Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Modal Analysis السبت 19 فبراير 2022, 1:08 am | |
|
أخواني في الله أحضرت لكم كتاب Modal Analysis Jimin He and Zhi-Fang Fu
و المحتوى كما يلي :
Contents Preface xi 1 Overview of modal analysis 1 1.1 Introduction 1 1.2 What is modal analysis? 2 1.3 What is modal testing? 3 1.4 Applications of modal analysis 3 1.4.1 Troubleshooting 4 1.4.2 Correlation of finite element model and experimental results 4 1.4.3 Structural modification 5 1.4.4 Sensitivity analysis 5 1.4.5 Reduction of mathematical models 5 1.4.6 Forced response prediction 5 1.4.7 Force identification 6 1.4.8 Response prediction 6 1.4.9 Substructure coupling 6 1.4.10 Structural damage detection 6 1.4.11 Active vibration control 7 1.5 Practical applications of modal analysis 7 1.6 Historical development of modal analysis 9 2 Mathematics for modal analysis 12 2.1 Basic matrix concepts 12 2.1.1 Trace of a matrix 13 2.1.2 Determinant of a matrix 13 2.1.3 Norm of a matrix 14 2.1.4 The rank of a matrix 15 2.1.5 Similarity of matrices 15 2.2 Linear simultaneous equations 15 2.3 Matrix inversion 18 2.3.1 Inverse of a non-singular real matrix 18 2.3.2 Inverse of a square complex matrix 19 2.3.3 Pseudo inverse of a matrix 20 2.4 Decomposition of a matrix 212.4.1 LU decomposition 21 2.4.2 QR decomposition 22 2.4.3 Schur decomposition 23 2.4.4 Spectrum decomposition 23 2.4.5 Submatrix decomposition 24 2.4.6 Singular value decomposition (SVD) 24 2.4.7 Eigenvalue decomposition 25 2.4.8 Cholesky decomposition 26 2.5 The matrix eigenvalue problem 26 2.6 Derivatives of matrices 29 2.6.1 Derivatives of a bilinear form 30 2.6.2 Derivatives of matrix traces 31 2.7 Perturbation 31 2.8 The least-squares method 33 2.9 Partial fraction expansion 34 2.10 Laplace transform and transfer function 35 2.11 Fourier series and Fourier transform 37 2.12 Variable separation method for partial differential equations 38 2.13 Poles and zeros of a polynomial function 40 2.14 State–space concept 40 2.15 Time series analysis 43 2.15.1 AR model 45 2.15.2 ARMA model 45 2.16 The z-transform 47 3 Basic vibration theory 49 3.1 Modelling of a vibration problem using mathematical models 49 3.2 Basic concepts of vibration 49 3.3 Free vibration of an SDoF system 50 3.4 Harmonic vibration of an SDoF system 52 3.5 Vibration of an SDoF system due to an arbitrary force 54 3.6 Free and harmonically forced vibration of an MDoF system 55 3.7 Energy approach 57 3.7.1 Virtual work principle 58 3.7.2 D’Alembert’s principle 59 3.7.3 Kinetic energy 59 3.7.4 Potential energy 61 3.7.5 Lagrange’s equation 62 3.8 Vibration of continuous systems 65 3.8.1 The vibrating string 66 3.8.2 Vibrations of membranes 68 3.8.3 Longitudinal vibration of a bar 73 3.8.4 Transverse vibration of a beam 75 4 Modal analysis theory of an SDoF dynamic system 79 4.1 Frequency response functions of an SDoF system 79 4.2 Graphical display of a frequency response function 81 vi Contents4.2.1 Amplitude–phase plot and log–log plot 82 4.2.2 Real and imaginary plots 84 4.2.3 Nyquist plot 85 4.2.4 Dynamic stiffness plot 86 4.3 Properties of the FRF of an SDoF system 88 4.3.1 Asymptoticity of log–log plots 88 4.3.2 Circularity of the Nyquist plot 90 4.3.3 Linearity of dynamic stiffness 93 5 Modal analysis of an undamped MDoF system 94 5.1 Normal modes and orthogonality of an undamped MDoF system 94 5.1.1 Normal modes of an undamped MDoF system 94 5.1.2 Orthogonality properties of an undamped MDoF system 97 5.2 Frequency response functions of an undamped MDoF system 100 5.2.1 Dynamic stiffness matrix and receptance matrix 100 5.2.2 Physical interpretation of a receptance FRF 102 5.2.3 Display of an FRF of an undamped MDoF system 103 5.3 Mass-normalized modes and modal model of an undamped MDoF system 104 5.4 Frequency