Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Machine Design - Volume II الإثنين 07 فبراير 2022, 1:02 am | |
|
أخواني في الله أحضرت لكم كتاب Fundamentals of Machine Design - Volume II Ajeet Singh
و المحتوى كما يلي :
Contents Preface xxiii Acknowledgments xxv Unit 1 - Drives 1. Belts and Pulleys 1.1 Introduction 1 1.1.1 Advantages 2 1.1.2 Disadvantages 2 1.2 Types of Belts 2 1.2.1 Flat belts 3 1.2.2 V belts 3 1.2.3 Construction of V belts 4 1.3 Types of Flat Belt Drive 5 1.3.1 Open belts 5 1.3.2 Crossed belts 6 1.3.3 Quarter twist belts 6 1.3.4 Compound belts 6 1.3.5 Serpentine belts 7 1.4 Belt Materials and Construction 7 1.5 Properties of Belt Materials 9 1.6 Flat Belt Specifications 9 1.7 Flat Belt Joints 10viii Contents 1.8 Angle of Contact 12 1.8.1 Open belt 12 1.8.2 Cross belt 13 1.9 Power through a Belt 14 1.10 Belt Tensions 15 1.11 Belt Tensions Ratio (Capstan Equation) 15 1.11.1 Flat belts 15 1.11.2 V belts 16 1.12 Initial Tension 17 1.13 Centrifugal Tension 19 1.14 Maximum Tension 20 1.15 Condition for Maximum Power 21 1.16 Slip of Belt 22 1.17 Creep of Belt 23 1.18 Length of Belt 23 1.19 Design of Flat Belt Drive 28 1.20 Center Distance 32 1.21 Power Rating of V Belts 32 1.22 Life of Belts 33 1.23 Design of V Belt Drive 36 1.24 Types of Pulleys 43 1.25 Flat Belt Pulleys 44 1.25.1 Solid pulley 45 1.25.2 Webbed pulley 46 1.25.3 Armed pulley 46 1.25.4 Built-up pulley 49 1.25.5 Stepped pulley 50 1.25.6 Fast and loose pulley 51 1.26 Grooved Pulleys 51 1.26.1 Single belt grooved pulley 52 1.26.2 Multibelt grooved pulley 52 1.26.3 Stepped grooved pulley 53 1.27 Toothed Pulley 53 2. Rope Drives 2.1 Rope Drives 68 2.2 Fibre Rope Drive 69 2.2.1 Advantages 69 2.2.2 Fibre rope materials 69Contents ix 2.3 Sheave for Fiber Ropes 70 2.4 Design of Rope Drive 70 2.5 Wire Ropes 74 2.5.1 Advantages of wire ropes 74 2.5.2 Wire rope material 74 2.6 Construction of Wire Ropes 75 2.6.1 Core 75 2.6.2 Wires 75 2.6.3 Strands 76 2.7 Lay of Wire Ropes 76 2.7.1 Regular lay 76 2.7.2 Lang lay 76 2.7.3 Ordinary lay 77 2.7.4 Alternate right and left lay 77 2.8 Types of Wire Ropes 77 2.8.1 Spiral ropes 77 2.8.2 Stranded ropes 77 2.9 Designation of Ropes 78 2.10 Classification of Wire Ropes 78 2.10.1 Classification according to usage 79 2.11 Wire Rope Terminations 79 2.12 Selection of Wire Ropes 81 2.12.1 Selecting a type of wire rope center 81 2.13 Stresses in Wire Rope 82 2.14 Drum and Sheave Arrangement 84 2.14.1 Construction of sheave 85 2.14.2 Groove size 86 2.14.3 Groove hardness 86 2.14.4 Throat angle 86 2.14.5 Fleet angle 86 2.14.6 Sheave alignment 87 2.15 Design Procedure for Wire Rope Drive 87 3. Chain Drives 3.1 Introduction 104 3.2 Advantages / Disadvantages 106 3.3 Classification of Chains 106 3.3.1 Hoisting chains 107 3.3.2 Conveyor chains 107x Contents 3.3.3 Power transmission chains 107 3.3.4 Roller chains 108 3.3.5 Multiple-strand chains 108 3.4 Pitch and Pitch Circle Diameter 109 3.5 Minimum Number of Teeth 110 3.6 Chordal Action 111 3.7 Length of Chain and Center Distance 112 3.8 Chain Designation 114 3.9 Forces on Chain 117 3.10 Breaking Load and Factor of Safety 117 3.11 Power Capacity of Chains 118 3.12 Design Power and Corrected Power 119 3.12.1 Tooth correction factor 119 3.12.2 Load factor 119 3.12.3 Service factor 120 3.12.4 Lubrication factor 120 3.13 Maximum Number of Teeth 123 3.14 Maximum Chain Speed 123 3.15 Bearing Pressures 123 3.16 Design of Chain Drive 124 3.17 Silent Chains 132 3.17.1 Comparison with roller chains 132 3.17.2 Use of silent chains 132 3.17.3 Construction of silent chains 133 3.17.4 Standard widths 134 3.17.5 Specifying a chain 134 3.17.6 Selection and design tips 134 3.17.7 Chain designation 135 3.17.8 Factor of safety 135 3.17.9 Power capacity 136 3.17.10 Maximum speed of silent chain 136 3.18 Lubrication of Chains 139 3.19 Sprockets 139 3.19.1 Body styles 140 3.19.2 Sprocket mounting 140 3.19.3 Sprocket proportions 141 4. Gear Fundamentals 4.1 Introduction 151 4.2 Gear Drives versus Other Drives 152Contents xi 4.3 Advantages and Disadvantages of Gear Drives 153 4.4 Types of Gear Drives 153 4.4.1 Spur gears 153 