Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanism and Machine Theory الثلاثاء 26 أبريل 2022, 9:56 pm | |
|
أخواني في الله أحضرت لكم كتاب Mechanism and Machine Theory Ashok G. Ambekar
و المحتوى كما يلي :
الجزء المتاح فقط هو الجزء المعروض على جوجل كتب CONTENTS Preface xy 1. Introduction to Kinematics and Mechanisms ].1 Introduction J ].2 The Four-bar Mechanism 2 1J Motion of a Particle. 2 1.4 Motion of a Rigid Body 3 13 Motion of Translation i ].6 Motion of Rotation 4 1.7 Planar Motion and Euler’s Theorem 1.8 Degrees of Freedom 4 1.9 Vectors and Their Treatment J 1.10 Methods of Expressing Vectors 8 1.11 Position Vectors 10 1.12 Displacement of a Particle 11 1.13 Rigid Body Displacement // IJ4 Relative Displacement 12 Review Questions 18 1-18 2* Planar Mechanisms and Geometry of Motion 19-60 2J Introduction 19 22 Definitions and Basic Concepts 19 2.3 Classification of Links 22 2.4 Classification of Pairs 23 2.4.1 Classification of Pairs Based on Type of Relative Motion _23 2.4.2 Classification of Pairs Based on Type of Contact _25 2.4.3 Classification of Pairs Based on Degrees of Freedom 26 2.4.4 Classification of Pairs Based on Type of Closure 27 mjy Contents 2.5 Mechanism and Machine 27 2*6 Inversions 28 2.7 Quadric Cycle Chain and Its Inversions 28 2.8 Inversion of Slider Crank Chain 33 2*9 The Double Slider Crank Chain and Its Inversion 35 2*10 Transmission of Torque and Force in Mechanisms 36 2 -11 Constrained Motion and Degrees of Freedom of a Mechanism 38 2.12 Expression for D.O*F* of Chains and Mechanisms 38 2 *13 Interpretation of Mobility Equation 40 2.14 Inconsistencies of Gmbler’s Equation 43 2.15 Degrees of Freedom Permitted by Joints other than Turning and Sliding 45 2.16 _ Equivalent Linkages 48 2.17 Number Synthesis 49 2.17 A Effect of Even/Odd Number of Links on Degrees of Freedom 50 2.17.2 Minimum Number of Binary Links in a Mechanism 51 2.17.3 Maximum Possible Number of Turning Pairt on any of the n Links in a Mechanism 52 2.18 Enumeration of Kinematic Chains 53 2*19 Spatial Mechanisms 57 2.20 Manipulators 55 Review Questions 58 3. Velocity and Acceleration Analysis (Graphical Approaches) 61-126 3.1 Introduction 61 3.2 Linear and Angular Velocity 61 3.3 Velocity of a Point on Rotating Rigid Body 53 3.4 Graphical Differentiation 64 3.5 RelatiyeJ/elocity 67 3.6 Relative Velocity between Two Points on the Same Link 68 3.7 Velocity Image 68 3.8 Velocity Polygon 70 3*9 Velocity of Rubbing 75 3.10 Mechanical Advantage and Power Transmission 77 3.11 Instantaneous Centres of Rotation 75 3.12 Properties of Instantaneous Centre 79 3.13 Location of Velocity Pole (I.C.) 50 3.14 Instant Centres of 4-bar Mechanism 5i 3.15 Aronhold-Kennedy's Theorem of Three Centres 52 3.16 Locating I,Cs. in Mechanisms S3 3*17 Acceleration in Mechanisms 57 3,18 Motion of a Particle along Curved Path 55Contents V 3J9 Acceleration of a Rigid Link 88 3.20 Acceleration Image of a Link 90 3.21 General Acceleration Equation for a Link 91 3.22 Necessary Conditions for Acor to Exist 94 3.23 Acceleration Polygon 94 3.24 Combined Four-Bar Chain and Slider-Crank Mechanism 101 3.25 Acceleration Polygon Involving Coriolis Component of Acceleration 103 3.26 Klein’s Construction 109 3.27 Approximate Analytical Expression for Displacement, Velocity and Acceleration of Piston of Reciprocating Engine Mechanism 115 3.28 Kinematic Analysis of Complex Mechanisms 118 Review Questions 121 4, Velocity and Acceleration Analysts (Analytical Approach) 127-157 4.1 Introduction J27 4.2 Vector Method /27 4.3 Types of Analysis Problems 128 4.4 The Loop Closure Equation 131 4.5 Algebraic Position Analysis 131 4.5.1 Case of Slider-Crank Mechanism 132 4.5.2 Case of Four-Bar Mechanism 133 4.6 Velocity and Acceleration Analysis Using Complex Algebra (Raven’s Approach) 135 4.7 Application to Slider-Crank Mechanism 136 4.B Application to Four-Bar Mechanism 137 4.9 Application to Quick-Retum Mechanism 139 Review Questions- 153 S. Mechanisms with Lower Pairs 158-202 5.1 Introduction Offset Slider-Crank Mechanism as a Quick Return Mechanism The Pantograph 160 Straight Line Motion Mechanisms 162 Exact Straight Line Motion Mechanisms 163 5.5.3 The Han Mechanism 165 5.5.4 The Scott-Russel Mechanism 166 The Approximate Straight Line Moiion 167 5.6.1 The Watt Mechanism 167 Condition for Generating Exact Straight Line Motion PeaucdMer Mechanism 164 lire Grasshopper Mechanism 168 The Tchebieheff Straight Line Motion Mechanism 169 The Roberts Straight Line Motion Mechanism 171yj Contents 5,7 Engine Indicators Ill Simplex Indicator 111 Crosby Indicator 772 Thompson Indicator 113 5.7.4 Dobbie-Mdnnes Indicator 7 75 5.8 Motor Car Steering Gear 777 5.8.1 Condition of Correct Steering Ill 5.8.2 Davis Steering Gear 118 5.8.3 Ackerman Steering Gear 181 5.9 Hooke’s (Cardan) Joint or Universal Coupling 185 5.9. 