Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Petroleum Refining Design and Applications Handbook - Volume 1 السبت 02 أبريل 2022, 5:01 pm | |
|
أخواني في الله أحضرت لكم كتاب Petroleum Refining Design and Applications Handbook Volume 1 A. Kayode Coker
و المحتوى كما يلي :
Contents Preface xix Acknowledgments xxi About the Author xxiii 1 Introduction 1 References 6 2 Composition of Crude Oils and Petroleum Products 7 2.1 Hydrocarbons 8 2.1.1 Alkynes Series 12 2.2 Aromatic Hydrocarbons 14 2.3 Heteroatomic Organic Compounds 15 2.3.1 Non-Hydrocarbons 15 2.3.2 Sulfur Compounds 18 2.4 Thiols 18 2.5 Oxygen Compounds 20 2.6 Nitrogen Compounds 22 2.7 Resins and Asphaltenes 23 2.8 Salts 24 2.9 Carbon Dioxide 24 2.10 Metallic Compounds 24 2.11 Products Composition 25 2.11.1 Liquefied Petroleum Gas (LPG) (C3 and C4) 26 2.11.2 Gasoline (C5 to C11) 26 2.11.3 Condensate (C4, C5 and C6 >) 27 2.11.4 Gas Fuel Oils (C12 to C19) 27 2.11.5 Kerosene 27 2.11.6 Diesel Fuel 28 2.11.7 Fuel Oils # 4, 5, and 6 28 2.11.8 Residual Fuel Oil 28 2.11.9 Natural Gas 29 References 30 3 Characterization of Petroleum and Petroleum Fractions 31 3.1 Introduction 31 3.1.1 Crude Oil Properties 32 3.1.2 Gravity, API 32 3.1.3 Boiling Point Range 33 3.1.4 Characterization Factor 33 3.1.5 The Universal Oil Product Characterization factor, K UOP 34 3.1.6 Carbon Residue, wt% 34 3.1.7 Nitrogen Content, wt% 36 3.1.8 Sulfur Content, wt% 36 ixx Contents 3.1.9 Total Acid Number (TAN) 36 3.1.10 Salt Content, pounds/1000 barrels 36 3.1.11 Metals, parts/million (ppm) by weight 36 3.1.12 Pour Point (oF or °C) 36 3.2 Crude Oil Assay Data 37 3.2.1 Whole crude oil average properties 37 3.2.2 Fractional properties 37 3.3 Crude Cutting Analysis 37 3.4 Crude Oil Blending 37 3.5 Laboratory Testing of Crude Oils 46 3.5.1 True Boiling Point (TBP) Curve 46 3.5.2 ASTM D86 Distillation 46 3.5.3 Boiling Points 47 3.5.4 Conversion Between ASTM and TBP Distillation 49 3.5.5 Petroleum Pseudo-Components 54 3.5.6 Pseudo-Component Normal Boiling Points 55 3.5.7 ASTM D1160 Distillation 55 3.5.8 Determination of ASTM IBP, 10%, 20–90% Points of Blend 55 3.5.9 ASTM 10–90% Points 56 3.5.10 Initial Boiling Point Determination 56 3.5.11 ASTM End Point of Blend 56 3.5.12 Flash Point 56 3.5.13 Flash Point, °F, as a Function of Average Boiling Point 57 3.5.14 Smoke Point of Kerosenes 57 3.5.15 Luminometer Number 57 3.5.16 Reid Vapor Pressure (RVP) 57 3.5.17 Vapor Pressure of Narrow Hydrocarbon Cuts 58 3.6 Octanes 58 3.7 Cetanes 58 3.7.1 Cetane Index 59 3.8 Diesel Index 59 3.9 Determination of the Lower Heating Value of Petroleum Fractions 59 3.10 Aniline Point Blending 60 3.11 Correlation Index (CI) 60 3.12 Chromatographically Simulated Distillations 61 References 62 4 Thermodynamic Properties of Petroleum and Petroleum Fractions 63 4.1 K-Factor Hydrocarbon Equilibrium Charts 64 4.2 Non-Ideal Systems 72 4.3 Vapor Pressure 74 4.3.1 Vapor Pressure Determination using the Clausius-Clapeyron and the Antoine Equations 75 4.4 Viscosity 80 4.4.1 Conversion to Saybolt Universal Viscosity 80 4.4.2 Conversion to Saybolt Furol Viscosity 82 4.4.3 Equivalents of Kinematic (cSt), Saybolt Universal (SUS), and Dynamic viscosity 82 4.4.4 Viscosity of Liquid Hydrocarbons 83 4.4.5 Gas Viscosity 84 4.5 Refractive Index 87 4.6 Liquid Density 89 4.6.1 Gas Density 89Contents xi 4.7 Molecular Weight 90 4.8 Molecular Type Composition 90 4.9 Critical Temperature, Tc 96 4.10 Critical Pressure, P c 97 4.11 Pseudo-Critical Constants and Acentric Factors 98 4.12 Enthalpy of Petroleum Fractions 99 4.13 Compressibility Z Factor of Natural Gases 100 4.14 Simulation Thermodynamic Software Programs 105 References 110 5 Process Descriptions