4.4.2 Helical gears 154 4.4.3 Bevel gears 154 4.4.4 Worm and worm wheel 155 4.5 Terminology 155 4.6 Types of Pitches 157 4.7 Gear Tooth Proportions and Standard Modules 158 4.8 Tooth Profiles 159 4.8.1 Cycloid profile 159 4.8.2 Involute profile 160 4.8.3 Properties of involute teeth 161 4.8.4 Involute versus cycloid profile 161 4.9 Involute Gear Tooth Systems 162 4.10 Base Circle 163 4.11 Law of Gearing 164 4.12 Velocity Ratio 164 4.13 Path of Contact 165 4.14 Arc of Contact 167 4.15 Contact Ratio 169 4.16 Interference 171 4.16.1 Parameters affecting interference 172 4.17 Maximum Addendum Radius 172 4.18 Minimum Number of Teeth to Avoid Interference 173 4.18.1 Minimum teeth for a pinion 173 4.18.2 Minimum teeth for a gear wheel 174 4.18.3 Minimum teeth for a pinion with a rack 175 4.18.4 Largest gear with a specified pinion 179 4.19 Slide Velocity 179 5. Spur Gears 5.1 Introduction 191 5.2 Gear Materials 192 5.3 Gear Design Considerations 193 5.4 Gear Tooth Strength 193 5.4.1 Loads on gear tooth 193 5.4.2 Lewis equation 195xii Contents 5.5 Dynamic Loads 199 5.5.1 Velocity factor 199 5.6 Buckingham’s Equation for Dynamic Load 200 5.6.1 Dynamic load 200 5.6.2 Beam strength 201 5.6.3 Deformation factor 202 5.6.4 Errors in gears 203 5.6.5 Maximum allowable error 203 5.7 Gear Design for Wear Strength 205 5.7.1 Hertz stresses on tooth surface 205 5.7.2 Buckingham equation for wear 208 5.8 Factors Affecting Gear Design 212 5.8.1 Overload factor 212 5.8.2 Load distribution factor 212 5.8.3 Mounting factor 213 5.8.4 Surface finish factor 213 5.8.5 Rotation factor 213 5.8.6 Reliability factor 213 5.8.7 Size factor 214 5.8.8 Temperature factor 214 5.9 Design Procedure 214 5.9.1 Design procedure with given center distance 215 5.9.2 Design procedure when center distance is not given 219 5.10 Internal Gears 223 5.10.1 Advantages and disadvantages 224 5.10.2 Interference in internal gears 224 5.10.3 Design of internal gears 225 5.11 Non-circular Gears 227 6. Helical Gears 6.1 Introduction to Helical Gears 241 6.2 Terminology for Helical Gears 242 6.3 Types of Helical Gears 243 6.4 Face Width and Overlap 245 6.5 Gear and Tooth Proportions 245 6.6 Equivalent Number of Teeth of Helical Gears 247 6.7 Normal Modules 247 6.8 Forces on Tooth 248 6.9 Design of Helical Gears 249Contents xiii 6.10 Lewis Equation for Helical Gears 250 6.11 Effective Load 251 6.11.1 Service factor 251 6.11.2 Velocity factor 251 6.12 Dynamic Load 253 6.13 Wear Strength of Helical Gears 254 7. Bevel Gears 7.1 Introduction 271 7.2 Terminology 272 7.3 Types of Bevel Gears 273 7.4 Pitch Angle and Gear Ratio 274 7.5 Cone Distance 275 7.6 Proportions of Bevel Gear 276 7.7 Formulative Number of Teeth 276 7.8 Forces on Gear Tooth 277 7.8.1 Forces on tooth of pinion 277 7.8.2 Forces on tooth of bevel gear 279 7.9 Strength of Bevel Gear Tooth 280 7.10 Dynamic Load 283 7.11 Wear Strength 284 7.12 Spiral Bevel Gears 291 8. Worm Gears 8.1 Worm and Worm Wheel 300 8.2 Advantages / Disadvantages of the Drive 301 8.3 Applications 302 8.4 Terminology 302 8.5 Diameter Quotient 304 8.6 Pressure Angle 304 8.7 Types of Worms and Worm Wheels 305 8.7.1 Types of worms 305 8.7.2 Types of worm gears 305 8.8 Material Selection 306 8.8.1 Materials for worm 306 8.8.2 Materials for worm gear 307 8.9 Drive Proportions 308 8.9.1 Worm proportions 308 8.9.2 Worm gear proportions 309xiv Contents 8.10 Drive Designation 310 8.11 Center Distance 310 8.12 Force Analysis 314 8.13 Strength of Worm Gear Tooth 317 8.13.1 Strength in bending 317 8.13.2 Endurance strength 318 8.13.3 Strength in wear 321 8.14 Friction in Worm Drives 322 8.15 Efficiency of Worm Drive 322 8.16 Heat Generated 324 8.16.1 Heat transfer coefficient 326 8.16.2 Use of oil cooler 326 8.17 Design of Worm and Worm Wheel Drive 328 8.17.1 Approximate center distance given 328 8.17.2 Center distance not given 333 9. Gear Trains and Gear Boxes 9.1 Function of a Gear Box 345 9.2 Applications 346 9.3 Construction 346 9.4 Gear Trains 346 9.4.1 Simple gear train 347 9.4.2 Compound gear train 347 9.5 Pitch Line Velocity 348 9.6 Epicyclic Gear Trains 351 9.7 Speed Ratio of