1 Transmission Characteristics 186 5.9.2 Double Hooke's Joint 192 5.10 Toggle Mechanism 191 5.11 Scotch Yoke Mechanism 199 Review Questions 199 6. Elements of Kinematic Synthesis of Mechanisms (Graphical and Algebraic Methods) 6.1 Kinematic Synthesis 203 6.2 Approximate and Exact Synthesis 205 6.3 Chebyshev’s Spacing of Accuracy Points 205 6.4 Graphical Methods of Dimensional Synthesis Motion Generation 6.5 Poles and Relative Poles 208 6.6 Motion Generation: Three Prescribed Positions 210 6-7 Relative Poles (Roto-Ccntres) of the 4-Bar Mechanism 212 6.8 Relative Poles of Slider-Crank Mechanism 214 6.9 Function Generation (Three Precision Points) 27 7 6.10 Algebraic Method of Function Generation 219 6.11 Comments on Design Parameters and Special Nature of Results 6.12 Coupler Curves 228 6.13 Synthesis for Path Generation 230 6.14 Graphical Synthesis for Path Generation (Three Specified Positions) 2J7 6.15 Roberts-Chebyshev Theorem (Cognate Linkages) 232 6.16 Coupler Curves from 5-Bar Mechanisms 235 Review Questions 7 Cams 7J Introduction 24.1 7.2 Comparison between Cams and Lower Paired Mechanisms 247 73 Classification:of Cams and Followers 242 13A Classification of Cams 242 13.2 Classification of Followers 244 241-299Contents yjj 7*4 Terminology for Radial Cam 247 7*5 Types of Follower Motion 248 7.5.3 Simple Harmonic Motion 250 7*5,4 Uniformly Accelerated and Retarded (Parabolic) Follower Motion 254 7.5.5 Cycloidal Follower Motion 258 7.6 7.7 Pressure Parameters Angle Affecting (^) Pressure 260 Angle 261 7.8 Effect of Offset Follower Motion 263 7.9 Main Consideration Influencing Choice of Cam 266 7.9.1 Smaller Lateral Pressure on Guides 266 7.9.2 Smaller Force Required to Accelerated Follower 2tf 7 7.9J Smooth Jerkkss Motion 268 7.9.4 Smaller Base-Circle 268 7.10 Radius jrfCuryature and Undercutting 269 7.11 Construction of Cam Profiles 269 1A2 Cam Layout: General Type of Problems 272 7J3 Translating Flat_ Face Follower: Analytical Desjgn_ 7.14 Cam with Oscillating Roller Follower 284 7.15 Cams with Specified Contours 287 7.15.1 Circular Arc Cam with Tangent Follower 287 7*15*2 Tangent Cam with Roller Follower 292 Review Questions 296 Uniform Motion or Constant Velocity Follower Motion 249 Modified Uniform Motion 249 8. Gears 8.1 Introduction 300 8.2 Rolling Contact and Positive Drive 300 8.3 Classification of Gears 301 8.4 Nomenclature for Straight Spur Gears 305 8.5 Fundamental Law of Toothed Gearing 310 8*6 Conjugate Teeth 312 8*7 Tooth Profiles 313 8.7.1 Cycloidal Tooth Profile 314 8.7.2 Involute Tooth Profile 115 8.8 Length of Path of Contact 318 8.9 Length of Arc of Contact 320 S*10 Contact Ratio 321 300-365 Gears Mounted on Parallel Axes Gears Mounted on Intersecting Shaft Axes Gears Mounted on Skew Shaft Axes 304Vfii Contents SHII Interference and Undercutting 324 8.12 Standard Proportions of Interchangeable Gears 327 8.13 Minimum Number of Teeth to Avoid Interference 328 8.14 Minimum Number of Teeth on Pinion to Avoid Interference with Rack 336 8.15 Comparison between Involute and Cycloidal Tooth Profiles 342 8, 1b Methods of Reducing or Eliminating Interference 343 8 H17 Helical Gears 344 8.18 Spiral Gears (Skew or Screw Gears) 347 8.19 The Efficiency of Spiral and Helical Gears 350 8*2Q Worm and Worm Gear 355 8.21 Bevel Gears 360 8.22 Special Bevel Gears 362 Review Questions 363 9. Gear Trains 9A Introduction .366 9.2 Classification .3.66 9.3 Epicyclic Gear Trains with Bevel Gears 372 9A Algebraic Method of Analysing Epicyclic Gear Trains 373 9.5 Tabulation Method for Analysing Epicyclic Gw Train 379 9.6 Torques and Tooth Loads in Epicyclic Gear Trains 9.7 Bevel Gear Differentia] 397 Review Questions 398 366^403 384 10. Gyroscopic Effects 10.1 Introduction 404 10.2 Angular Motion