of Refinery Processes 111 5.1 Introduction 111 5.2 Refinery and Distillation Processes 115 5.3 Process Description of the Crude Distillation Unit 120 5.3.1 Crude Oil Desalting 121 5.3.2 Types of Salts in Crude Oil 122 5.3.3 Desalting Process 122 5.3.4 Pumparound Heat Removal 127 5.3.5 Tower Pressure Drop and Flooding 130 5.3.6 Carbon Steel Trays 130 5.3.7 Rectifying Section of the Main Column 130 5.3.8 Side Stripping Columns 130 5.3.9 Crude Column Overhead 130 5.3.10 General Properties of Petroleum Fractions 130 5.4 Process Variables in the Design of Crude Distillation Column 132 5.4.1 Process Design of a Crude Distillation Column 133 5.5 Process Simulation 134 5.5.1 Overall Check of Simulation 135 5.5.2 Other Aspects of Design 136 5.5.3 Relationship between Actual Trays and Theoretical Trays 137 5.6 Process Description of Light Arabian Crude Using UniSim Simulation Software [12] 138 5.6.1 Column Conventions 141 5.6.2 Performance Specifications Definition 142 5.6.3 Cut Points 142 5.6.4 Degree of Separation 142 5.6.5 Overflash 142 5.6.6 Column Pressure 143 5.6.7 Overhead Temperature 143 5.6.8 Bottom Stripping 144 5.6.9 Side Stream Stripper 144 5.6.10 Reflux 144 5.7 Troubleshooting Actual Columns 144 5.8 Health, Safety and Environment Considerations 145 References 148 6 Thermal Cracking Processes 149 6.1 Process Description 152 6.2 Steam Jet Ejector 152 6.3 Pressure Survey in a Vacuum Column 154 6.4 Simulation of Vacuum Distillation Unit 156xii Contents 6.5 Coking 157 6.5.1 Delayed Coking 157 6.5.2 Delayed Coker Yield Prediction 161 6.5.3 Coke Formation 162 6.5.4 Thermodynamics of Coking of Light Hydrocarbons 162 6.5.5 Gas Composition 163 6.6 Fluid Coking 164 6.6.1 Flexi-Coking 165 6.6.2 Contact Coking 167 6.6.3 Coke Drums 168 6.6.4 Heavy Coker Gas Oil (HCGO) Production 170 6.6.5 Light Coker Gas Oil (LCGO) Production 170 6.7 Fractionator Overhead System 170 6.8 Coke Drum Operations 172 6.9 Hydraulic Jet Decoking 173 6.10 Uses of Petroleum Coke 174 6.11 Use of Gasification 174 6.12 Sponge Coke 175 6.13 Safety and Environmental Considerations 175 6.14 Simulation/Calculations 176 6.15 Visbreaking 177 6.15.1 Visbreaking Reactions 180 6.15.2 Visbreaking Severity 180 6.15.3 Operation and Control 180 6.15.4 Typical Visbreaker Unit 181 6.15.5 Typical Visbreaker Unit with Vacuum Flasher 182 6.15.6 Typical Combination Visbreaker and Thermal Cracker 183 6.15.7 Product Yield 183 6.16 Process Simulation 184 6.17 Health, Safety and Environment Considerations 185 References 186 7 Hydroprocessing 187 7.1 Catalytic Conversion Processes 187 7.1.1 Hydrocracking Chemistry 188 7.1.2 Hydrocracking Reactions 190 7.1.3 Typical Hydrocracking Reactions 191 7.2 Feed Specifications 194 7.2.1 Space Velocity 195 7.2.2 Reactor Temperature 195 7.2.3 Reactor Pressure 195 7.2.4 Hydrogen Recycle Rate 195 7.2.5 Oil Recycle Ratio 195 7.2.6 Heavy Polynuclear Aromatics 196 7.3 Feed Boiling Range 196 7.4 Catalyst 196 7.4.1 Catalyst Performance 197 7.4.2 Loss of Catalyst Performance 197 7.4.3 Poisoning by Impurities in Feeds or Catalysts 198 7.4.4 The Apparent Catalyst Activity 200Contents xiii 7.5 Poor Gas Distribution 200 7.6 Poor Mixing of Reactants 200 7.7 The Mechanism of Hydrocracking 200 7.8 Thermodynamics and Kinetics of Hydrocracking 201 7.9 Process Design, Rating and Performance 204 7.9.1 Operating Temperature and Pressure 205 7.9.2 Optimum Catalyst Size and Shape 205 7.9.3 Pressure Drop (ΔP) in Tubular/Fixed-Bed Reactors 205 7.9.4 Catalyst Particle Size 207 7.9.5 Vessel Dimensions 208 7.10 Increased ΔP 210 7.11 Factors Affecting Reaction Rate 214 7.12 Measurement of Performance 215 7.13 Catalyst-Bed Temperature Profiles 216 7.14 Factors Affecting