Epicyclic Gear Trains 353 9.7.1 Translation method 353 9.7.2 Formula method 1 355 9.7.3 Formula method 2 356 9.7.4 Compound epicyclic gear trains 359 9.8 Torque Ratios of Epicyclic Gears 361 9.9 Classification of Gear Boxes 362 9.10 Selection of Type of Gear Box 364 9.11 Speed Ratios in Geometric Progression 365 9.12 Kinematic Diagram 367 9.13 Structural Formula 368 9.14 Structural Diagram 368 9.15 Number of Speeds and Stages 369 9.16 Alternate Structural Formulas 369Contents xv 9.17 Transmission Ratio of a Stage 371 9.18 Optimum Structural Formula 372 9.19 Ray Diagram 373 9.20 Two-stage Gear Box with Fixed Ratio 384 9.21 Sliding Mesh Gear Box 384 9.22 Constant Mesh Gear Box 385 9.23 Synchromesh Gear Box 386 9.24 Gear Box Housing 387 9.25 Power Losses in Gear Box 388 9.26 Fluid Couplings 390 9.27 Torque Converters 392 Unit 2– Bearings 10. Hydrodynamic Bearings 10.1 Introduction 406 10.2 Construction of Bearings 407 10.3 Classification of Bearings 407 10.4 Properties of Bearing Material 411 10.5 Bearing Materials 411 10.6 Properties of Lubricants 412 10.6.1 Viscosity 413 10.6.2 Units of viscosity 414 10.6.3 SAE designation of oils 414 10.6.4 Viscosity index 415 10.7 Hydrodynamic Lubrication 415 10.7.1 Terminology 415 10.7.2 Working principle 416 10.7.3 Reynolds equation 417 10.7.4 Long bearings 417 10.7.5 Short bearings 418 10.8 Finite Bearings 418 10.8.1 Eccentricity ratio and Sommerfeld number 418 10.8.2 Critical pressure 420 10.8.3 Unit load 420 10.8.4 Maximum pressure 421 10.9 Oil Flow through Bearings 423xvi Contents 10.10 Energy Loss due to Friction 426 10.11 Heat Generated and Temperature Rise 428 10.12 Heat Dissipated 431 10.13 Selection of Parameters for Design of Bearings 433 10.13.1 Length to diameter ratio (L/D) 434 10.13.2 Radial clearance 434 10.13.3 Minimum oil film thickness 435 10.13.4 Clearance ratio 435 10.13.5 Minimum oil thickness to clearance ratio 435 10.13.6 Bearing pressure 435 10.13.7 Temperature rise 435 10.13.8 Oil viscosity 435 10.13.9 Bearing modulus 436 10.14 Design Procedure 437 10.15 Thrust Bearings 441 10.15.1 Foot step bearing 441 10.15.2 Collar bearing 442 10.15.3 Hydrodynamic thrust bearing 443 10.16 Squeeze Film Journal Bearings 444 11. Rolling Bearings 11.1 Introduction 457 11.2 Construction and Nomenclature 459 11.3 Classification of Rolling Bearings 460 11.3.1 Ball bearings 460 11.3.2 Roller bearings 461 11.4 Bearing Designation 462 11.4.1 ISO designation 462 11.4.2 AFBMA designation 463 11.5 Size of Bearings 463 11.5.1 Ball bearings 464 11.5.2 Roller bearings 464 11.6 Static Load Capacity 465 11.7 Static Equivalent Load 468 11.8 Basic Dynamic Load Capacity 469 11.9 Dynamic Equivalent Load 471 11.10 Rated Life of a Bearing 472 11.11 Reliability of Bearings 474 11.12 Life with Varying Loads 477Contents xvii 11.13 Cyclic Loads 479 11.14 Load Factor 481 11.15 Design Procedure for Rolling Bearings 481 11.16 Bearing Lubrication 486 11.17 Mounting of Rolling Bearings 487 11.18 Failure of Rolling Element Bearings 488 Unit 3 - Design of I.C. Engine Parts 12. Cylinder of an I.C. Engine 12.1 Introduction to I.C. Engines 500 12.2 Types of Cylinders 501 12.3 Cylinder 502 12.4 Mean Effective Pressure 503 12.5 Size of Cylinder and Power Developed 503 12.6 Design of Cylinder 505 12.6.1 Stresses in cylinder 505 12.6.2 Wall thickness of cylinder 506 12.6.3 Flange size 508 12.6.4 Studs / Bolts 508 12.7 Cylinder Head 509 13. Pistons 13.1 Definition and Function 518 13.2 Desirable Characteristics of Piston 518 13.3 Piston Materials 519 13.4 Types of Pistons 519 13.5 Construction of Pistons 520 13.6 Piston Design 521 13.6.1 Piston head 521 13.6.2 Ring grooves 523 13.6.3 Barrel 524 13.6.4 Bosses 524 13.6.5 Skirt 524 13.7 Piston Rings 525 13.7.1 Compression rings 525 13.7.2 Oil rings 526xviii Contents 13.8 Gudgeon Pin 526 13.8.1 Fixing of gudgeon pin 527 13.8.2 Design of gudgeon pin 527 14. Connecting Rod 14.1 Introduction 539 14.2 Construction 540 14.3 Forces on Connecting Rod 541 14.3.1 Axial force due to gas pressure 541 14.3.2 Axial force due to inertia of reciprocating parts 541 14.3.3 Bending force due to inertia of reciprocating