and Conventional Vector Representation 405 10.3 Precessional Motion and Angular Acceleration 406 10.4 Gyroscopic Couple 4 JO 10.5 Gyro-couple and Gyro-reaction Couple 411 10.6 Analogy with Motion of a Particle in Circular Path 411 10.7 Gyroscopic Effects on an Aeroplane 414 10.8 Stability Analysis of 4-Wheeler Vehicle 415 10.9 Stability Analysis of a Two-wheel Vehicle 423 10.10 Gyroscopic Effects on Naval Ships 427 10, It Gyroscopic Ship Stabilization 432 10.12 Gyroscopic Analysis of a Disc Fixed Rigidly to a Rotating Shaft at Certain Angle 435 10.13 Gyroscopic Analysis of Grinding Mill 4J 7 Review Questions 440 404-442Contents ix 11. Friction Gears ] ]. I Introduction 443 11.2 Types of Friction 443 11.3 Dry Friction 444 11.4 Angle of Repose and Angle of Friction 446 11.5 Motion along Inclined Plane 446 11.6 Friction of Nut and Screw 450 11.7 Wedge 457 11.8 Rolling Friction 461 11.9 Pivot and Collar Friction 463 11.10 Axial Force and Friction Moment in Pivots and Collars 464 11.10.1 Assumption of Uniform Pressure Intensity 466 11.10.2 Assumption of Uniform Rate of Wear 467 11.11 Design Considerations in the Choice of Assumption 469 11.12 Thrust Bearing 470 11.13 Friction Clutches 474 11 *14 Cone Clutch 475 11.15 Single Plate Clutch 479 11.16 Multi-Disc Clutch 481 11.17 Effect of Number of Pairs of Active Surfaces 482 11.18 Centrifugal Clutch 492 11.19 Friction Circle and Friction Axis 495 11.20 Lubricated Surfaces 500 11.21 Friction between Lubricated Surfaces 501 I L22 Film Lubrication in Rotating Shafs 504 11.23 Michel Thrust Bearing 505 11.24 Hydrostatic Lubrication 506 11.25 Rolling Contact Bearing* 506 11.26 Advantages and Disadvantages of Rolling Contact Bearings 508 Review Questions 509 443-512 12. Belt, Rope and Chain Drives 513-558 12.1 Introduction 5.13 12.2 Velocity Ratio 513 12J Belt Length 517 [ 2.4 Limiting Ratio of Belt-Tensions 519 12.5 Maximum Effective Tension and H.P. Transmitted 522 12.6 Centrifugal Tension and Stresses in Belts or Rope 525 12.7 Maximum Tension in Belt/Rope 526 12.8 Initial Tension and its Role in Power Transmission 526 12.9 Condition for Maximum Power Transmission 535 12.10 Power Transmitted by Belt: Further Comments 537 12.11 Idler and Jockey Pulleys 540X Contents 12.12 Timing Bell 541 12.13 Rope Drive 541 12.14 Materials of Belt and Rope 552 12.15 Chains 553 12.16 Inverted Tooth Chain (Silent Chain) 555 Review Questions 556 13. Brakes and Dynamometers 13. ) Introduction 559 13.2 Classification of Brakes 559 13.3 The Simple Block or Shoe Brake 560 13.4 Short-Shoe Brakes (Condition of Self Energization ) 56J 13.5 Double Block Brakes 563 13.6 Long Shoe Brakes 5<5<5 13.7 Long Shoe Brakes (Shorter Method ) 570 13.8 Internally Expanding Shoes 573 13.9 Band Brakes 583 13.10 Band and Block Brake 587 13.11 The Braking of a Vehicle 596 13.12 Types of Dynamometers 604 Absorption Dynamometers 13.13 Prony Brake Dynamometer 605 13.14 Rope Brake Dynamometer 606 Transmission Dynamometers 13.15 Epicydic Train Dynamometers 608 13.16 Belt Transmission Dynamometer 609 13.17 Torsion Dynamometers 611 Review Questions 614 559-616 14. Dynamics of Machines, Turning Moment, Flywheel 14.1 Role of Force Analysis in Design Calculations 14.2 Laws of Motion and D’Alembert’s Principle 14.3 Static Force Analysis 14.4 Static Force Analysis for Mechanisms 14.5 Mass Moment of Inertia and Inertia Torques 14.6 Simple Harmonic Motion 14.7 Dynamically Equivalent Two Mass System 14.8 Centre of Percussion 14.9 Significance of Kinetic Equivalence 14.10 Equivalent Dynamic System: Graphical Determination 14J I Correction Couple Required for Arbitrary' Choice of Both the Mass Locations 14*12 The Effective Force and the Inertia Force 644 14.13 Reversed Effective (Inertia) Force and Force Analysis 646 14.14 Dynamic Force Analysis of a Four-link Mechanism 64S 14.15 Analytical Expressions for Velocity and Acceleration of Slider in Slider-Crank Mechanism 654 14*16 Piston Effort, Crank Pin Effort and Crank Effort 657 14.17 Inertia Forces and Torques in Slider-Crank Mechanism 659 14.15 Dynamic Force Analysis of a Slider-Crank Mechanism 663 14.19 Turning Moment Diagram {Crank Effort Diagram) 675 14.20 Fluctuation of Crank Shaft Speed 678 14.21 The Flywheel 682 14.22 Flywheel for Punching Press 683 Review Questions 701 15. Governors 