Hydrocracking Process Operation 217 7.15 Hydrocracking Correlations 217 7.15.1 Maximum Aviation Turbine Kerosene (ATK) Correlations 219 7.15.2 Process Description 220 7.15.3 Fresh Feed and Recycle Liquid System 224 7.15.4 Liquid and Vapor Separators 225 7.15.5 Recycle Gas Compression and Distribution 226 7.15.6 Hydrogen Distribution 226 7.15.7 Control of the Hydrogen System 226 7.15.8 Reactor Design 227 7.16 Hydrocracker Fractionating Unit 228 7.16.1 Mild Vacuum Column 230 7.16.2 Steam Generation 230 7.17 Operating Variables 231 7.18 Hydrotreating Process 234 7.18.1 Process Description 237 7.18.2 Process Variables 237 7.18.3 Hydrotreating Catalysts 240 7.19 Thermodynamics of Hydrotreating 240 7.20 Reaction Kinetics 243 7.21 Naphtha Hydrotreating 245 7.21.1 Hydrotreating Correlations 245 7.21.2 Middle Distillates Hydrotreating 248 7.21.3 Middle Distillate Hydrotreating Correlations 248 7.22 Atmospheric Residue Desulfurization 250 7.22.1 High-Pressure Separator 252 7.22.2 Low-Pressure Separator 252 7.22.3 Hydrogen Sulfide Removal 252 7.22.4 Recycled Gas Compressor 252 7.22.5 Process Water 252 7.22.6 Fractionation Column 253 7.22.7 Operating Conditions of Hydrotreating Processes 253 7.23 Health, Safety and Environment Considerations 258 References 258xiv Contents 8 Catalytic Cracking 259 8.1 Introduction 259 8.2 Fluidized Bed Catalytic Cracking 262 8.2.1 Process Description 262 8.3 Modes of Fluidization 269 8.4 Cracking Reactions 270 8.4.1 Secondary Reactions 272 8.5 Thermodynamics of FCC 273 8.5.1 Transport Phenomena, Reaction Patterns and Kinetic models 273 8.5.2 Three- and Four-Lump kinetic models 276 8.6 Process Design Variables 278 8.6.1 Process Variables 279 8.6.2 Process Operational Variables 280 8.7 Material and Energy Balances 281 8.7.1 Material Balance 281 8.7.2 Energy Balance 282 8.8 Heat Recovery 283 8.9 FCC Yield Correlations 284 8.10 Estimating Potential Yields of FCC Feed 286 8.11 Pollution Control 290 8.12 New Technology 292 8.12.1 Deep Catalytic Cracking 293 8.12.2 Shell’s Fluid Catalytic Cracking 294 8.12.3 Fluid Catalytic Cracking High Severity 295 8.12.4 Fluid Catalytic Cracking for Maximum Olefins 295 8.13 Refining/Petrochemical Integration 296 8.14 Metallurgy 296 8.15 Troubleshooting for Fluidized Catalyst Cracking Units 297 8.16 Health, Safety and Environment Considerations 298 8.17 Licensors’ Correlations 299 8.18 Simulation and Modeling Strategy 300 References 304 9 Catalytic Reforming and Isomerization 305 9.1 Introduction 305 9.2 Catalytic Reforming 306 9.3 Feed Characterization 306 9.4 Catalytic Reforming Processes 308 9.4.1 Role of Reformer in the Refinery 309 9.4.2 UOP Continuous Catalytic Regeneration (CCR) Reforming Process 310 9.5 Operations of the Reformer Process 312 9.5.1 Effect of Major Variables in Catalytic Reforming 314 9.6 Catalytic Reformer Reactors 316 9.7 Material Balance in Reforming 317 9.8 Reactions 320 9.8.1 Naphthene Dehydrogenation to Cyclohexanes 320 9.8.2 Dehydrocyclization of Paraffins to Aromatics 321 9.8.3 Dehydroisomerization of Alkylcyclopentanes to Aromatics 321 9.8.4 Isomerization of n-Paraffins 321 9.9 Hydrocracking Reactions 322Contents xv 9.10 Reforming Catalyst 322 9.11 Coke Deposition 324 9.12 Thermodynamics 326 9.13 Kinetic Models 326 9.14 The Reactor Model 326 9.15 Modeling of Naphtha Catalytic Reforming Process 329 9.16 Isomerization 329 9.16.1 Thermodynamics 330 9.16.2 Isomerization Reactions 331 9.17 Sulfolane Extraction Process 331 9.17.1 Sulfolane Extraction Unit (SEU) Corrosion Problems 332 9.17.2 Other Solvents for the Extraction Unit 333 9.18 Aromatic Complex 333 9.18.1 Aromatic Separation 335 9.19 Hydrodealkylation Process 336 9.19.1 Separation of the