parts 542 14.3.4 Frictional forces due to friction between piston rings and cylinder 543 14.3.5 Frictional forces due to friction between gudgeon pin and crank pin 544 14.4 Design of Connecting Rod 544 14.4.1 Small end of the rod 544 14.4.2 Cross section of connecting rod 545 14.4.3 Big end of the rod 548 14.4.4 Cap bolts 548 14.4.5 Strap thickness 549 15. Crank Shaft 15.1 Introduction 560 15.2 Types of Crank Shafts 561 15.3 Crank Materials 561 15.4 Forces on Crank Shaft 562 15.5 Design of Crank Shaft 562 15.5.1 Design of crank at dead center position 562 15.5.2 Design of crank at position of maximum torque 565 15.6 Design of Side Crank 575 16. Valve Gears 16.1 Valve Gear Mechanism 593 16.2 Ports 594 16.3 Valves 596 16.3.1 Valve temperatures 598 16.3.2 Valve materials 598 16.3.3 Size of valves 599 16.3.4 Lift of valves 600 16.3.5 Thickness of valve 600 16.3.6 Size of valve stem 601Contents xix 16.3.7 Valve Timings 601 16.3.8 Forces on valves 602 16.4 Valve Spring 607 16.5 Rocker Arm 611 16.6 Rocker Shaft 615 16.7 Push Rod 616 16.7.1 Materials 616 16.7.2 Design of push rod 617 16.8 Cam Shaft 619 16.9 Cams 619 16.9.1 Followers 620 16.9.2 Lift diagrams 621 16.10 Drawing Cam Profile 622 16.10.1 Cam profile with a roller follower 623 16.10.2 Cam profile with a flat follower 624 17. Fly Wheels 17.1 Function 641 17.2 Construction of a Flywheel 642 17.3 Design of Shaft, Hub, and Key 642 17.4 Fluctuation in Energy and Speed 643 17.5 Rim Velocity 648 17.6 Stresses in Flywheel 649 17.6.1 Tensile stresses due to centrifugal force 649 17.6.2 Bending stresses due to constrained arms 650 17.7 Mass and Energy Stored in Flywheel 651 17.7.1 Solid f lywheel 651 17.7.2 Flywheel with web 654 17.7.3 Flywheel with arms 655 17.7.4 Split flywheel 659 17.8 Flywheels for Engines 661 17.9 Flywheels for Punches 666 Unit 4 – Design of Miscellaneous Parts 18. Clutches 18.1 Definition and Function 681 18.2 Types of Clutches 682xx Contents 18.3 Positive Drive Clutch 683 18.4 Friction Clutch 683 18.4.1 Friction materials 684 18.4.2 Coefficient of friction 684 18.4.3 Variation of bearing pressure 685 18.4.4 Torque transmitting capacity 685 18.4.5 Maximum torque transmitting capacity 690 18.5 Design of a Single Plate Clutch 690 18.6 Time for Clutch Engagement 692 18.7 Heat Generated during Clutching 694 18.8 Multi-plate Clutch 699 18.9 Cone Clutch 701 18.9.1 Design of a cone clutch 702 18.10 Centrifugal Clutch 704 18.10.1 Construction and working 704 18.10.2 Design of a centrifugal clutch 705 19. Brakes 19.1 Definition and Functions 719 19.2 Types of Brakes 720 19.3 Materials for Brake Lining 720 19.4 Energy Absorbed by Brakes 721 19.4.1 Pure rotation 721 19.4.2 Pure translation 722 19.4.3 Combined rotation and translation 722 19.5 Heat Dissipated 723 19.6 Lining Wear (pv Value) 724 19.7 Block Shoe Brakes 726 19.7.1 Fixed block shoe brakes 726 19.7.2 Self-energizing brakes 729 19.7.3 Self-locking 729 19.7.4 Small / long shoe brake 730 19.7.5 Pivoted block brakes 733 19.7.6 Double block shoe brakes 734 19.8 Design Procedure for Block Shoe Brakes 737 19.9 Band Brakes 738 19.9.1 Simple band brakes 738 19.9.2 Differential band brakes 741 19.9.3 Band and block brakes 743Contents xxi 19.10 Internally Expanding Shoe 746 19.10.1 Analysis of internal shoe brakes 747 19.10.2 Shoe actuation 749 19.10.3 Shoe and brake factor 750 19.10.4 Maximum normal force for retarding wheel 751 19.11 Externally Contracting Brakes 754 19.12 Disc Brakes 755 19.12.1 Arctual pads 755 19.12.2 Disc brakes with circular pads 757 20. Pressure Vessels 20.1 Introduction and Applications 772 20.2 Classification 773 20.3 Materials and Allowable Stresses 773 20.4 Corrosion Allowance 774 20.5 Class of Pressure Vessels 774 20.6 Stresses due to Internal Pressure 774 20.6.1 Circumferential stresses 774 20.6.2 Longitudinal stresses 775 20.6.3 Effect of pressure on size 777 20.7 Thick Cylinders 778 20.7.1 Lame’s equation 779 20.7.2 Clavarino’s equation 781 20.7.3 Birnie’s equation 782 20.7.4 Barlow’s equation 783 20.8 Thin Spherical Vessels 784 20.8.1 Plate thickness 784 20.8.2 Change in size of spherical pressure vessel with