15*1 Introduction 705 J 5.2 Functions of a Governor 705 15.3 Types of Governors 707 15.4 Terms Used in Governors 708 15.5 The Watt Governor 709 15.6 Effect of Mass of Amis in Watt Governor 111 15.7 The Porter Governor 713 15.8 Effect of Friction 7/ 7 15.9 Proell Governor 724 15.10 Spring Controlled Governors 729 15.11 Hartnell Governor 729 15.12 Governor with Spring Connected Balls (Wilson-Hartodl Governor) 732 15.13 Governor with Gravity and Spring Control 742 15.14 Hartung Governor 744 15.15 Pickering Governor 746 15.16 inertia Governors 747 15.17 Characteristics of Centrifugal Governors 747 15.18 Quality of Governor: Definitions 748 15.18.1 Controlling Force 748 15.18.2 Stability and Isochroitism 749 15.18.3 Sensitiveness 752 15 *18.4 Hunting 752 15.19 Governor Effort and Power 752 15.20 Effect of Friction: Insensitiveness 754 Review Questions 763 705-766xii Contents 16. Balancing 767-849 16.1 Introduction 767 16.2 Balancing of Rotating Masses 767 J 6J Static and Dynamic Balancing Problem 76# \6A Unbalanced Rotating Mass 769 16.5 Balancing of Several Masses Revolving in the Same Plane 772 16.6 Analytical Approach for Several Rotating Masses in Same Plane 775 J 6.7 Balancing of Several Masses Revolving in Different Planes 775 16.7.1 First Method 775 16.7.2 Second Method (Dalby’s Method) 779 16.8 Balancing of Rotors 789 16.9 Static and Dynamic Balancing 790 16.10 Static Balancing Machines 790 16.11 Dynamic Balancing Machines 791 16.11.1 Pivoted Cradle Balancing Machine 792 16.12 Field Balancing 794 16.12. ) Balancing of a Twin Disc 795 16.12.2 Balancing by Four Observations 796 16.13 Balancing of Reciprocating Masses 798 16.14 Inertia Effects of Reciprocating Masses in Engine Mechanism 799 16.15 Primary and Secondary Unbalanced Forces due to Reciprocating Masses 801 16.16 Inertia Effects of Crank and Connecting Rod 802 16.17 Partial Balancing of Primary Inertia Forces 804 16.18 Partial Balancing of Locomotives 807 16.19 Effect of Partial Balancing in Locomotives 807 16.20 Primary Balance of Multi-Cylinder In-Line Engine 822 16.2 i Secondary Balance of Multi-Cylinder In-Line Engines 823 16.22 Balancing of 2-Stroke and 4-Stroke Tn-Ltne Engines 824 16.23 Firing Order 827 16.24 Direct and Reverse Cranks 836 16.25 Balancing V-Engines 841 Review Exercises 845 17. Vibration Analysis 17.1 Introduction 17.2 Definitions 17.3 Simple Harmonic Motion and Rotating Vectors 17.4 Work Done in Harmonic Motion 17.5 Elements of Discrete ( Lumped Parameter) Vibratory System Single Degree of Freedom Problems 17.6 Undamped Free Vibrations 17.6, 1 Method Based on Newton's Second Law of Motion 850-935 850 850 852 853 855 856 856Contents xiijj 17.6.2 Energy Method 859 17.6.3 Rayleigh’s Method 860 17.7 Equivalent Springs and Dashpots 864 17.8 Equivalent Length of Shaft 867 17.9 Damped Free Vibrations 868 17.10 Logarithmic Decrement 572 17.11 Forced Vibrations with Harmonic Excitation 877 17.12 Vibration Isolation and Transmissibility 55J 17.13 Vibration Isolation without Dampers 883 17.14 Vibration Isolation Using Dampers 885 17.15 Motion Transmissibility 889 17.16 Whirling of Shafts 895 17.17 Critical Speed of Light Vertical Shaft with Single DISC (without Damping) 896 17.18 Critical Speed of Light Vertical Shaft Having Single Disc with Damping 900 17.19 Longitudinal and Transverse Vibrations 905 17*20 Natural Frequency of Free Transverse Vibrations due to a Point Load on a Simply-Supported Shaft 906 17 *21 Transverse Vibration of a Uniformly Loaded Shaft 907 17.22 Transverse Vibrations of Shaft Canying Several Loads 911 Torsional Vibrations 17.23 Single Rotor System 917 17.24 Free Torsional Vibrations: Two Rotor System 918 17.25 Free Torsional Vibrations: Three Rotors 920 17*26 Torsional Vibration of Geared System 927 Review Questions 931 Appendix I Units Appendix it Mathematics Appendix HI 5-/- and M.K.S* Units Bibliography 937-938 939-941 942-974 975-976 Index 977-986 I N D E X Absolute motion, 28 Absorption dynamometer. 604. 605 Acceleration. 87 absolute, 95 angular. 87-90, 92-99, 103. 106. 406. 410 centripetal. 89 Coriolis. 94. 103 equation. 91 gyroscopic. 409. 410 image. 90, 91 normal. 88 of piston. 96. 112. 115 analytical. II5-117 polygon, 94. 95. 103 relative, 89-92 rigid link, 88 tangential. 88. 90. 92 Acceleration analysis, 61, 89-94, 135 analytical approach. 