response functions and the modal model 106 5.4.1 Decomposition of an FRF using modal data 106 5.4.2 Other forms of an FRF 108 5.5 Asymptote properties of FRFs of an undamped MDoF system 108 5.6 Other forms of orthogonality properties of an undamped MDoF system 112 5.6.1 Orthogonality between spatial model and response model 112 5.6.2 Orthogonality between measured modes and their reciprocal modal vectors 113 5.6.3 Orthogonality between submatrices 114 5.6.4 Orthogonality with incomplete data 116 5.7 Harmonic response of an undamped MDoF system using FRFs 116 5.8 Anti-resonances and minima of an FRF 118 5.8.1 Anti-resonances and spatial data 118 5.8.2 Anti-resonances and modal data 119 5.8.3 Minima of an FRF 121 6 Modal analysis of a damped MDoF system 123 6.1 Proportional damping models 123 6.2 Non-proportional viscous damping model 125 6.3 Non-proportional structural damping model 127 6.4 Mass-normalized modes of a damped MDoF system 128 6.5 Frequency response functions of a damped MDoF system 128 6.5.1 Dynamic stiffness matrix and receptance matrix 128 6.5.2 Composition of a receptance FRF using vibration modes 129 6.5.3 Display and properties of an FRF of a damped MDoF system 130 Contents vii6.6 Time response of a damped MDoF system 135 6.7 Forced normal modes of a damped MDoF system 136 6.8 Remarks on complex modes 138 7 Frequency response function measurement 140 7.1 Introduction 140 7.2 A general measurement set-up 141 7.2.1 Excitation mechanism 141 7.2.2 Accelerometer 142 7.2.3 Force transducer 144 7.3 Preparation of the test structure 145 7.4 Selection of excitation forces 147 7.4.1 Sinusoidal excitation 147 7.4.2 Random excitation 148 7.4.3 Pseudo random excitation 148 7.4.4 Impact excitation 148 7.5 Different estimates of an FRF and effects of noise 149 7.6 Two incompletenesses of measured data 152 7.7 Initial assessment of measured FRF data 153 7.7.1 Repeatability check of the measured FRF data 154 7.7.2 Reciprocity check of the measured FRF data 154 7.7.3 Linearity check of the measured FRF data 154 7.7.4 Special characteristics of an FRF 155 8 Modal analysis methods – frequency domain 159 8.1 Introduction 159 8.2 Detection of vibration modes from measured FRF data 160 8.3 Derivation of modal data from FRF data – SDoF methods 162 8.3.1 Peak-picking method 163 8.3.2 Circle fit method 164 8.3.3 Inverse FRF method 168 8.3.4 Least-squares method 170 8.3.5 Dobson’s method 171 8.4 Derivation of modal data from FRF data – MDoF methods 174 8.4.1 Rational fraction polynomials 174 8.4.2 Lightly damped structures 176 9 Modal analysis methods – time domain 180 9.1 Least-squares time domain method 181 9.2 Ibrahim time domain (ITD) method 182 9.3 Random decrement method 188 9.4 ARMA time series method 191 9.5 Least-squares complex exponential (LSCE) method 193 9.6 Summary of time domain modal analysis 195 viii Contents10 Multi-input multi-output modal analysis methods 198 10.1 Introduction 198 10.2 Estimation of FRFs for MIMO testing 199 10.2.1 No input noise – [ ( )] Hˆ 1 ω model 200 10.2.2 No output noise – [ ( )] Hˆ 2 ω model 204 10.2.3 Both input and output noise – [ ( )], [ ( )], H H ˆ ˆ 3 4 ω ω [ ( )], [ ( )], H H ˆ ˆ v ω ω s models 206 10.3 Frequency domain poly-reference modal analysis method 209 10.4 Time domain global modal analysis method 212 10.4.1 Establishment of a mathematical model 212 10.4.2 Estimation of coefficient matrix [A] 215 10.4.3 Identification of modal parameters 216 10.5 Eigensystem realization algorithm method 217 10.5.1 State–space equation of an NDoF system 218 10.5.2 Impulse response matrix 219 10.5.3 Construction of a Hankel matrix 219 10.5.4 Impulse response matrix and system matrices 220 10.5.5 Eigensystem realization algorithm 220 11 Local structural modification 224 11.1 The objectives of