Reactor Effluents 337 References 337 10 Alkylation and Polymerization Processes 339 10.1 Introduction 339 10.2 Chemistry of Alkylation 340 10.3 Catalysts 342 10.4 Process Variables 343 10.5 Alkylation Feedstocks 345 10.6 Alkylation Products 346 10.7 Sulfuric Acid Alkylation Process 346 10.8 HF Alkylation 347 10.9 Kinetics and Thermodynamics of Alkylation 351 10.10 Polymerization 354 10.11 HF and H 2SO4 Mitigating Releases 354 10.12 Corrosion Problems 356 10.13 A New Technology of Alkylation Process Using Ionic Liquid 356 10.14 Chevron – Honeywell UOP Ionic liquid Alkylation 357 10.15 Chemical Release and Flash Fire: A Case Study of the Alkylation Unit at the Delaware City Refining Company (DCRC) Involving Equipment Maintenance Incident 358 References 362 11 Hydrogen Production and Purification 365 11.1 Hydrogen Requirements in a Refinery 365 11.2 Process Chemistry 366 11.3 High-Temperature Shift Conversion 368 11.4 Low-Temperature Shift Conversion 368 11.5 Gas Purification 368 11.6 Purification of Hydrogen Product 369 11.7 Hydrogen Distribution System 370 11.8 Off-Gas Hydrogen Recovery 371 11.9 Pressure Swing Adsorption (PSA) Unit 371 11.10 Refinery Hydrogen Management 375 11.11 Hydrogen Pinch Studies 377 References 379xvi Contents 12 Gas Processing and Acid Gas Removal 381 12.1 Introduction 381 12.2 Diesel Hydrodesulfurization (DHDS) 383 12.3 Hydrotreating Reactions 383 12.4 Gas Processing 388 12.4.1 Natural Gas 388 12.4.2 Gas Processing Methods 389 12.4.3 Reaction Gas Processes 390 12.4.4 Sweetening Process 390 12.4.5 MEROX Process 390 12.5 Sulfur Management 391 12.5.1 Sulfur Recovery Processes 393 12.5.2 Tail Gas Clean Up 401 12.6 Physical Solvent Gas Processes 401 12.6.1 Physical and Chemical Processes 402 12.6.2 Advantages and Disadvantages of the Sulfinol Process 402 12.7 Carbonate Process 402 12.8 Solution Batch Process 403 12.9 Process Description of Gas Processing using UniSim Simulation 405 12.10 Gas Dryer (Dehydration) Design 410 12.10.1 The Equations 412 12.10.2 Pressure Drop (ΔP) 413 12.10.3 Fouled Bed 413 12.11 Kremser-Brown-Sherwood Method-No Heat of Absorption 415 12.11.1 Absorption: Determine Component Absorption in Fixed Tray Tower (Adapted in part from Ref. 12) 415 12.11.2 Absorption: Determine the Number of Trays for Specified Product Absorption 417 12.11.3 Stripping: Determine the Number of Theoretical Trays and Stripping Steam or Gas Rate for a Component Recovery 418 12.11.4 Stripping: Determine Stripping-Medium Rate for a Fixed Recovery 420 12.12 Absorption: Edmister Method 421 12.12.1 Absorption and Stripping Efficiency 427 12.13 Gas Treating Troubleshooting 432 12.13.1 High Exit Gas Dew Point 432 12.13.2 High Glycol Losses 432 12.13.3 Glycol Contamination 432 12.13.4 Poor Glycol Reconcentration 433 12.13.5 Low Glycol Circulation – Glycol Pump 433 12.13.6 High Pressure Drop Across Contactor 433 12.13.7 High Stripping Still Temperature 433 12.13.8 High Reboiler Pressure 433 12.13.9 Firetube Fouling/Hot Spots/Burn Out 433 12.13.10 High Gas Dew Points 433 12.13.11 Cause – Inadequate Glycol Circulation Rate 433 12.13.12 Low Reboiler Temperature 433 12.13.13 Flash Separator Failure 434 12.13.14 Cause – Insufficient Reconcentration of Glycol 434 12.13.15 Cause – Operating Conditions Different from Design 434 12.13.16 Cause – Low Gas Flow Rates 434 12.13.17 High Glycol Loss 434 12.14 Cause – Loss of Glycol Out of Still Column 434Contents xvii 12.15 The ADIP Process 435 12.16 Sour Water Stripping Process 435 References 438 Glossary of Petroleum and Technical Terminology 441 Appendix A Equilibrium K values 533 Appendix B Analytical Techniques 547 Appendix C Physical and Chemical Characteristics of Major