773 cam and follower, 287-293 complex mechanism. IIS of direct contact mechanisms. 232, 300 four-bar linkage. 99 Raven's method, 135 return mechanism. 103-104 slider-crank mechanism. 101, 136 slotted lever, 104 Accuracy points. 205-208 Ackerman steering gear. 32. 181-183 Addendum of tooth. 306 modification. 328 standard. 327 Art. 428 Amplitude of vibration. 920 damped vibration, 868 forced vibration. 851. 877 Angle of approach friction. 446 heel. 424 lap. 517. 518. 519. 520 obliquity, 308 repose, 446 Approximate straight line motion mechanisms, 162— 163 Grasshopper. 168 Robert’s, 171 Tchcbichcff. 169 Amhold-Kennedy's theorem, 82 Arc of action contact. 320 Allas, Urones-Nelson, 228. 230 Automotive differential, 362 Axial pilch. 356 Back cone bevel gear. 360 Backlash. 307 Balancing by four-observations, 796 Balancing, definition, 767 dynamic, 768-769 partial. 804 static, 768 Balancing of cranks, 806 locomotives, 807-812 multicylinder in-line engines. 822-823 reciprocating masses. 801 revolving masses. 772, 775 rotors, 789 secondary forces. 839 V-engines. 841 Ball hearing. 507 Band brake. 583 Band and block brake. 587 977978 Index Band brake, differential 584 simple, 584 Ba.se circle of cam. 247 * 270 Ba.se circle of involute gear, 316* 312 Bearn engine mechanism. 32. 33 Bearing ball. 507 horse shoe-shaped* 470* 471 journal. 504. 505 Michel thrust * 505 Needle rotten 507-508 roller * 507-508 Belt drive catenary effect 538. 540 centrifugal tension. 525 creep, 539 Hat 519 initial lension. 526 law of (helling), 519-522 length of, 51SJ13 limiting ratio of tensions. 519-522 material, 533 maximum HP transmitted. 522 maximum tension, 526, 532 power transmitted, 526, 535 slip* 515^516 timer helt 553 V-bclt 455, 52 J velocity ratio. 513-515 Belt transmission dynamometer. 609 Bevel gears. 303* 362* 372 miter * 3.62 pitch angle. 362 pilch cone, 16ft. 362 pitch surface, 360* 362 shaft angle, 361* 362 tooth thickness. 307 Ircdgold’s approximation. 360 Zctol. 304. 362 Bevis Gibson torsion dynamometer. 604. 612 Binary links. 22. 54 minimum number in chain* 53 Block brake. 560-56* Boundary friction, 444. 501 Bow of a ship. 430 Brakes, band. 559. 583 band and block. 587 block, 560, 561 external. 559 * 566 internal. 573 long shoe* 566-570 pivoted shoe. 560 self energization. 561-563 self locking. 565 short shoe. 561-563 Braking of vehicles. 596 Bush roller chain, 553, 554 Cams, advantages. 24J Cams, analysis* 287 analytical design, 280 angle of action. 244, 290 angle of retum/descent. 265. 27 J , 274 angle of rise/assent/outstrnke, 265. 271. 274 angle of dwell, 21L 111 base circle * 273. 274 circular arc. 287 cylindrical, 243 disc, 242. 244. 247 displacement diagram* 248, 249, 25.1. 253 flat. 245 follower, oscillating, 243. 284, 285 jerk, 287 layout of, 27{) master, 287 pitch circle, 248 pitch curve, 247 pitch point 248 plate cam. 242, 253 pressure angle, 244, 260 prime circle* 248 profile, 248, 263, 266 radial* 242* 243 specified contours, 270. 287 specified follower motion, 269r-287 tangent. 287. 292 types, 244 undercutting, 269 Centre of percussion. 636 Centre distance spiral gears, 347, 350 worm gears* 355 Chain constrained* 40 double slider. 35 drive, 553-554 Ibur-bar, 29 kinematic, 21 pitch* 553-554 pitch quadric cycle, 28 roller, 554 silent * 555 slider-crank* 33 sprocket* 554 Chcbyshcv spacing. 206. 218index 979 Circular Frequency, 893 Circular pitch, 306 Clearance, 307 Closed chain. 21 Closed pair, 27, 242 Closure, loop equation. 131 Clutches, cone. 475 disc, 479 multi-disc, 48 L single plate* 479 Coefficient of rolling friction. 461-462 sliding friction, 443 Coefficient of energy fluctuation, 680 Coefficient insensitiveness, 755 Coefficient of speed fluctuation, 680 Cognate linkages. 232 Collar friction. 463 Collars and pivots, 463 Complex algebra. 135 Complex mechanisms. 118 Complex polar notations, 9 Compound gear train, 368 Conical clutch, 475 Conjugate tooth profiles, 312-314 Constrained mechenism, 38 Constraint. 38-40 motion, 38, 59 Contact, arc of, 320 path of 318 Contact ratio. 307. 321 Coriolis acceleration. 103, 104. 126 Correction couple, 640. 643 Coupler, 29 Coupler curves. 228-230 equation of, 229 for 5-bar linkage. 235-236 Couple, gyroscopic, 410, 411 reaction, 411 representation vectorial. 