Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Introduction to Modeling and Simulation with MATLAB and Python الثلاثاء 14 يونيو 2022, 7:25 am | |
|
أخواني في الله أحضرت لكم كتاب Introduction to Modeling and Simulation with MATLAB and Python Steven I. Gordon, Brian Guilfoos
و المحتوى كما يلي :
Contents Preface, xiii Authors, xvii Chapter 1 Introduction to Computational Modeling 1 1.1 THE IMPORTANCE OF COMPUTATIONAL SCIENCE 1 1.2 HOW MODELING HAS CONTRIBUTED TO ADVANCES IN SCIENCE AND ENGINEERING 3 1.2.1 Some Contemporary Examples 8 1.3 THE MODELING PROCESS 9 1.3.1 Steps in the Modeling Process 11 1.3.2 Mathematical Modeling Terminology and Approaches to Simulation 14 1.3.3 Modeling and Simulation Terminology 14 1.3.4 Example Applications of Modeling and Simulation 15 EXERCISES 17 REFERENCES 18 Chapter 2 Introduction to Programming Environments 21 2.1 THE MATLAB PROGRAMMING ENVIRONMENT 21 2.1.1 The MATLAB Interface 21 2.1.2 Basic Syntax 23 2.1.2.1 Variables and Operators 23 2.1.2.2 Keywords 25 2.1.2.3 Lists and Arrays 26 2.1.3 Common Functions 28viii Contents 2.1.4 Program Execution 28 2.1.5 Creating Repeatable Code 29 2.1.6 Debugging 30 2.2 THE PYTHON ENVIRONMENT 30 2.2.1 Recommendations and Installation 30 2.2.2 The Spyder Interface 31 2.2.3 Basic Syntax 32 2.2.3.1 Variables and Operators 32 2.2.3.2 Keywords 34 2.2.3.3 Lists and Arrays 35 2.2.4 Loading Libraries 38 2.2.5 Common Functions 39 2.2.6 Program Execution 40 2.2.7 Creating Repeatable Code 40 2.2.8 Debugging 41 EXERCISES 42 Chapter 3 Deterministic Linear Models 45 3.1 SELECTING A MATHEMATICAL REPRESENTATION FOR A MODEL 45 3.2 LINEAR MODELS AND LINEAR EQUATIONS 46 3.3 LINEAR INTERPOLATION 49 3.4 SYSTEMS OF LINEAR EQUATIONS 51 3.5 LIMITATIONS OF LINEAR MODELS 51 EXERCISES 52 REFERENCES 53 Chapter 4 Array Mathematics in MATLAB and Python 55 4.1 INTRODUCTION TO ARRAYS AND MATRICES 55 4.2 BRIEF OVERVIEW OF MATRIX MATHEMATICS 56 4.3 MATRIX OPERATIONS IN MATLAB 58 4.4 MATRIX OPERATIONS IN PYTHON 59 EXERCISES 60Contents ix Chapter 5 Plotting 61 5.1 PLOTTING IN MATLAB 61 5.2 PLOTTING IN PYTHON 68 EXERCISES 76 Chapter 6 Problem Solving 79 6.1 OVERVIEW 79 6.2 BOTTLE FILLING EXAMPLE 80 6.3 TOOLS FOR PROGRAM DEVELOPMENT 81 6.3.1 Pseudocode 82 6.3.2 Top–Down Design 82 6.3.3 Flowcharts 83 6.4 BOTTLE FILLING EXAMPLE CONTINUED 84 EXERCISES 85 Chapter 7 Conditional Statements 87 7.1 RELATIONAL OPERATORS 87 7.2 LOGICAL OPERATORS 88 7.3 CONDITIONAL STATEMENTS 89 7.3.1 MATLAB 89 7.3.2 Python 92 EXERCISES 95 Chapter 8 Iteration and Loops 97 8.1 FOR LOOPS 97 8.1.1 MATLAB Loops 97 8.1.2 Python Loops 98 8.2 WHILE LOOPS 99 8.2.1 MATLAB While Loops 99 8.2.2 Python While Loops 99 8.3 CONTROL STATEMENTS 100 8.3.1 Continue 100 8.3.2 Break 100 EXERCISES 100x Contents Chapter 9 Nonlinear and Dynamic Models 101 9.1 MODELING COMPLEX SYSTEMS 101 9.2 SYSTEMS DYNAMICS 101 9.2.1 Components of a System 102 9.2.2 Unconstrained Growth and Decay 104 9.2.2.1 Unconstrained Growth Exercises 106 9.2.3 Constrained Growth 108 9.2.3.1 Constrained Growth Exercise 110 9.3 MODELING PHYSICAL AND SOCIAL PHENOMENA 111 9.3.1 Simple Model of Tossed Ball 112 9.3.2 Extending the Model 113 9.3.2.1 Ball Toss Exercise 114 REFERENCES 115 Chapter 10 Estimating Models from Empirical Data 117 10.1 USING DATA TO BUILD FORECASTING MODELS 117 10.1.1 Limitations of Empirical Models 118 10.2 FITTING A MATHEMATICAL FUNCTION TO DATA 120 10.2.1 Fitting a Linear Model 122 10.2.2 Linear Models with Multiple