internal pressure 785 20.9 End Covers 787 20.9.1 Flat circular 787 20.9.2 Flat rectangular 788 20.9.3 Elliptical plate 789 20.9.4 Hemispherical 790 20.9.5 Dished 792 20.9.6 Semi-ellipsoid 793 20.9.7 Tori-spherical end cover 793 20.9.8 Conical end covers 794 20.10 Fixing of End Covers 795 20.10.1 Integral 796 20.10.2 Bolted 796xxii Contents 20.11 Welded Joints 797 20.12 Opening in Pressure Vessels 798 20.13 Boiler Code 798 References 811 Index 81 Index AFBMA designation, 463 Alternate structural formulas, 369 Angle of contact open belt, 12 cross belt, 12 gears, 167 Angular gears, 274 ANSI number of chain, 114 Applications of gear boxes, 346 pressure vessels, 772 worm gears, 302 Arc contact factor, 39 of approach, 167 of recess, 167 Arm / spider, 351 Attitude angle, 418–419 Axial pitch of helical gears, 243 worm gears, 302 Axial width of land on piston, 523 piston ring, 523 top land of piston, 523 Babbitt, 411 Back cone angle, 273 radius, 273 Backlash in gears, 156 Ball bearings, 457, 461 Band and block brakes, 743 Band brakes, 738 Barlow’s equation, 783 Base circle, 163 Basic dynamic load capacity, 469 Bearing designation, 462 lubrication, 486 materials, 411 modulus, 436 pressure, 123, 435 Belt angle of contact, 12 compound, 6 construction, 7 folded layer, 8 raw edge, 8 tensions ratio, 15 Belt materials, 7814 Index Belt joints Bolted, 12 Hinged comb, 11 Laced, 10 Birnie’s equation, 782 Block shoe brakes, 726 Boiler code, 798 Brakes, 719 Breaking loads of chains, 117 Buckingham equation for wear, 208 Built up pulley, 49 Cage of roller bearings, 459 Cam profile with flat follower, 620, 624 roller follower, 623 Cam shaft, 619 Cams, 619 Cap bolts for connecting rod, 548 Capstan equation, 15 Center distance between gear box shafts, 380 pulleys, 23, 32 Centrifugal clutch design, 705 Centrifugal tension, 19 Chain drive, 104 advantages/disadvantages, 106 classification, 106 designation, 114, 135 design, 124 driving links, 133 Change in vessel size with pressure, 785 Chordal action in sprockets, 111 Circular pitch, 156, 242 Class of pressure vessels, 774 Classification of bearings, 407 gear boxes, 362 rolling bearings, 460 Clavarino’s equation, 781 Clearance ratio in bearings, 435 Clutches, 681 electro-magnetic, 683 centrifugal, 704 cone, 701 multiplate, 699 single plate, 683 Coefficient of friction, 684 Collar bearing, 442 Combined rotation and translation in brakes, 722 Comparison of silent chains with roller chains , 132 Compound belt drive, 6 epicyclic gear trains, 359 gear train, 347 Compression rings, 525 Condition for maximum power with belts, 21 Cone center, 272 clutch, 701 distance, 275 Connecting rod, 539 axial force due to gas pressure, 541 axial force due to inertia, 541 bending force due to inertia, 542 big end, 548 Connecting rod design, 544 cross section, 545 large end, 548 small end, 544 Constant acceleration cam, 620 Constant mesh gear box, 385 Construction of centrifugal clutch, 704 gear boxes, 346 flywheel, 642 pistons, 520 rolling bearings, 459 sheave, 85 silent chains, 133 V belts, 2–4 wire ropes, 75 Contact ratio of mating gears, 169 Conveyor chains, 107 Core of rope, 75 Correction factor for pitch length, 39Index 815 Corrosion allowance in pressure vessels, 774 Crankshaft materials, 561 Crankshaft design for TDC position, 562 maximum torque position, 565 Creep of belt, 23 Critical pressure in bearings, 420 Cross belt, 13 Crossed helical gears, 243 Crosshead pistons, 520 Crown on pulleys, 45 Crown gears, 274 Cyclic loads, 479 Cycloid profile, 159 Cylinder air cooled, 502 Cylinder design, 506 Cylinder head, 509 Cylindrical roller bearing, 460 Cylindrical worm, 305 Dedendum, 156 Deep groove bearing, 460, 470 Definition and function of brakes, 719 clutches, 681 pistons, 518 Deflector pistons, 520 Deformation factor, 202 Design of arms of flywheel, 656 cone clutch, 702 side crank, 575 shaft, 562, 642 single plate clutch, 690 Design power and corrected power, 119 Design procedure for block shoe brakes, 737 chain drive, 124 cone clutch, 702 rolling bearings, 481 wire rope drive, 87 Design for gear drive with center distance given, 215 not