405 swaying, 809 Cradle balancing machine. 792 Cramer's rule, 878 Crank effort, 657, 675 Cranks, direct and reverse, 836 Crank-pin effort. 657 Crank-rocker mechanisms, 30, 31, 32 Crankshaft balancing, 806 Crank-slotted lever mechanism. 33 Critical damping coefficient. 869, 870, 876 Critical speed in rope dynamometer, 604. 606 Crosby indicator. 172 Crossed belt, 5H, 518 Curvilinear motion of translation, 3 Cycloidal follower motion. 258, 268 Cycloidal gear teeth. 314 Cycloidal and involute tooth comparison, 342 Cylindrical cams. 243, 244 pairs, 25 D’Alembert’s principle, 618-620 Dal by's method, 779-781 ldamping factor/ratio coefficient, 869 Damped vibrations. 868 critical, 870 overdamped, 870 undeFdamped, 871 Davis steering gear. 178 Dedcndum, 306 Degrees of freedom, 4, 23, 26, 38, 45 of chains, 38. 39 effect of multiple joint, 41 spring connection, 41 even/odd number of links, 50 of mechanisms, 38 * 39 of pairs, 25* 26, 45 redundant. 43 Diametral pitch. 306 Diagrams, free body, 620 schematic, 21 Differential mechanism, 398 Dimensional synthesis, 204. 208 Direct contact mechanism. 48 Direct and reverse cranks. 836 Displacement finite and infinitesimal, 79 Displacement of particle, 11 rigid body, 11, 12 Displacement, relative, 12, 13 Displacement-time curve in follower motion. 250-254 in quick return motion mechanism, 158. 159 in slider crank mechanism. 654. 659, 663 Displacement vector, 11 Dobbic-Mclnnes indicator mechanism. 175 Double block brake, 563 Double-crank mechanism, 29 Double helical gear, Double Hooke's joint. 192, 193 Double lever mechanism, 29 Drag link mechanism. 29 Drive, belt, 518. 529, 531, 532 chain, 513 305980 ^dex cam. 242 clutch * 475 friction, 474, 5H rope, 300, 513, 521, 526 Dry friction, 444 Dunkcrley’s method* 911 Dwell period in cams. 245, 246 Dynamic balancing, 768-769 Dynamic machines* 790 Dynamics, defined* 623, 679, 681 Dynamically equivalent two-mass system* 634, 639 Dynamometers, 604 absorption. 604-605 belt transmission. 609 epicyclic gear train* 608 Prony brake, 60S rope brake* 606 torsion, 611 transmission, 604. 608 Face of gear tooth. 307 width of helical gear. 345 Face cam, 243 Ferguson's parados* 386 Field balancing. 794 Fillet radius, 307 Film lubrication. 502, 504 Firing order. 827 Flat face follower, 280 Flat pair, 24 Fluctuation of crank shaft speed, 678 Fluctuation of energv, 680 Flywheel, 682 energy, 683, 684 speed! 683. 684 Foettinger torsion dynamometer, 613 Follower, classiftcation, 244-246 Follower, flat raced, 247. 273. 283 cycloidal* 248. 258 knife edge. 246 lift 248 modified constant velocity, 249 motions types. 244 mushroom, 246 offset, 244 oscillating, 244 parabolic, 248, 254 radial * 244 roller * 246 simple harmonic* 250-251 spherically seated, 246 stroke. 248 uniform velocity, 249, 250 Force analysis dynamic, 646 static, 62 Force analysis of four-bar mechanism slider. 648 crank mechanism. 659, 663 Force closure in cams, 242 Force, controlling effective, 644 inertia, 644. 646 Fore of ship, 428 acceleration polygon, 94 instantaneous centre. 78^79 inversions, 29 mechanical advantage. 36 pressure angle, 37 transmission angle. 36 Free body diagram, 620 Freedom, degrees of, 4 Effect of friction on governors. 717, 724, 754 Effect, gyroscopic, 404, 405, 406, 414. 427 Effect of partial balancing of locomotives* BG7-810 Effective force, 619, 644 tension. 522 Efficiency of inclined plane helical gears, 344, 350 spiral gears, 347, 350 worm gears. 355 Effort at crank * 657 Effort of governor* 752 piston. 657 Element* definition of* 20 Elliptical trammel* 35 Energy fluctuation* flywheel, 680, 681, 682. 684 Enumeration of chains, 53-57 Epicyclic dynamometer, 608 gear train, 366 torque and tooth loads. 384 Epicycloid. 342 Equilibrium, dynamic, 415 Equilibrium, static. 618-619 Equivalent linkage. 48 Equivalent two-mass system dynamic* 634-635 Error in function generator structural* 204—205 Euler's theorem. 4 Exact straight line motion condition for . 163 Hart , 165 Peaucellier, 164 Scim-Russcl, 166Index 981 Frequency of vibration cyclic, 677 damped. 768 fundamental, 907, 910 natural. 906 Freundenstein's equation. 217 Friction. 443 angte. 446 axis, 495-496. 499 boundary. 444. 501 circle, 495 clutches. 474 coefficient. 445 dry, 443, 444 film, 444. 502 greasy. 444. 501 rolling, 444. 