Predictors 125 10.2.3 Nonlinear Model Estimation 126 10.2.3.1 Limitations with Linear Transformation 130 10.2.3.2 Nonlinear Fitting and Regression 130 10.2.3.3 Segmentation 131 EXERCISES 131 FURTHER READINGS 132 REFERENCES 132 Chapter 11 Stochastic Models 133 11.1 INTRODUCTION 133 11.2 CREATING A STOCHASTIC MODEL 134Contents xi 11.3 RANDOM NUMBER GENERATORS IN MATLAB AND PYTHON 136 11.4 A SIMPLE CODE EXAMPLE 137 11.5 EXAMPLES OF LARGER SCALE STOCHASTIC MODELS 139 EXERCISES 142 FURTHER READINGS 143 REFERENCES 143 Chapter 12 Functions 145 12.1 MATLAB FUNCTIONS 145 12.2 PYTHON FUNCTIONS 147 12.2.1 Functions Syntax in Python 147 12.2.2 Python Modules 148 EXERCISES 149 Chapter 13 Verification, Validation, and Errors 151 13.1 INTRODUCTION 151 13.2 ERRORS 152 13.2.1 Absolute and Relative Error 152 13.2.2 Precision 153 13.2.3 Truncation and Rounding Error 153 13.2.4 Violating Numeric Associative and Distributive Properties 155 13.2.5 Algorithms and Errors 155 13.2.5.1 Euler’s Method 156 13.2.5.2 Runge–Kutta Method 158 13.2.6 ODE Modules in MATLAB and Python 159 13.3 VERIFICATION AND VALIDATION 159 13.3.1 History and Definitions 160 13.3.2 Verification Guidelines 162xii Contents 13.3.3 Validation Guidelines 163 13.3.3.1 Quantitative and Statistical Validation Measures 164 13.3.3.2 Graphical Methods 166 EXERCISES 166 REFERENCES 167 Chapter 14 Capstone Projects 169 14.1 INTRODUCTION 169 14.2 PROJECT GOALS 170 14.3 PROJECT DESCRIPTIONS 171 14.3.1 Drug Dosage Model 171 14.3.2 Malaria Model 172 14.3.3 Population Dynamics Model 174 14.3.4 Skydiver Project 176 14.3.5 Sewage Project 178 14.3.6 Empirical Model of Heart Disease Risk Factors 180 14.3.7 Stochastic Model of Traffic 180 14.3.8 Other Project Options 181 REFERENCE 181 INDEX, 183 Index Note: Page numbers followed by f and t refer to figures and tables, respectively. 2D plotting, 61 command, 61, 68 in MATLAB, 62f in Python, 69f tools and functions, 68 2005 Toyota Avalon, design, 9 A abs() function, 28t, 39t Absolute error, 152–153, 164 Acceleration (a), 113–114, 176 Algorithms and errors, 155–159 Euler’s method, 156–158 vs. analytic solution, 157f RK4 method, 158–159 American Society of Mechanical Engineers (ASME), 161 Anaconda, programming language, 31, 68 Array, 26 lists and, 35–38 MATLAB and Python, 55–60 arrays and matrices, 55–56 matrix mathematics, 56–58 one-dimensional, 27, 36 Python, 37 two-dimensional, 27, 36 array() function, 37 ASME (American Society of Mechanical Engineers), 161 Axis function, 68, 75 B Ball toss exercise, 114–115 Biochemical oxygen demand (BOD), 178 BlenX, programming language, 141 Blood plasma, 171–172 Blue Waters, 7 BOD (biochemical oxygen demand), 178 Break command, 100 Breakpoints, 30, 41 Brownian motion, 141 Built-in functions, 127 MATLAB, 28t Python, 39t Business systems model, 102 C Calculation verification, 161 Capstone projects, 169–181 descriptions, 171–181 drug dosage model, 171–172, 171f heart disease risk factors, empirical model, 180 malaria model, 172–174, 173f options, 181 population dynamics model, 174–176, 174f, 175f sewage project, 178–179, 178f skydiver project, 176–177 traffic, stochastic model, 180–181 goals, 170–171 overview, 169–170184 Index Carbon dioxide, 107 Carrying capacity (C), 109 Centers for Disease Control and Prevention, 172, 180 Cmap, 12, 12f Code verification, 161 Coefficient of determination, 124–125, 165 Coin toss simulation, 138 colon() function, 27 Command Window MATLAB, 22 programs