Hydrocarbons 557 Appendix D A List of Engineering Process Flow Diagrams and Process Data Sheets 573 Index 62 Acid gas treatment, 439 Acid strength, 344, 348, 354 Acidity, 36, 41, 45, 194, 222, 251, 263, 316, 356–357, 442 Additives, 3, 18, 27, 132, 279, 291–292, 334, 363, 443, 447–448, 467, 476, 481, 489 Adsorption, 6, 26, 199, 215, 274, 328, 335, 367, 371–376, 378–379, 401, 410, 412 Air pollution, 172, 176, 385, 403, 495, 509 Alkyclean, 343, 349, 351 Alkylate, 116–117, 339–354, 356–358, 442–443, 447, 476, 489 Alkylate gasoline, 342, 356–357 Alkylation processes, 339, 347–348, 353, 356, 482, 492 Aniline point, 39, 43, 59–60, 250, 387, 443, 445 API gravity, 22, 32–34, 36, 38, 42, 51, 53, 57, 59, 89, 99, 134, 154, 166, 172 ARDS, 253–257, 260, 299, 522 Aromatization, 218, 237, 314, 321–322 ASTM distillation, 48–49, 56–57, 59, 134–135, 250, 445, 458–459, 463, 469 ATK, 217, 219–220, 248, 250 Atmospheric distillation, 114, 120, 133, 138, 150, 152, 445, 447, 479, 486–487 Aviation, 27, 57, 59, 116, 121, 131–132, 217, 219, 250, 339, 348, 351 Aviation turbine kerosene, 217, 219, 250 Barrels per calendar day, 4, 447 Benzene, 5–6, 14–17, 23, 27, 39, 43, 60, 79, 94, 97–98, 114, 117–118, 121, 131, 133, 162, 177, 193, 201–202, 215, 247–248, 284, 302, 306, 308–310, 314, 318–324, 328–329, 331–339 Blending, 3, 37, 57, 60, 112, 114, 116–121, 170, 174, 179, 196 Blending octane number, 351, 448–449 Boiling range, 12–13, 25–26, 53, 61–62, 65, 106, 114–115, 126, 131–133, 137, 150, 152, 183, 192, 196, 240, 255, 272, 396, 449, 453, 464, 476, 479, 485–486, 489–490, 511, 521, 529 Boiling temperature, 59, 96, 152, 449, 481, 527 Branched paraffins, 339, 348 Index Bright stock, 112, 114, 450 Bunker fuel, 451, 529 Butane, 9–10, 12, 24, 26–27, 29, 38, 42, 58, 71, 94, 97, 114, 116 Butylenes, 116, 266, 295, 344, 346–349, 351, 358, 442, 453, 487, 499, 519 Carbon residue, 22, 34, 37, 161, 163, 169, 173, 234–235, 287, 300, 445, 452, 456 Carbonate, 7, 368, 370, 389–390, 402–403, 442, 622 Catalyst/oil ratio, 452 Catalytic cracked gasoline, 296 Catalytic cracking, 4, 22, 28, 34, 112–115, 117, 120, 122, 148, 165, 187–188, 191, 195, 199, 221, 227, 259–269 Catalytic hydrocracking, 452 Catalytic hydrotreating, 18, 191, 239, 261, 462 Catalytic reforming, 3, 7–338, 365, 448, 523 Cetane, 10, 13, 27–28, 35, 37, 39, 43, 58–59, 65, 132, 237, 382, 384–385, 453–454, 462, 481 Chemical release and Flash fire, 358 Chemical solvent, 393 Chemistry of Alkylation, 340 Classifications, 187 Claus process, 396, 399–400, 493 Clean Fuels, 1, 306, 379 Coke removal, 158, 276 Coker gas oil, 117, 158–161, 168–170, 172, 218, 244, 285–286, 454, 478, 486 Coker naphthas, 307 Conradson carbon, 161, 163, 166, 169, 260, 287, 300, 382, 384–385, 445, 452, 456 Crude assay, 37, 133–134, 445, 458–459, 484 Crude distillation, 12, 36, 63, 116–117, 120–123, 127, 129–133, 137, 139–142, 150, 152, 181, 238, 308–309, 346, 395, 447, 518, 523 Cycle stock, 279, 287–288, 452, 459 Cyclization, 196, 272–275, 305–306, 313–314, 322–323, 459 Cyclohexane, 13–15, 19, 21, 94, 190, 247–248, 274, 284, 302, 318–321, 323, 385, 523, 560 Cycloparaffins, 13–15, 274 Cyclopentanes, 13, 321, 328 DAO, 189, 238, 385, 460 DEA, 389–391, 407–409, 562 Deasphalting, 24, 132, 238, 460 Decalin, 13–14, 242 Decoking, 158–159, 169, 172–173, 176, 299, 461 Dehydrocyclization, 314–315, 319–321, 323, 326 Dehydrogenation, 6, 8, 180, 196, 266, 273–275, 284, 305, 308, 346, 451, 461 Delayed coker, 158–159, 161, 163–164, 172–173, 177, 180, 186, 461 Delayed coking, 117, 149, 157–161, 163–164, 169, 177, 180, 186, 270, 284, 455, 461 Desalting, 3, 120–125, 461 Desulfurization, 196–197, 200, 222–223, 226, 234–237, 250, 252–256, 261, 366–367, 453, 462, 502, 