461 skin. 444, 501 solid. 443, 444 moment, 464, 496 viscous, 444, 502 Friction in governors, 603, 664 pivot and collar. 463 roiling. 444. 461 Full depth tooth. 327 Function generation, 217, 219 algebraic method, 219, 373 graphical method, 208 Function generator, 204. 205 Gear trains, 366 algebraic method, 373 bevel gear differential, 397 compound, 368 epicyclic, 37L 372 formula (algebraic) method, 376 ordinary (simple), 366 reverted. 370 tabulation method. 379 train value, 368 Globular pair, 24 Governors, 705 centrifugal, 707 controlling force, 707 definitions, 708 effort. 752 emergency. 707 friction, 717, 754 gravity control. 708 Hartnell, 729 Harfung. 744 isochronous, 757 inertia. 708, 747 insensitiveness. 754-757 pendulum. 709 pickering, 746 porter, 713 power, 752 Proell. 724 quality, 748 sensitiveness. 752 spring controlled. 729 stability. 749 watt, 709 Wilson Hartnell. 729, 732 Graphical cam design, 275 Graphical differentiation. 64—66 GrashoFs chain, 29 Grashoff's law, 29 Grubler’s criterion inconsistencies. 43 Gyroscope, definition. 404 Gyroscopic acceleration. 407 Gyroscopic action. 439 Gyroscopic action in grinding mill. 437 Gyroscopic couple. 410 Gyroscopic effects on air planes. 414 four wheeler. 415 naval ship. 427 two wheeler. 423 Gyroscopic ship stabilisation, 432 Gear, definition, 300 Gear ratio, 307 Gears, 301 bevel, 304 classification. 301 helical. 302, 344 Herringbone. 303 hypoid, 304 rack and pinion. 303 spur, 301, 302, 305 spiral, 304. 305. 347 worm. 305 Gear teeth base circle, 316 conjugate. 312 cycloidal profile, 314 face. 307 Hank, 307 involute, 315 module, 306, 327 proportions, 327 [ 1 I982 index Hammer blow, 807 Hand pump mechanism. 34 Han mechanism, 165 Harmonic motion, simple. 625 Hartnell governor, 729 Helical gear. 302, 344 normal circular pilch, 346-347 Helix angle. 303 Herringbone gear, 303 Higher pair, 25, 28, 24J effect on d ^o.f-. 40 Hooke's joint, 185 double. 192 HP transmitted by belt and rope, 522 Hrones and Nelson atlas, 228 Hunting governor. 752 Hypoide gearing, 304 Jaw dutches, positive, 475 Jerk, 248. 253, 254, 255 Jockey pulley's, 540 Joints, simple. 41 multiple, 41 Journal bearing, 503-504 friction in, 495-496 pressure distribution, 503 Tower’s experiment, 502 Kennedy's theorem, 82 Kinematics, 19 Kinematic chain. 21 enumeration. 53 pairs. 23 synthesis, 203 Klein's construction. 109 Idler pulleys. 540 Kutzbach's criterion, 40 Images, velocity and acceleration. 68, 69, 88. 89 Inclined planes. 446 efficiency of. 447-448 friction of, 446-448 Indicator diagrams for engines. 171, 675 Inertia effects of crank and connecting rod. 802 reciprocating masses, SOL Inertia force, 646 determination. 639 Inertia torque, 619, 620. 649 Inscnsitiveness Instantaneous centres , governor , 78, 754—757 Aronhold Kennedy's theorem. 82 Locations of, 80, S3 method for velocity, 85 notation, 81 number of. 82 properties. 79 Interference in involute teeth. 324 mcihods of elimination, 343 minimum number of teeth to avoid. 328. 336 Internally expanding shoe brakes. 573 Inversion. 28 of four-bar chain, 212 of double-slider chain, 35 of slider-crank chain, 33 Inversion, importance of, 28 properties of, 28 Inverted tooth chain, 555 Involute teeth, 312-315 Isochronous governors, 757 Law of gearing. 310 Laws of motion. 618 Laws of solid friction. 444 Length of arc of contacts, 320 Length of path of contact 318 approach. 318 recess, 318 Limiting angle of friction, 445. 446 Limiting coefficient of friction. 445 Linear motion lower pairs. 40 Links, classification. 22 conventional representation. 22 Linkage. 28 Locomotives, effects in, 807 partial balancing of. 807 Logarithmic decrement, 872 I -ong shoe brakes. 566 shorter method, 570 Longitudinal vibrations. 905 Loop closure equation. 39. 131 Lower pairs. 25 equivalent. 45 Lubrication. 444. 502, 504 film, 502 hydrostatic, 506 of journal hearing. 503-504 of plane surfaces. 500-501 viscous. 502Index 983 Machine, definition. 19. 27 magnification factor 830 Manipulators, 58 Master earn. 287 Materials for belt and rope. 552 Mechanical advantage. 36, 77 Mechanism, definition. 22, 27 Michel thrusl bearing, 505 Minimum number of pinion teeth, 336 Miter gear. 362 Mobility. 38 Mobility equalion. 40 Mode of vibration. 907 Module, standard values. 