given, 219 Desirable qualities of piston, 518 Diameter quotient, 304 Differential band brakes, 741 Disc brakes with arctual pads, 755 circular pads, 757 Double block shoe brakes, 734 Double helical gears, 245 Drawing cam profile, 622 Drive designation of worms, 310 Drive proportions, 308 Drum and sheave arrangement, 84 Dynamic equivalent load, 253, 283, 471 load, 199 strength, 319, 338 Eccentricity ratio, 418 Effect of pressure on size of pressure vessel, 777 Effective load for helical gears, 251 Efficiency of worm drive, 322 Elliptical bearing, 409 End covers, 787 End cover fixing, 795 bolted, 796 integral, 796 riveted, 796 Endurance strength of worms, 318 Energy absorbed by brakes, 721 Energy in combined rotation and translation, 722 pure rotation, 721 pure translation, 722 Energy loss due to friction, 426 Epi-cycloid curve, 160 Epicyclic gear trains solutions, 351 formula method 1, 355 formula method 2, 356 translation method, 353 Equivalent number of teeth of helical gears, 247 bevel gears, 276 Errors in gears, 203816 Index Externally contracting brakes, 754 Eye splice for ropes, 80 Face advance for spiral gears, 291 angle of bevel gears, 273 contact ratio for spiral gears, 291 width of bevel gears, 273 width and overlap of helical gears, 245 Factor of safety, 87, 117, 135, 254 Factors affecting gear design, 212 Failure of rolling element bearings, 488 Fast and loose pulley, 51 Fiber rope drive, 69 Fiber rope materials, 69 Finite bearings, 418 Fixed block shoe brakes, 726 Flange size of cylinder, 508 Flank, 141, 155 Flat belts joints, 10 pulleys, 44 specifications, 9 Flat follower, 620 Fleet angle, 86 Fluctuation in energy and speed, 643 Fluid couplings, 390 Flywheels, 641 bending stresses in constrained arms, 650 solid, 651 with arms, 655 with web, 654 Flywheels for engines, 661 punches, 666 Followers, 620 Foot step bearing, 441 Force analysis on worms, 314 Forces on chain, 117 connecting rod, 541 crank shaft, 562 gear tooth, 248 tooth of bevel gear, 279 tooth of pinion, 277 valves, 602 Formulative number of teeth bevel gears, 276 helical gears, 247 Four lobe bearing, 410 Friction clutch, 683 Friction in worm drives, 322 Friction materials, 684 Frictional forces between gudgeon pin and crank pin, 544 piston rings and cylinder, 543 Function of a gear box, 345 Gas force, 521, 528 Gear box housing, 387 Gear design considerations, 193 Gear design for wear strength, 205 Gear drives advantages /disadvantages, 153 versus other drives, 152 Gear materials, 192 Gear profiles cycloid, 159 involute, 160 Gear ratios, 311–312, 347 Gear tooth proportions, 158, 245 Gear tooth strength, 193 Gear trains, 346, 351 Grooved pulleys, 51 Gudgeon pin, 526 design, 527 fixing, 527 fully floating, 527 Guide links in chains, 133 Gun metal, 412 Hand of helix, 242 Hand of spiral, 292 Heat dissipated from bearings, 431 Heat generated and temperature rise, 428 during clutching, 694 Heat transfer coefficient, 326 Helical gears design, 241, 249 Helix angle, 242 Herringbone gears, 244Index 817 Hertz stresses on tooth surface, 205 Hoisting chains, 107 Hydraulic clutch, 682 Hydrodynamic bearings, 406 Hydrodynamic thrust bearing, 443 Hydrostatic bearing, 408, 441 Hydrostatic test pressure, 773 Hypo-cycloid curve, 160 Hypoid gears, 362 I head engine, 593–594 Independent wire rope center, 75 Inertia force in connecting rod, 540, 542 Initial tension in belts, 17 Inner race, 459 Interference, 171 Interference in internal gears, 224 Internal combustion engine, 500 Internal gear design, 223, 225 Internally expanding shoe analysis, 746–747 Involute gear tooth systems, 162 Involute profile, 160 Involute versus cycloid profile, 161 ISO designation of bearings, 462 ISO number of chains, 144 Keys, 140 Kinematic diagram, 367 Kinematic viscosity, 414 L head engine, 594 Lame’s equation, 779 Largest gear with a specified pinion, 179 Law of gearing, 164 Lay of wire ropes, 72 alternate right and left, 73 lang, 72 ordinary, 73 regular, 72 Lead, 303, 311 Lead angle, 303, 311–312 Length of belt and center distance, 32 crossed belt, 24 open belt, 23 worm, 304, 309 Length to diameter ratio of sleeve