573–574 Dewatering, 120, 176 Dewaxing, 3, 112–113, 188, 194, 196, 462, 493, 516 DGA, 389–391, 407–408 Diesel fuels, 28, 37, 112, 132, 292, 385, 451, 453, 463 Diethanolamine, 389–390, 404, 435, 562 Diglycolamine, 404 Diolefins, 234, 242, 273, 383–384, 450, 454, 506 Direct oxidation, 389, 392, 399 Distillation curves, 50–52, 56, 134, 300, 464, 501 Dry gas, 29, 116, 221, 262–263, 277, 281, 405, 411, 464, 475 Emission, 118–119, 290–292, 304, 375, 381–382, 443, 453, 469, 481 Emissions standards, 2, 306 ETBE, 340, 467, 495 Ethane, 6, 9–10, 12, 19, 26, 29, 38, 42, 69, 71, 74, 94, 97, 114, 118, 130, 133–134, 214, 266, 311, 330, 336–337, 366, 535, 562, 600 Ethanol, 1, 79, 340, 442, 465, 467, 469, 489, 495, 563 Ethers, 20, 261, 340, 447, 476, 489, 495 Ethyl tertiary butyl ether, 467, 495 Ethylbenzene, 6, 17, 94, 190–191, 242, 335–337, 342 Explosive limit, 487, 525, 558–560, 563, 565, 567–569 FCC, 2, 4–6, 21, 60, 139, 157–158, 188, 237–238, 259–263, 265–271, 273–274, 391, 395, 461–462, 474, 478–479, 516, 520, 522 Flash drum, 514 Flash point, 27, 37, 56–58, 131, 133, 144, 181, 231, 250–251, 300–301, 387, 470–471, 490, 592 Flexicoking, 167, 471, 523 Flue gas, 169, 262–265, 278, 280, 283–284, 290–292, 295–298, 300–301, 303, 367, 397, 474 Fluid coking, 149–150, 157, 164–165, 169, 186, 455, 474, 523 Fluidized bed, 150, 206, 259, 262–264, 279, 293, 296, 470, 474 Fluidized bed catalytic cracking, 262 Freezing point, 90, 251, 390, 451 Furnace cracking, 181 Gas oil fraction, 260 Gas oils, 27–28, 46, 61, 114, 132, 134, 141, 152, 190, 221, 223, 235, 240, 262, 284, 479, 486, 525 Gas purification, 368, 399, 410 Gasification, 5, 165, 174–175, 371 Gasoline, 5–6, 9, 12, 14, 18, 24–27, 29, 32–33, 37, 46, 57–59, 110–121, 131–133, 150, 158–159, 161 Hazards, 146, 175, 186, 258, 342–343, 354, 361–362, 446, 456–457, 469, 531, 610 Hempel distillation, 479 Hydroconversion, 187–188, 384, 438 Hydrocracking, 5, 116–117, 120, 187–188, 190–191, 193–203, 214–215, 217–229, 231–234, 236, 284–285, 306, 365, 384, 452, 462, 476, 479–480, 521 Hydrodealkylation, 117–118, 188, 193, 197, 201, 226, 336–337, 371 Hydrofluoric acid, 339–340, 342, 344, 347, 349, 354–355, 358, 443, 479 Hydrogen production, 3, 120, 226–227, 309, 323, 337, 365, 367, 369, 371, 373, 375–377, 379 Hydrogen recovery, 255, 371–372, 375–376, 379 Hydrogen sulfide, 9, 18–19, 36, 38, 42, 65, 112, 118, 134, 145, 186, 190, 192, 194, 322, 403, 480, 493, 508, 517, 520, 567 Hydrogenation, 6, 22, 26, 187, 190–191, 193–194, 196–197, 199, 201–202, 214–215, 295, 315–316, 358, 367, 383–384, 469, 480 Hydrotreating, 5, 18–19, 117, 165, 187–188, 191, 196–198, 203, 220, 253–255, 453, 462, 480, 493, 508, 523 Isoamylene, 272, 522 Isobutane, 10–12, 26, 71, 94, 97, 117, 158, 214, 260, 339–354, 356–358, 361, 363, 442, 461, 508, 511, 600 Isobutylene, 26, 261, 272, 341, 355, 467, 487–488, 522 Isomerate, 117, 482 Isomerization, 3, 5–6, 10, 117, 120, 187, 261, 271–275, 305–307, 309–311, 329–331, 333, 482–484, 490, 492–493 Isooctane, 11, 262, 339–341, 352–353, 355, 443, 449, 479, 484, 489, 491–492, 495 Isoparaffins, 11, 201, 221, 272, 320–321, 329, 341–342, 349 Isopentane, 11–12, 71, 94, 97, 116, 321, 341–342, 349, 443, 482, 484, 490–491, 511, 567, 600 Jet fuels, 121, 131, 390, 475, 516 K-factor, 64–66, 72 Kerosene, 5–6, 9, 25–28, 35, 57, 112, 127, 130–135, 138, 141–142, 144, 146, 148, 153, 158, 179, 187–190, 196, 198, 202, 217, 228–232, 237–238, 240, 309, 508, 516, 520, 525, 530, 568 Ketones, 20–22, 494 Kinematic viscosity, 80, 82–85, 91, 250–251, 441, 453, 485, 522Index 625 Light cycle oil, 116, 244, 260, 263, 266, 281, 286, 486 Light gases, 106, 116, 138, 150, 196, 220, 259, 305, 308, 315, 355, 476, 521, 523 Light hydrocarbons, 