execution, 29 run command, 30 Spyder, 31 variable, 24 Computational modeling, 1–17 computational science importance, 1–3 modeling process, 9–17 mathematical modeling terminology, 14 and simulation terminology, 14–15 steps in, 11–14, 11f in science and engineering, 3–9 Computational science, 1–3 variables in, 24, 34 Computer power and scientific modeling, 4t, 5t–6t Concept map/concept-mapping, 12 drug dosage model, 171, 171f Moose–Wolf population dynamics, 175f tools, 12 Conceptual model, 12, 160 Conditional statements, 87–94 logical operators, 88 MATLAB, 89–92 Python, 92–94 relational operators, 87–88 Constrained growth, 108–111 exercises, 110–111, 111t Continue command, 100 Continuous model, 15 Control statements, 100 Cosmic rays, 107 Cray-1 supercomputer, 2 D Def keyword, 147 Del command, 33 Demographer forecasting, 106 Deoxygenation rate, 178 Department of Defense (DoD), 161 Deterministic linear models, 45–52 linear interpolation, 49–51, 50t linear models/linear equations, 46–49 limitations, 51–52 systems, 51 mathematical representation, 45–46 observe/experiment, 45 screening model, 45 Deterministic model, 14–16, 163 disp() function, 28t Dissolved oxygen (DO), 178–179 divmod() function, 39t DO (dissolved oxygen), 178–179 DoD (Department of Defense), 161 Drag coefficient (Cd), 114 Drug dosage model, 171–172 concept map, 171f Drug screening, 8 Dynamic model, 15–16 nonlinear and, 101–115 E Empirical data, estimating model, 117–131 build forecasting models, 117–120 limitations, 118–120 fitting mathematical function to data, 120–131 fitting linear model, 122–125 linear models with multiple predictors, 125–126 nonlinear model estimation, 126–131 ENIAC, computer, 3, 7 Errors, scientific research and modeling, 152–159 absolute and relative, 152–153 algorithms and, 155–159 Euler’s method, 156–158 RK4 method, 158–159Index 185 numeric associative and distributive properties, violation, 155 ODE Modules in MATLAB and Python, 159 precision, 153 truncation and rounding, 153–155 Euler’s method, 156–158 vs. analytic solution, 157f Exogenous parameters, 102 Exponential function, 104, 106 Extending model, 113–115 ball toss exercise, 114–115 eye() function, 27, 37 F F distribution, 124 Figure function, 74 Fitted regression line and residuals, 123f float() function, 39t Flowchart(s), 83–84 bottle filling, 85f if-elif-else, 93, 93f if-elseif-else-end, 90, 90f symbols, 84f tipping, 91f, 94f Force of drag (Fd), 114 For loop, 97–99 MATLAB, 97–98 Python, 98–99 Forrester, Jay, 101, 108–109 Free and Open-Source Software (FOSS), 30 Frictional force, 114 Function(s), 145–149 2D plotting tools and, 68 abs(), 28t, 39t array(), 37 axis, 68, 75 built-in, 127 MATLAB, 28t Python, 39t colon(), 27 curve_fit, 130 disp(), 28t divmod(), 39t exponential, 104, 106 eye(), 27, 37 figure, 74 float(), 39t globals(), 39t legend, 68, 76 linspace(), 27, 37 MATLAB, 145–147 ones(), 27, 37 open(), 28t, 39t plot/plotting, 63, 64f, 70, 73f, 74 print(), 39t Python, 147–149 code reusability, 148 modules, 148–149 syntax, 147–148 variable-length argument lists, 148 title, 68, 75 G Galaxy formation, 8 Gametocytes, 172–173 Generalized linear model, 130 globals() function, 39t Guidelines, 162–166 validation, 163–166 graphical methods, 166 quantitative and statistical validation measures, 164–166 verification, 162–163 H Healthy villagers, 173 Heart disease risk factors, empirical model, 180 Helloworld.m file, 22, 29 Hold command, 66, 67f Household heating