548, 556 split-split, 560 whole, 534, 537, 548, 556 PoincarC, 8, 25 Points, axial, 506-508 center, 506-508 factorial, 506-508 canonical, 521-522 first-order, 499-500 low-order, 499 orthogonal, 220-222, 342, 441, 505,576 Tchebycheff, 221 Polynomial(s) Popper, 7-8 Observation(s) Population, 628 S UB JECT INDEX marginal mean, 245 reference, 323 target, 32, 60 explanatory 15 of F-test, 182 loss of, 290 transformation, 200 increase in, 253 of treatment comparisons, 278 Power Precision Predictive margin, 245 Principle(s) of blocking, 34 of experimentation, 29 of indifference, 25 Latin square, 62-64, 390, 393 split-unit, 533 conditional, 25 continuous, 10 degrees of, 25 frequency theory of, 25-26 joint, 24 structure, 25 theory, 72 Bonferroni, 225,228 Calinski-Corsten, 23 1 Dunnett’s, 228 hierarchical agglomerative, 229 hypothesis falsification, 7 Johnson-Graybill, 306 Mandel’s, 302 multiple comparison, 224, 250-25 1 nonparametric, 228 optimization, 5 18 Satterthwaite, 326, 561 Scheffk, 227-228 stepwise, 229 studentized range, 226, 229 Tukey, 226,252 Tukey-Kramer, 226,252,269 control, 30 evolutionary, 1 Probability, 141 Procedure( s) Process manufacturing. 24 measurement, 10, 34 observational, 1-2, 10 production, 30 randomization, see Randomization, of science, 1 sequential, 30 stochastic, 26, 72 matrix, 91 orthogonal, 9 1 Projector, orthogonal, 91 Protocol process Projection(s) experimental, 55, 139 measurement, 10 observation, 2 Pythagoras, 12 Quadratic form, 128 Quality control, off-line, 477 Ramsey, 26 Randomization, 26, 34,45, 55-56, 6 1, 106, 137, 140-141, 147-151, 278, 376 analysis, 68-69, 180 distribution, 26 independent, 534,538 procedures, 27, 68, 111, 156-157, 180,377,380,533,548 process, 154, 157, 164, 171, 280-, 281,315,533,537 repetitions of, 158 restricted, 280, 291 test, 26,69, 150, 172-173, 180, 285, 385 approximation to the, 69, 173-174, 193,217, 248,286-288,317, 538 theory, 134, 177, 287, 303, 382 unrestricted, 29 1 Random numbers, 154 Random variable(s), 22-24 Bernoulli, 155 SUBJECT INDEX 629 design, 68, 154-155, 158, 280, 379, Gaussian, 22 Sartre, 9 normal, 129 SAS, 69 Rotatability, 506 537 multivariate, 129 PROC FACTEX, 451,459,486-491 Range of validity, 60 PROC GLM, 201,230-232,264, Region 269, 343, 348, 353, 404, 407, experimental (ER), 498,503 430, 443, 446, 481, 523, 562, operational (OR), 498 580 analysis, 220,497, 502 coefficient, 221, 304, 466-467, 505, Regression PROC IML, 86 PROC MIXED, 201,343,348,353, 483,523, 562, 568,578-580 528 PROC PLAN, 154, 180,278-279, line, 302 315-316, 377-378,481 polynomial, 262 PROC POWER, 185 second-order linear, 504 PROC REG, 523 Relation, see Relationship PROC RSREG, 523-524 Relationship Science(s) defining, 455-456 descriptive, 9 functional, 498 identity, 455,475,479 general, 14 exact, 12 Reparameterization, 8 1 history, 5 Repetition(s), 139 physical, 14 process of, 1 type of, 9 Replication(s), 45, 61 Scientific objective, 58 Scope of validity, 277 Simplex population of, 137-138 fractional, 451-453 number of 180, 184, 186-190, 193- Sensitivity of experiment, 45 195 coordinate system, 5 19 design, 504 k-dimensional, 504, 51 9 common, 253 effective, 45 1 unequal, 179-180 Residual, see Error Response( s ) Slope( s) conceptual, 157-158, 161,281,315, 379,537 equality of, 269 curve, 497,514 observed, 315, 379 Space optimum, 499,503 column, 91 predicted, 501 error, 129 Response surface, 497-500 estimation, 129 design, 497-499 row, 76 first-order, 503 methodology (RSM), 497-499,5 19, second-order, 509 Structure(s) Socrates, 