structural modification 224 11.2 Direct and inverse problems 224 11.3 Modal properties after structural modification – reanalysis 225 11.4 Local structural modification by mass and stiffness changes 227 11.4.1 Unit rank modification 227 11.4.2 Mass modification of a lumped system 228 11.4.3 Stiffness modification of a lumped system 230 11.5 Local structural modification by physical parameter changes 233 11.6 Optimization of structural dynamic characteristics 236 11.6.1 Fixing a resonance and an anti-resonance during modification 236 11.6.2 Pole–zero cancellation 238 11.6.3 Creation of a frequency range of no resonance 238 12 System identification using neural network 241 12.1 Introduction 241 12.2 Neural network model 242 12.2.1 Neuron 242 12.2.2 Topological structure of neural network 243 12.2.3 Learning algorithm of a neural network 244 12.3 BP network and its algorithm 245 12.4 Application of neural network in nonlinear system identification 248 12.5 Examples of using neural network for system identification 251 Contents ix13 Applications of modal analysis on real structures 257 13.1 Introduction 257 13.2 Modal analysis of a car chassis 257 13.3 Modal analysis of a lathe 260 13.4 Modal analysis of a shaper 262 13.5 Modal analysis of a combustion locomotive structure 263 13.6 Modal analysis of a power generator 265 13.7 Modal analysis of a flat flood gate 266 13.8 Modal analysis used for stability diagnosis 269 13.9 Modal analysis used for stump quality check 272 13.10 Modal analysis of ancient bronze bell 274 13.11 Modal analysis of bus roll cage structure for optimum rollover design 279 Index 287 Accelerance, 80 Accelerometer, 141, 142 Accelerometer, mounting, 143 Activation function, 243 Active vibration control, 7 Acoustic modal analysis, 9 Ambient excitation, 180 Anti-resonance(s), 118 Apparent mass, 81 Applied forces, 58 AR model, 45 Arbitrary force, 54 Architecture, 243 ARMA model, 45, 191 Armature-bearing, 265 Artificial neural network (ANN), 241, 248 Asymptoticity, 88 Asymptote, 108 Asymptote lines, 90 Auto-correlation, 260 Auto-spectrum, 149, 260 Bar, 73 Backpropagation network, 245 Baseband frequency, 283 Beam, 75 Beating signal, 278 Bending modes, 260 Bending moment, 77 Bilinear form, 31 Black box, 140, 249 Boltzmann machine learning rule, 245 Boundary conditions, 67, 74, 76 BP network, 245 Bronze bell, 274 Built-in feedback, 244 Bus frame, 281 Bus role cage, 279 Cantilevers, 231 Car chassis, 257 Chattering, 261 Cholesky decomposition, 26 Circularity, 90 Circle fit method, 164 Circumferential mode shape, 278 Cofactor, 13 Coherence, 151, 201–204 Combustion locomotive, 263 Complex modes, 138 Compressors, 269 Condition monitoring, 7 Connective weights, 242 Constraint forces, 58 Continuous systems, 65 Controllability, 220 Correlation, 4 Coupling matrix, 42 Crashworthiness, 279 Cross sectional area, 234, 235 Cross spectrum, 149 Crystals, 144, 145 Cutting tool, 260 D’Alembert’s Principle, 59 Damage detection, 6 Damping, 53, 54 non-proportional, 125–128 proportional, 123 structural, 54 viscous, 53 Damage loss factor, 163 Damage ratio, 163 Decomposition of a matrix, 21 Decomposition: Cholesky decomposition, 26 eigenvalue decomposition, 25 FRF, 106 LU decomposition, 21 QR decomposition, 22 Shur decomposition, 23 Index288 Index singular value decomposition, 24 spectrum decomposition, 23 submatrix decomposition, 23 Decibel scales Degrees of freedom Deflection, 77 Delayed sampling, 183 Derivative, derivatives, of bilinear form, 30 matrix, 29 matrix trace, 31 Different estimates, 149 Diagonalize, 99 Direct problem, 224 Dobson’s method, 171 Double pendulum, 64 Dual channel spectral analysis, 149 Dynamic loading Dynamic equilibrium, 59 Dynamic stiffness, 81 Dynamic stiffness matrix, 100–101, 128 Eigenvalue decomposition, 25 Eigenvalue