system, 102 Human-managed systems, 108 I IBI (index of biotic integrity), 121, 122f Identity matrix, 57–58 IDEs. See Integrated development environments (IDEs) If-elif-else flowchart, 93, 93f186 Index If-elseif-else-end flowchart, 89–90, 90f If statements, 89 Immune villagers, 173 Index of biotic integrity (IBI), 121, 122f Industrial Dynamics (book), 101 Integrated development environments (IDEs), 30 free, 30 Spyder, 31 Intersection conflict time delays and probabilities, 135t int() function, 39t iPhone 5s, 2 IPython, 31, 38, 40, 68, 69f Isle Royale, 174 K Keywords, 25, 34 MATLAB, 25–26, 25t Python, 34–35, 35t L Legend function, 68, 76 len() function, 39t Libby, Willard, 107 Light intensity, 61, 68, 126, 127f The Limits to Growth (book), 108 Linear equation, 47, 48f, 49 Linear interpolation, 49–51, 50t Linear model, 47–48 coefficients, 125 fitting, 122–125, 124t generalized, 130 with multiple predictors, 125–126 spring, 48 standard, 129 Linear regression, 122, 124, 127 Linear transformation limitations, 130 nonlinear data, 126t Line specifiers, 63, 70 in MATLAB, 63, 64f in Python, 70, 71f linspace() function, 27, 37 Llight, variable, 127 Local variables, 24, 33 Logical operators, 88 Lotka–Volterra equation, 175 Low sampling resolution in MATLAB, 65f in Python, 73f M Malaria model, 172–174, 173f Mantissa, 153 Mathematical model(ing), 10, 14, 172 MATLAB/MATLAB, 23–24 2D plot, 62f built-in functions, 28t code, 121 coin toss simulation, 138 Command Window, 22 conditional statements, 89–92 curve_fit functions, 130 curve fitting app, 129f functions, 145–147 hello world script, 29f keywords, 25–26 reserved, 25t linear/nonlinear model, procedures, 128t line specifiers, 63, 64f loops, 97–98 low sampling resolution, 65f mathematic operators, 24t, 25t matrix operations in, 58–60 plotting in, 61–68, 66f programming environment, 21–30 basic syntax, 23–28, 24t, 25t breakpoints, 30 built-in functions, 28t Command Window, 22 debugging, 30 defined, 21, 23 interface, 21–22, 22f program execution, 28–29 repeatable code creation, 29–30 reserved keywords, 25t scalar operation in, 24–25 and Python array mathematics, 55–60 ODE modules, 159, 159t random number generators, 136–137, 137tIndex 187 R2016a, 21 while loops, 99 Matplotlib, 68, 74 Matrix, 27, 36 algebra, 55 identity, 57–58 mathematics, 56–58 in MATLAB, operations, 58–60 addition/subtraction, 58 multiplication, 57, 59–60 in Python, operations, 59–60 addition, 59 import numpy as np, 59 subtraction, 59 max() function, 28t, 39t Mind Map Maker, 12, 13f min() function, 28t, 39t Mississippi River Basin Model, 10, 10f Model(ing), 9–17 auto manufacturers, 9 business systems, 102 classification, 14–15 complex systems, 101 computational. See Computational modeling computer power and scientific, 4t, 5t–6t conceptual, 12, 160 continuous, 15 deterministic, 14–16, 163 linear. See Deterministic linear models drug dosage, 171–172, 171f dynamic, 15–16 nonlinear, 101–115 empirical data, estimating. See Empirical data, estimating model generalized linear, 130 heart disease risk factors, empirical, 180 linear, 47–48 coefficients, 125 fitting, 122–125 generalized, 130 with multiple predictors, 125–126 spring, 48 standard, 129 malaria, 172–174, 173f mathematical, 10, 14 Mississippi River Basin, 10, 10f molecular, 9 multiple regression, 180 nonlinear and dynamic, 101–115 modeling complex systems, 101 physical and social phenomena, 111–115 systems dynamics, 101–111 one-compartment, 