306, 308 Motor car steering gear. 177 Ackerman , 181 Davis, 178 condition of correct steering. 177 Motion generation, 204, 205. 208 Motion of the follower. 244, 245 Motion of translation. 3 curvilinear. 3 rectilinear. 3 Motion transfer fink, 52 Motion, simple harmonic, 625 Movabiltty. 40. 50 Multile joint, 4J higher. 25 lower. 25 prismatic, 23 redundant, 43 revoltilc. 23 rolling. 21 45 screw, 23 turning, 23 Pantograph, 32, 160-162 Parabolic follower motion, 254 Parallel, helical geats. 302. 344 Partial balancing of locomotives, 8117-812 Particle, motion of, 3 Path generation. 204-205. 230-241 Peaucdlier mechanism, 164 Pendulum, compound. 628, 631. 636 simple, 626 torsional, 629, 633 Percussion, centre, 636 Periodic time. 850 Phase angle, 793, 8U9. 853 Pickering governor. 746 Pinion. 303. 306 Piston effort, 657 Pitch circle, 248. 302 cone. 360-363 tine. 336 Pitching motion of ships, 428 Pivot bearing, friction, 463 Plane of gyracouple, 405 precession. 406 spin, 406 Planar motion, 24 Planar pair. 24 Planetaiy gear trains, 17-1 Plate clutch, 479 Poles. 208. 212 Port 428 Position vector, ID Preeessional motion. 406 Precision points, 205 Pressure angle of. earns, 244, 260-263 Ibur-bar mechanism. 17 spur gears. 305 Primary and secondary unbalanced forces, SfiI-833 Primary balancing of multicylinder in-line engines. 822, 824 Prismatic pairs, 23 Properties of 79T41G Pulleys, idler and Jockey, 540 Pure rolling. 45, 177. 300 Notation, static forces. 621 Number of instantaneous centres, 79 Number synthesis, 49, 203 Offset follower motion, 244, 263 Offset slider-crank mechanism, 158 condition of rotatibility of crank, L6G Oldham's coupling, 3.6 Open chain. 21 Oscillating cylinder engine mechanism. 33 Oscillating follower with fial face. 245 Oscillating follower with roller. 245, 284 Overdamped vibration. 870 Pairs, classification, 23 Pairing dements. 2Q Pairs, cylindrical, 23 definition. 20 flat, 24 globular. 24 i984 index Quadric cycle chain* 28 Quaternary link* 22 Quick T\Mum mechanism. 31 drag-link type* 31 offset slider crank type, 158 slotted lever, 33 ^ 3.4 Whit-Worth mechanism. 33* 106 Skeleton diagram, 20 Slider-crank mechanism. 34, 58, 132 acceleration. 654 displacement, 655 force analysis, 646* 659 inversions* 655 velocity, 655 Sliding pair* 23 Slotted lever quick return motion mechanism* 33, 34 Spacing of accuracy points, 205 Spatial mechanism, 57 Specified cam profiles, 287 follower motion * 248, 263 Speed regulation* 706 Spherical pair, 24 Spiral hevcl gear, 304 Spring constant, 891, 892 Sprocket, 553 Spur gears, 302. 303, 305 addendum * 306 arc. of contact, 307 backlash. 307 base circle * 315 circular pitch. 306 clearance. 307 conjugate action. 310 contact ratio, 307 dedendum* 306 face width. 307 fillet radius. 307 hilt-depth tooth* 327 interchangeable, 327 interference, 324 length of path of contact* 3IS minimum number of teeth for pinion, 328. 336 pitch circle, 306 pilch circle diameter, 306 pitch line. 336 pressure angle. 308 stub tooth, 327 tooth face, 307 tooth proportions 327 tooth thickness. 307 undercutting, 324 working depth. 307 Stability of 2-wheeler, 423 A-wheeler 415 governors* 748 Stabilization, gyroscopic, 432 Star hoard, 427 Static balance, 768 Static balancing machines, 790 Rack. 326 Radial Hat faced cam follower, 244 Radial roller earn follower. 244 Raven's method, 135 Rayleigh s method, 912 Rectilinear motion * 2 Rectilinear translation, 3 Relative displacement* 12 Relative velocity, 67* 68 acceleration, 88 Relative poles* 208, 212 Reverted gear trains, 370 Revolute pair. 23 Rigid body displacement, II guidance. 205 motion, 2 Robert's Chehyehev theorem, 232 Rolling contact. 300, 506. 508 Rolling friction* 461 Rolling of ships, 428 Rolling contact, bearing, 506* 508 Rotation, motion* 4 Roio-centrcs, 212 Rubbing velocity* 75 Scott Russel's mechanism. 166 Screw friction * 450 jack. 450 pair, 23 Secondary force balancing of multi-cylinder in-line engines. 823 Secondary couples, 829 Self actuating brake, 562 Self-closed pairs, 27 Self energisation, 562 Self locking, 454 Sensitiveness of governors, 752 Shaking farce, 650 Simple harmonic Molino 625 Simple pendulum, 626 Simplex indicator, 171 Singular link, 2 L
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanism and Machine Theory رابط مباشر لتنزيل كتاب Mechanism and Machine Theory
|
|