problem, 26 Elasticity modulus, 234, 273 Elemental matrices, 234, 235 Energy approach, 57 Euclidian norm, 14 Excitation forces, 147 Excitation: ambient, 188 Hammer, 142 impact, 148 pseudo random, 148 random, 148 shaker, 142 sinusoidal, 147 Excitation frequency, 224 Excitation mechanism, 141 Fast Fourier transform, 10 Feedback, 244 Feedforward, 244 Feeding motion, 261 Finite element model, FE model, 4, 264, 275, 276, 280 Fixing a natural frequency, 237 Fixing a resonance, 236 Fixing an anti-resonance, 236 Flood gate, 266 Force identification, 6 Force response prediction, 5 Force transducer, 141, 144 Forced normal modes, 136 Fourier series, 9, 37 Fourier transform, 37 Free-free boundary condition, 258 Free vibration, 50 Frequency incompleteness, 152 Frequency response analyser, 258, 262 Frequency response function, 79, 80, 100, (FRF): accelerance, 80 mobility, 80 receptance, 80 Frobenius norm, 14 FRF: different estimates of, 149 display of, 81–88, 103–104, 130–136 point, 101 other forms of, 107 special characteristics of, 155 transfer, 101 Gaussian elimination, 16, 19 Generalized coordinates, 58 Generalized damping, 125 Generalized mass, 60, 98 Generalized stiffness, 62, 98 Generalized velocity, 60 Generalized δ-rule, 345 Generator assembly, 265, 266 Half point points, 163 Hammer excitation, 142 Harmonic response, 116 Harmonic vibration, 52 Headstock, 262 Hebb rule, 244 Hidden layer, 244 Hopfield network, 245 Impulse response, 220, 271 Impulse response function, 180 In situ, 145 Incomplete data, 116 Incompleteness, 152 Infinitesimal, 57 Initial assessment, 153 Initial conditions, 67, 76 Input layer, 244 Input matrix, 42 Input vector, 42 Decomposition (Contd.)Index 289 Interconnection, 242 Inverse: of a real matrix, 18 of a complex matrix, 19 pseudo, 20 Inverse Laplace transform, 36 Inverse problem, 224 ITD, 182–187 Kinetic energy, 59 Kronecker vector, 113 Lagrangian, 63 Lagrange’s equation, 62 Laplace transform, 35 Lathe, 260 Layer: hidden, 244 input, 244 multi-, 244 output, 244 Least-squares method, 33, 170 Length, 234 Lightly damped structures, 176 Linear regression model, 45 Linear simultaneous equations, 15 Linearity, 93, 154 Local structural modification, 224, 231 Longitudinal vibration, 73 LR algorithm, 27 LR method, 27 LU decomposition, 21 Lumped system, 228, 230 Mass density, 234, 273 Mass line, 90 Mass normalized modes, 104, 105, 128 Mass normalized mode shapes Mathematical model, 5, 49, 212 Matrix: complex, 20 derivatives, 29 determinant, 13 eigenvalue, 26 hermitian, 23 inversion, 18 lower triangular, 21 norm, 14 pertubation, 31 rank, 15 similarity, 15 trace, 13 transformation, 213 upper triangular, 19 MDoF, 94 Measurement set-up, 141, 142 Mechanical impedance, 81 Membranes, 68 Method, methods: ARMA time series, 191 circle fit, 164 Dobson’s, 171 eigensystem realization algorithm, 217 frequency domain poly-reference, 209 ibrahim time domain (ITD), 182 least-squares, 170 least-squares time domain, 181 least-squares complex exponential, 193 inverse FRF, 168 MDoF, 174 peak picking, 163 random decrement, 188 rational fraction polynomials, 174 SDoF, 162 time domain global, 212 MIMO, 147, 162, 198 Minima, 118 Minimum realization, 218 Mobility, 80 Modal analysis, 2 Modal constant, 108 Modal damping, 124 Modal mass, 98 Modal data, 119 Modal model, 105 Modal stiffness, 98 Modal testing, 3 Mode shape, 56 Modelling, 49 Modal analysis methods (see also method, methods) frequency domain, 159 time domain, 180 Modification: local structural, 224 mass, 228 stiffness, 230 structural, 5, 224 Mounting, 143 Multiple coherence, 203 Natural frequency, 51 Neural network, 241 Neural network model, 242 Neuron, 242, 243 Neutralization, 238290 Index Nodal lines, 71 Nodal point, 224 Noise and vibration harshness (NVH), 7 Noise reduction, 8 