172 physical, 9–10 physical and social phenomena, 111–115 extending model, 113–115 tossed ball, model, 112–113 population dynamics, 174–176, 174f, 175f predator–prey, 110, 174–175, 174f initial parameters, 111t probabilistic, 14 regression, 130 screening, 46 spatial, 102 steady-state, 15 steps in, 11–14, 11f computer model creation, 13 conceptual model, 12 partial concept map, 12, 12f partial mind map, 12f, 13 problem analyze and objective, 11–12 simplifying assumptions, 13 stochastic, 17, 133–141 creation, 134–136 definition, 133 larger scale, example of, 139–141 random number generators, 136–134 simple code example, 137–139 traffic, 180–181 Streeter–Phelps, 178 systems dynamics, 16–17 Modeling and simulation (M&S), 8, 161 application, 15–17 benefits, 9 terminology, 14–15 concepts and, 160f188 Index mod() function, 28t Modules, 38 Math and SciPy, 127 Python, 148–149 and MATLAB, ODE, 159 Molecular modeling, 9 Monte Carlo modeling, 139–140 Moose–Wolf population dynamics, 175, 175f M&S. See Modeling and simulation (M&S) Mules, 9 Multiple regression, 126 model, 180 Municipal sewage treatment plants, 178 N Newton’s second law of motion, 113–114, 176 Nonlinear model and dynamic, 101–115 modeling complex systems, 101 physical and social phenomena, 111–115 systems dynamics, 101–111 estimation, 126–131, 126t limitations with linear transformation, 130 nonlinear fitting/regression, 130–131 segmentation, 131 Numerical errors, 155 Numeric associative and distributive properties, 155 NumPy, library, 36–37, 137 O Object-oriented programming, 145 ODE. See Ordinary differential equation (ODE) One-compartment model, 172 One-dimensional array, 27, 36 ones() function, 27, 37 open() function, 28t, 39t Operators “:”, 27 logical, 88 MATLAB, 24–25, 24t Python, 34 mathematic, 34t relational, 87–88 variable and, 23–25, 32–34 Optional starting code, 170–171 Ordinary differential equation (ODE), 158 in MATLAB and Python, 159 modules, 158 solvers in, 159t Oxygen sag curve, 178, 179f P Partial concept/mind map, 12–13, 12f Pass by reference, 147 Pass by value, 146 Physical and social phenomena, modeling, 111–115 extending model, 113–115 ball toss exercise, 114–115 tossed ball, model, 112–113 Plot function, 63, 70, 73f, 74 Plotting, 61–76 in MATLAB, 61–68, 62f 2D plot command, 61, 62f function ploting, 64f help plot command, 63 hold command, 66, 67f line specifiers, 63, 64f low sampling resolution, 65f multiple curves in single plot, 66f in Python, 68–76 2D plot, 69f IPython graphics backend setting, 69f line specifiers, 70, 71f matplotlib, 68 multiple curves, 74f multiple plot commands, 75f simple plot, 71f Population dynamics model, 174–176, 174f, 175f Precision, 153 Predator–prey model, 110, 174 classic, 175 initial parameters, 111t with Yellowstone National Park, 174f print() function, 39t Probabilistic model, 14–15 Problem solving, 79–85Index 189 bottle filling example, 80–81, 84–85, 85f overview, 79–80 program development, tools, 81–84 flowchart, 83–84, 84f pseudocode, 82 top–down design, 82–83 Pseudocode, 82 Python, 92–94, 137 array, 37. See also Array, MATLAB and Python code, 122, 138 conditional statements, 92–94 environment, 30–42 code libraries, 38 debugging, 41–42 defined, 30 keywords, 34–35 libraries, 38–39 lists and arrays, 35–39 mathematic operators, 34t program execution, 40 recommendations and installation, 30–31 repeatable code creation, 40, 41f reserved keywords, 35t Spyder interface, 31–32, 31f variables