bearing, 434 Lewis equation, 195 Lewis equation for helical gears, 250 Lewis form factor, 197 Life and reliability factors, 210 Life of belts, 33 Life of rolling bearings with varying loads, 477 Lift diagrams, 622 of valves, 600 Lining wear, 724 Load capacity, 241, 244 Load distribution factor, 212 Load factor, 481 Loads on gear tooth, 193 Long bearing, 417 Longitudinal stresses in pressure vessels, 775 Lubrication factor for chains, 120 Lubrication hydrodynamic, 415 Main dimensions of radial ball bearings, 464 Mass and energy stored in flywheel, 651 Materials and allowable stresses for pressure vessels, 773 Materials for brake lining, 720 worm, 306–307 Maximum addendum radius, 172 allowable error in gears, 203 chain speed, 123 error between meshing gears, 284 number of teeth on gear, 179 pressure in sleeve bearings, 421, 433 speed of silent chain, 136 tension, 20 torque transmitting capacity of clutch, 690 Mean effective pressure, 503 Mechanical efficiency of engine, 504 Minimum film thickness, 435818 Index Minimum number of teeth to avoid interference, 173 Minimum oil film thickness, 435 oil thickness to clearance ratio, 435 pulley diameter, 31 teeth for a gear wheel, 174 teeth for a pinion, 173 teeth for a pinion with rack, 175 Miter gears, 274 Module, 156, 158, 216 Mounting factor in gears, 213 Mounting of rolling bearings, 487 Multi belt grooved pulley, 52 Multi-plate clutch, 699 Multiple-strand chains, 108 Needle bearings, 460–461 Non circular gears, 227 Normal module, 247 pitch, 242 pressure angle, 242 Number of speeds and stages in a gear box, 369 Number of start, 303 Offset bearing, 410 Offset link, 108 Oil flow through bearings, 423 ring grooves, 521 rings, 526 Oil viscosity, 435 Open belt, 12 Opening in pressure vessels, 798 Optimum structural formula, 372 Orthogonally displaced bearing, 410 Oscillating loads, 483 Outer race, 459 Overload factor, 212 Parallel helical gears, 243 Parameters affecting interference, 172 Partial bearing, 409 Parts of roller chain, 108 Path of contact, 165 Phosphorous bronze, 301, 318, 321 Piston, 518 barrel, 524 bosses, 524 design, 521 head, 521 materials, 519 rings, 525 Pitch angle, 272 angle and gear ratio, 274 circle diameter, 109 cone, 272 line, 272 line velocity, 348 Pivoted block brakes, 733 Planetary gear, 352 Plastics, 9, 412 Plate thickness for pressure vessels, 784, 799 Ports, 594 Positive drive clutch, 683 Power capacity of chains, 118, 136 Power losses in gear box, 388 Power rating of V belts, 32 Power transmission chains, 107 Pressure angle, 304 14.5° composite, 162 14.5° full depth, 162 20° full depth, 162 20° stub, 162 of worm, 304 Pressure vessels, 772 circumferential stresses, 774 longitudinal sreesses, 775 Properties of bearing material, 411 belt materials, 9 brake lining materials, 721 friction materials, 684 involute teeth, 161 lubricants, 412 Proportions of bevel gear, 276Index 819 PTFE, 412 Pulleys armed, 46 solid, 44 webbed, 46 Push rod design, 616–617 Quarter twist belt, 6 Rack, 152 Radial clearance in sleeve bearings, 434 Rated life of a bearing, 472 Ray diagram, 373 Reliability factor for gears, 210 Reliability of bearings, 474 Reynolds equation, 417 Rim velocity, 648 Ring axial width, 523 depth of grooves , 523 Rocker arm, 611 Rocker shaft, 615 Roller bearing dimensions, 464 Roller chains, 108 Roller follower, 621 Rolling bearings, 457, 461 advantages, 458 angle of contact, 469, 490 dimensions, 464 disadvantages, 458 Rolling elements, 459 Root angle, 273 Rope drives design, 70 Ropes, 68 Rotation factor, 213, 471 SAE designation of oils, 414 Selection of lubricant, 486 parameters for design of bearings, 433 type of gear box, 364 wire rope, 81 wire rope center, 81 Self aligning bearing, 460 Self aligning thrust bearing, 460 Self- energizing brakes, 729 Self locking brakes, 729 Semi global face, 306 Semi-floating gudgeon pin, 527 Serpentine belt, 7 Service factor, 120, 251 Sheave, 85 alignment, 87 for fiber ropes, 70 groove hardness, 86 groove size, 86 Shoe actuation, 749 Shoe and brake factor, 750 Short bearings, 418 Silent chains allowable pressures, 132 Simple band brakes, 738 Simple