57–58, 66, 75–76, 121, 125, 144, 172, 183, 230, 245, 260, 329, 354, 366, 373, 490 Light straight run gasoline, 25 Liquefied petroleum gas, 26, 29, 116, 119, 121, 130–131, 171, 262, 388, 393, 395, 487 Liquid hour space velocity, 486 Lubricating oil, 26, 34, 113–115, 133, 150, 190, 214, 442, 520 M-xylene, 6, 17, 94, 335, 600 Material and energy balance, 231, 234 MDEA, 119, 389–391, 393, 435, 442 MEA, 389–391, 402, 404, 407–408, 444, 562 Membrane, 367, 372, 378, 410, 489, 528, 565 Mercaptans, 18–19, 119, 192, 235, 240, 332, 370, 374, 381–383, 391–393, 395, 476, 488, 517, 520 MEROX, 119, 266, 382, 390–392, 394–396, 438 Metals content, 384 Methanation, 198, 200, 366, 368, 371, 375 Methanol, 6, 79, 121, 174, 199, 261, 372, 402, 410, 442, 498, 522, 568, 600 Methyl diethanolamine, 435 Methyl tertiary butyl ether, 261, 340, 488–489, 495, 573, 575 Modified Claus process, 399 Molecular sieves, 366, 373, 410, 476 MON, 36, 39, 43, 120, 262, 266, 276, 281, 300–301, 341, 357, 368, 491–492 Motor octane number, 11, 262, 443, 489, 491–492, 511, 513 MTBE, 6, 261, 272, 293, 305, 340, 348, 354, 488–489, 495, 507, 600 N-butane, 10, 12, 38, 42, 71, 94, 97, 116–117, 130, 134, 260, 276, 302, 322, 343, 346, 350, 358, 424–425, 511, 538 N-octane, 11, 71, 94, 484, 492, 569 N-pentane, 12, 25, 38, 42, 66, 68, 71, 78, 80, 94, 97, 134, 242, 321, 425, 461, 492, 511 Naphtha, 5–6, 25–26, 33, 35, 53–54, 57, 59–60, 111–112, 114, 116–123, 127, 157–161, 188–191, 194–196, 240, 245–248, 322–324, 367, 372, 448, 489–490, 493, 496, 506, 508 Naphthenes, 8–9, 13–15, 33, 35, 38–40, 42–44, 55, 60, 90–91, 93, 96, 188, 190, 192, 201, 262, 492, 499, 511, 529 Naphthenic, 8, 15, 17, 21, 23, 34–35, 60–61, 91, 158, 183, 218, 242, 263, 284–285, 307, 458, 490, 529, 531 Natural gas, 1, 6–7, 26, 29, 101, 108, 112, 118, 121, 133, 224, 367–368, 370, 381, 388–390, 393, 396, 402, 405–406, 410, 413, 415, 438–439, 441–443, 445, 449, 451, 488, 490–491, 494, 530, 574, 607 New Technology of Alkylation, 356 Nitrogen, 8–9, 16, 18, 22–24, 29, 32, 36–37, 39, 43, 65, 72, 74, 105, 145, 152, 154, 161, 187–188, 190, 228, 234–237, 240, 287, 370, 373–374, 382–385, 387–388, 419, 534, 600 Nitrogen content, 22–23, 36, 194, 196, 243, 445, 451 Normal paraffins, 10–11, 61, 202, 272, 321, Octane, 4, 10–12, 14, 27, 31, 33, 58, 71, 94, 111–112, 114, 120, 183, 194, 221, 245, 295, 305–309, 311, 313–315, 318–319, 321, 323, 476, 479–480, 499, 508, 510–511, 531, 542, 569 Octane number, 11, 27, 58, 183, 194, 261–263, 266, 305–306, 313–315, 319, 329, 332, 344, 348, 351, 443, 458, 479–480, 484, 510–511, 513–514, 519 Oil fraction, 34, 145, 260, 445, 479, 524 Olefin, 6, 11–12, 96, 163, 190, 196, 202, 237, 241–242, 266, 270–276, 296, 363, 383, 442, 451, 503 Oxidation, 6, 19, 23, 119, 166, 174, 199, 368, 371, 382, 389, 391–393, 395, 486, 489, 494, 520 P-xylene, 79, 94 Paraffinic, 8, 10, 13, 23, 33–36, 60–61, 91, 108, 143, 284, 286, 313–314, 334, 453–454, 458 Paraffinic hydrocarbons, 60, 339 Paraffins, 6, 8–14, 28–29, 32, 35–36, 38–45, 55, 60–61, 90–91, 93, 96–98, 180, 192, 194, 201–202, 262, 272–274, 319–324, 443, 492, 495, 499, 530 Petroleum coke, 29, 114, 117, 152, 159–160, 165, 174–175, 461, 496, 508, 529 Phenol, 6, 20–21, 146, 186, 192, 235, 299, 392, 569 Phosphoric acid, 352, 355 Physical solvent, 389, 401–402, 496 Polymerization, 3, 26, 112, 116, 120, 170, 180, 193, 238, 272–273, 275, 339, 341–349, 361, 363, 384, 442, 448, 453, 499 Pour point, 27, 36–37, 39, 41, 43, 45, 55, 132, 179–180, 183, 230, 250, 387, 445, 458, 499 Process description, 120, 138, 152, 220, 237, 262, 348–349, 355, 372, 384–385, 392–393, 395, 398–400, 404–405 Pump around reflux, 126–127 Refineries, 2, 4, 25, 36–37, 120, 126, 131, 145, 150, 