6, 12 Statistical Analysis System, see SAS Statistical software, see SAS 523 Statistical triangle, 46 Rightmost bracket, 107, 11 1 alias, 454-455,473-475 630 SUBJECT INDEX blocking, 45 classificatory, 100, 106 correlation, 577 covariance, 127, 160, 164, 168,545, compound symmetry, 577- first-order autoregressive, spatial power, 579 unstructured, 579-580 balanced, 107-108, 11 1- 112, classificatory, 99, 118 unbalanced, 112 nested, 353, 428, 440 balanced, 100-101 estimated, 588 575,578 580 578-580 data, 100 diagram(s), 110-1 11 error, 56 factor balanced, 112 factorial, 42, 64, 106, 419-421, 440,543,552. See also Factorial (s) asymmetrical, 64 symmetrical, 64 Latin square, 380 variance-covariance, 127 Studies, see also Experiment(s) experimental, 104-106, 138, 149, intervention, 106, 137-138, 149 observational, 104-106, 134, 137- 138, 149 preliminary, I 85, 191 simulation, 177, 286. See also Subject matter knowledge, 328,422 Subsample, size of, 195 Subsampling, 34,40,67-68, 191-193, Sub-subsampling, 67-68 Sum(s) of squares, 37,426 partial, 98, 550 sequential, 98 Type I, 98,330 Monte Carlo studies 288,353 Type 111, 98 basic, 5-6 Syllogism, 5-6 Symmetry, compound, 577-580 Synergism, 43 Taylor series expansion, 42 1 Test(s) Bonferroni, 225 criterion, 151, 172 Duncans multiple range, 226, 25 1 F-, 151, 174, 177, 217, 285, 502, 538 power of, 182 Fishers protected LSD, 225 F-max, 323 of hypotheses, 7, 37, 57, 131, 171 lack-of-fit, 223,502-505 preliminary, 313, 323 randomization, 69, 177, 285. See also Randomization, test randomized triangular, 140 significance, 7, 37, 148-151, 165, 542 size of, 183 statistical, 137 studentized range, 226 t-like, 257 treatment, 226-227 Tukey’s, 303-305, 388 Tetrahedron, 504 Thales of Miletus, 12 Theorem Aitken, 125-127 central limit, 148 Gauss-Markov, 125- 126 axiom, 13 development of, 4, 10 falsifiable, 14 Gauss-Markov normal linear model mathematical, 11 normal, 285-286 Theory (GMNLM), 174-176 SUBJECT INDEX randomization, 176-177, 285-286. Tycho Brahe, 13 63 1 See also Randomization, theory scientific, 8 statistical, 11 types of, 11 Time series, 17 Transformation(s), 196- 199, 3 12 to additivity, 388 power, 200 sets, 376-377, 384 combinations, 420 control, 227 design, see Design, treatment factorial. 64 mean, qualitative, 52, 213, 497 quantitative, 52, 219,497 split-plot, 539-540, 543, 560 effect, 539 split-split-plot, 560, 561 test, 227 whole-pIot, 539-540, 543, 560 Treatment(s) adjusted, 244 effect, 539-540 Trend, 340 analysis, 575 linear, 223, 34 1-343 overall, 577 agronomic, 278 Bernoulli, 25 binomial, 24 randomized clinical, 32, 35 uniformity, 290-291, 543 Trial Triangle, equilateral, 504 Unbiasedness, 59 Unit(s) error, 160 experimental (EU), 20, 34, 38, 68, 138,153, 533 observational (OU), 34, 38, 68 sampling, 68 Variability, see Variation Variable(s) classificatory, 1 18 coded, 514 concomitant, 15, 76, 118 explanatory, 35-38, 74, 151 function of, 71 mathematical, 1 1 - 12, 22 process, 523 random, see Random variable(s) regressor, 302 response, 35-36, 52 average, 251-252, 336 estimator, 248, 562 experimental error, 317,557 nonconstancy of. 197 observational error, 3 17 prediction, 506 induced, 277 random, 38,239 sources of, see Analysis of variance, table systematic, 45, 62, 239 Variance(s), 514 component, 163, 193,288 component, 163, 193,288 Variation, 26
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Design and Analysis of Experiments - Volume 1 رابط مباشر لتنزيل كتاب Design and Analysis of Experiments - Volume 1
|
|