Non-proportional, 125–128 Non-singular, 16 Non-trivial solution, 237 Non-unique solution, 16 Nonlinear changes, 235 Nonlinear system identification, 248 Norm, 14 Normal modes, 94 NVH, 7 Observability, 220 Optimization, 236 Ordinary coherence, 201 Orthogonality, 72, 97, 112–116 Orthogonality properties, 97, 112–116 Output error, 244 Output equation, 42 Output layer, 244 Output matrix, 42 Output vector, 42 Overestimator, 150 Pad bearing, 269 Parallel model, 250 Partial coherence, 202 Partial differential equations, 38 Partial fraction expansion, 34 Peak FRF value, 163 Peak picking method, 164 Pendulum, 50 Perturbation, 31 Phase delay, 248 Physical elements, 224 Physical interpretation, 102 Physical parameter changes, 233 Perturbation, 31 Piezoelectric, 144 Plot: amplitude-phase, 82, 130 dynamic stiffness, 86, 134 linear-log, 83 log-log, 88, 103, 130 Nyquist, 85, 133 real and imaginary, 84, 132 Pole-zero cancellation, 238 Poles, 40 Polynomial function, 40 Poly-reference, 209 Point FRF, 101 Potential energy, 61 Power amplifier, 141 Power generator, 265 Power spectrum, 271 Pressure sensor, 267 Principle modes, 94 Probability density, 268 Proportional damping, 123 Pseudo inverse, 20 Pseudo random, 148 Quadratic mass change, 235 Quadruple bending stiffness change, 235 QR decomposition, 22 QR method, 27 Random decrement, 188 Rank deficient, 15 Rational fraction polynomials, 174 Reanalysis, 225 Receptance, 80 Receptance FRF matrix, 101 Receptance matrix, 100–101, 128 Reciprocal modal vector, 113 Reciprocity, 101, 154 Repeatability, 154 Residue, 34 Residues, 81 Response model, 105 Response prediction, 6 Response segments, 188 Rod, 73 Rollover, 280 Rotors, 269 Rotor-bearing, 265 Rubber springs, 257 S form, 243 Scaling factor, 235 Self-regulated learning, 245 Self-excitation, 269 Seismic mass, 144 Sensitivity analysis, 5 Series-parallel model, 250 Shaker, 141 Shaper, 262 Shear force, 77 Shur decomposition, 23 Signal conditioner, 141 Signal generator, 141 Signoid function, 243 Simulated annealing, 245Index 291 Simulation diagram, 42 Singular value decomposition, 24 Single-degree-of-freedom (SDoF) system, 50 Sound spectrum, 275, 279 Spatial data, 118 Spatial incompleteness, 152 Spectral analysis, 43 Spectrum decomposition, 23 Stability, 269, 279 Stability diagnosis, 269 Standard deviation, 268 Static neural network, 250 State equations, 41 State-space, 40 State-space equation, 41, 218 State-space model, 40, 41 State-space transformation, 235 State-space vector, 235 State variables, 41, 218 State vector, 42 Stationary random process, 268 Steepest decent method, 245 Stiffness line, 90 Structural modification, 5, 224, 230, 233 Structure, preparation, 145–147 Stump quality check, 272 Substructure coupling, 6 Subframe, 7 Submatrix, 124 Submatrix decomposition, 23 Sweep sinusoidal excitation, 261 System equation, 42 System identification, 241, 242 Tailstock, 262 Tapped delay line (TDL), 248 Three dimensional plot, 82 Threshold form, 243 Time response, 135 Time series analysis, 43 Tool carriage, 262 Topological structure, 243 Topology, 242 Torsional mode, 260 Transfer FRF, 101 Transfer function, 35, 42, 55 Transformation matrix, 213 Transverse vibration, 75 Triaxial accelerometer, 263 Troubleshooting, 4 Turbine, 265 Underestimator, 150 Unique solution, 16 Unit rank modification, 227 Variable separation method, 38 Vector diagram, 54 Vibrating string, 66 Vibration: basic concept, 49 free, 50 harmonic, 52 longitudinal, 73 transverse, 68, 75 Viener filter, 218 Virtual displacement, 58 Virtual work, 57 Virtual work principle, 58 Wave propagation, 272 Weighted least squares method, 33 Weightings, 244 Weights, 243 z-transform, 47 Zeros, 40 δ-rule, 245
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Modal Analysis رابط مباشر لتنزيل كتاب Modal Analysis
|
|