174, 179, 181, 264, 284, 329, 379, 381, 383, 499, 503, 508, 519, 521, 525 Refinery distillation, 464, 475, 495 Reforming, 3, 5–6, 18, 29, 37, 57, 112–113, 115, 117, 120–121, 131, 133, 158, 199–200, 245, 296, 305–323, 382, 388, 448, 452–453, 456, 480, 489, 508–509, 519, 521, 523, 531 Reforming processes, 305, 308, 311, 316–317, 328 Refractive index, 35, 87–91, 98, 284, 287 Regenerators, 266, 283, 311, 323, 436 Reid vapor pressure, 37, 57–58, 445, 476, 509–510, 528 Research Octane number, 313, 319, 329, 332, 443, 491, 510, 514 Residuum, 132, 154, 180–181, 188, 214, 234, 260, 384, 444, 447, 511, 525, 527626 Index RON, 39, 43, 262, 266, 281, 300–301, 307, 317–319, 321, 329–330, 443–444, 491–492, 510 Safety, 2, 5–6, 131, 145, 175–176, 185, 258, 292, 298–299, 340, 343, 354, 356, 361, 363, 478, 481–482, 488, 494, 498–499, 530–531, 585, 606, 608, 612, 615 Salt content, 36–37, 41, 45, 122, 125, 445, 513 Saturated paraffins, 11, 248 Saturates, 9, 22, 215, 285, 300, 385, 491 SCOT, 117, 119, 382, 398 Selective hydrocracking, 194, 462 Selectivity, 136, 188, 196–199, 276, 279, 286, 294–295, 299, 304, 311, 322, 403–404, 453, 513, 517 Semiregenerative, 311–312, 316, 338 Shift conversion, 368, 370 Sinopec, 4 Sludge, 403, 434, 443 Smoke point, 35, 39, 43, 57, 201, 250–251, 382, 451, 516 Solvent dewaxing, 493 Solvent extraction, 3, 189, 462, 506, 517 Sour crude, 18, 36, 299, 365, 488, 517, 520 Sour water, 106, 109, 125, 131, 151, 160, 171, 173, 226, 229–230, 252, 258, 381–382, 393, 435–438 Sour water stripping, 258, 381–382, 435–438 Sponge coke, 174–175 Sponge coke, 174–175 Sponge oil, 170, 172, 268–269, 517 Steam cracking, 120, 150, 294, 518–519 Steam reforming, 199–200, 245, 366–367, 371, 375, 493, 519 Sulfinol, 366, 368–370, 389, 402, 404 Sulfolane process, 331–332 Sulfur dioxide, 18–19, 332, 358, 410 Sulfur recovery, 3, 118–120, 290, 381–382, 388, 390, 393, 396–403, 405, 436 Sulfuric acid, 121, 339–340, 342, 344–348, 350, 353–356, 392, 442, 477, 520 Sweet crude, 36, 450, 520 Sweetening, 3, 5, 18, 112, 119, 381–382, 405, 410, 438, 476, 520 Sweetening processes, 389, 392–393 Tail gas treatment, 3 TAME, 272, 305, 340, 495, 522 TAN, 36, 119, 442, 521, 548 TBP distillation, 46, 49, 52, 55–56, 246, 479, 505 Tertiary amyl methyl ether, 522 Thermal process, 177, 518 Toluene, 5–6, 14, 16–17, 40, 44, 79, 94, 111, 117–118, 121, 193, 201, 309, 372, 374, 444, 450, 453, 476, 489, 492, 523, 570, 600 Topped crude, 112, 121, 127, 146, 150, 152–154, 523 Treating process, 220, 393, 403, 480 True boiling point, 33–34, 46, 48–49, 60, 106, 133–135, 140, 154, 214, 235, 445, 449, 458–459, 475, 477, 516, 524 True boiling point distillation, 49, 60, 140, 477, 516, 524 Turbine fuels, 46, 132 U.S. Bureau of Mines, 60, 284, 457, 479, 524 Unsaturates, 273, 368, 419 UOP, 5–6, 8, 34–35, 159, 186, 258, 266–267, 299, 305–306, 310–311, 318, 323, 328–332, 340, 349, 351–352, 354–357, 363, 384–385, 411, 438, 454 Upgrading, 5, 24, 167, 179, 354, 384, 386, 445, 508, 519 Vacuum distillation, 3, 5, 112–115, 120–121, 132, 138, 150–156, 194, 231, 260–261, 479, 487, 493, 527 Vacuum reduced crude, 529 Vapor pressure, 37, 57–58, 65, 72, 74–80, 110, 143, 150, 231, 346, 356–357, 402, 442, 509–510, 608–609 Visbreaking process, 183–184, 186 Viscosity index, 221, 529 Volumetric space velocity, 195 Watson chracterization factor, 445, 458 Weight hour space velocity, 530 WHSV, 203, 279, 315–316, 318, 328, 330, 517, 530 Xylenes, 14, 335–336, 374, 444, 447, 476, 489 Zeolite catalysts, 260
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Petroleum Refining Design and Applications Handbook - Volume 1 رابط مباشر لتنزيل كتاب Petroleum Refining Design and Applications Handbook - Volume 1
|
|