gear train, 347 Simple harmonic motion, 604 Single belt grooved pulley, 52 Size factor for gears, 214 Size of bearings, 463 cylinder and power, 503 valve stem, 601 valves, 599 Skirt of piston, 524 Slide bearings, 457 Slide velocity between gear teeth, 179 Sliding mesh gear box, 384 Slip of belt, 22 Small / long shoe brake, 730 Solid flywheel, 651 Solid pulley, 45 Sommerfeld number, 416, 418 Specifying a chain, 134 Speed ratio of epicyclic gear trains, 353 Speed ratios in geometric progression, 365 Spelter socket, 80 Spherical roller bearings, 461 Spiral angle, 292 bevel gears, 291820 Index wrapped belt, 9 ropes, 77 Split bearing, 409 Split flywheel, 659 Spring force on valve, 603 Sprocket , 139 body styles, 140 mounting, 140 proportions, 141 Spur gears, 191 Squeeze film, 444 Squeeze film journal bearings, 444 Standard modules, 158 pitch diameters of pulleys, 37 width of belts, 30 widths of silent chains, 134 wire diameter, 88 Static equivalent load, 468 Static load capacity, 465 Stepped flat pulley, 50 Stepped grooved pulley, 51, 53 Straight face of worm, 305 Straight hobbed face, 305 Strand center, 81 Strand factor, 118 Stranded ropes, 77 Strands, 76 Strap thickness of connecting rod, 549 Strength in bending for worm, 317 Strength in wear of worm, 321 Strength of bevel gear tooth, 280 Strength of worm gear tooth, 317 Stresses due to internal pressure, 774 in cylinder, 505 in flywheel, 649 in wire rope, 82 Structural diagram, 368 Structural formula, 368 Studs/bolts for cylinder, 508 Surface finish factor for gears, 213 Swaged terminations, 80 Synchromesh gear box, 386 Taper roller bearing, 461 Temperature factor, 214 Temperature rise in bearings, 435 Tensile strength of wire rope, 88 Tensile stresses due to centrifugal force, 649 Terminology gear drives, 155 helical gears, 242 worm and worm wheel, 302 Thick cylinders, 778 Thickness of valve, 600 Thimbles for ropes, 80 Thin spherical vessels, 784 Thread angle, 303 Three lobe bearing, 410 Throat angle, 86 Throat diameter, 303 Thrust bearings, 441 Time for clutch engagement, 692 Tolerance on adjacent pitch, 203 Tooth correction factor for chains, 119 Tooth length, 242 Tooth profiles, 159 Tooth thickness, 156 Toothed pulley, 53 Top land of piston, 521 Tori-spherical end cover, 793 Torque converters, 392 Torque ratios of epicyclic gears, 361 Torque transmitting capacity, 686 Transmission ratio of a stage, 371 Trunk pistons, 519 Two lobe bearing, 409 Two stage gear box with fixed ratio, 384 Types of belts, 2 bevel gears, 273 brakes, 720 clutches, 682 crank shafts, 561 cylinders, 501 flat belt drive, 5 gear drives, 153 helical gears, 243 pistons, 519 pitches, 157Index 821 pulleys, 43 wire ropes, 77 worm gears, 305 worms, 305 Uniform pressure in clutch, 686 Uniform wear in clutch, 687 Unit load, 420 Units of viscosity, 414 Use of oil cooler, 326 Use of silent chains, 132 V belts drive design, 16, 36 Values of elastic coefficient, 207 Values of static load constant, 466 Values of modulus of elasticity, 83, 202 Valve, 593, 596 arrangements, 599 gear mechanism, 593 materials, 598 range of sizes, 599 spring, 607 temperatures, 598 timings, 601 seats, 595, 599 Variation of bearing pressure, 685 Velocity factor, 199 Velocity ratio, 164 Viscosity , 413 Viscosity index, 415 Wall thickness of cylinder, 506 Water cooled cylinder, 502 Wear strength of bevel gears, 284 Wear strength of helical gears, 254 Webbed pulley, 46 Wedge sockets for ropes, 80 Weight of chains, 116 Whole depth, 156 Width of belt, 30 Width of belt and width of pulley, 45 Wire rope clamps/clips, 80 Wire rope, 74 advantages, 74 classification, 78 designation, 78 materials, 74 terminations, 79 Wire strand core, 75 Wires, 75 Working depth of gear teeth, 156 Worm and worm wheel, 300 advantages/disadvantages, 301 design of drive, 328 hour glass worm, 305 proportions, 308 Worm and worm wheel design, 328 approx. center distance given, 328 center distance not given, 333 Worm gear proportions, 309 Zero film, 408
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Machine Design - Volume II رابط مباشر لتنزيل كتاب Fundamentals of Machine Design - Volume II
|
|