and operators, 32–34 functions, 147–149 built-in, 39t code reusability, 148 modules, 148–149 syntax, 147–148 title, 75 variable-length argument lists, 148 hello world script, 41f keywords, 34–35 reserved, 35t line specifiers, 70, 71f for loop, 98–99 low sampling resolution in, 73f MATLAB/MATLAB ODE modules, 159, 159t random number generators, 136–137, 137t matrix operations in, 59–60 addition, 59 import numpy as np, 59 modules, 148–149 operators, 34, 34t plotting in, 68–76 2D plot, 69f IPython graphics backend setting, 69f line specifiers, 70, 71f matplotlib, 68 multiple curves, 74f multiple plot commands, 75f simple plot, 71f procedures, 128t variables, 32–33 while loops, 99 Q Quantitative and statistical validation measures, 164–166 R R 2 (R squared), 124 Radiocarbon age, 107 range() function, 39t, 98 Regression model, 130, 166 Relational operators, 87–88 Relative error, 152–153, 164–165 Return keyword, 147 RK4 (Runge–Kutta 4) method, 158–159 RMSE (root mean square error), 165 Rng command, 137 Root mean square error (RMSE), 165 Rounding error, 153–154 R squared (R2), 124 Runge–Kutta 4 (RK4) method, 158–159 S Scalar variable, 24 Scipy.integrate.odeint, 159, 159t Scope, 24, 33 Screening model, 46 Segmentation, 131 Sewage project, 178–179, 178f SIAM (Society for Industrial and Applied Mathematics), 2 Sick villagers, 173190 Index Simulation coin toss, MATLAB and Python code, 138 computer, 155, 160 defined, 1, 14 Hooke’s Law (HTML5), 49 modeling and, 14–15 applications, 15–17 concepts and terminology, 160f terminology and approaches, mathematical, 14 society, 160 Single precision numbers, 153, 155 size() function, 28t Skydiver project, 176–177 Slices, array, 28, 38 Society for Industrial and Applied Mathematics (SIAM), 2 Spatial model, 102 Sporozoites, 172–173 Spring constant, 49 Spyder, 30–31 advantage over testing code, 41 Editor, 40 interface, 31–32 default, 31f stats() functions, 145–146, 148 Steady-state model, 15 Stochastic models, 17, 133–141, 165 creation, 134–136 definition, 133 larger scale, example of, 139–141 MATLAB and Python, random number generators, 136–137, 137t overview, 133–134 simple code example, 137–139 traffic, 180–181 Streeter–Phelps model and formulation, 178–179 Supercomputers, 1–2, 8 Cray-1, 2 Switch-case structures, 91–92 Systems dynamics, 101–111 components, 102–104 constrained growth, 108–111 exercises, 110–111, 111t models, 16–17 unconstrained growth and decay, 104–108, 105f exercises, 106–108 T Thermostat control, 102–103 Tipping flowchart, 91f, 94f Title function, 68, 75 Top–down design, 82–83 Toxic effect, 172 Traffic control devices, 13, 180 Truck loading data, 47t Truncation code, 154 error, 153, 155 rounding, 153–155 Truncation.m/truncation.py program, 154 T test, 124 Tuple, 148 Two-dimensional array, 27, 36 U Unconstrained growth and decay, 104–108, 105f exercises, 106–108 Uniform random number scheme, 135 V Varargin and varargout, variables, 146 Variable(s), 147–148 Command Window, 24 in computational science, 24, 34 Explorer button, 32 homogeneous, 24 llight, 127 local, 24, 33 MATLAB, 23–24 operators and, 23–25, 32–34 Python, 32–33 scalar, 24 varargin and varargout, 146 Vector, 27, 36 Vector-borne disease, 172Index 191 Velocity, 113 Verification and validation (V&V), 159–166 definition, 152, 160 guidelines, 162–166 graphical methods, 166 quantitative and statistical validation measures, 164–166 overview, 160–162 Verification, validation, and accreditation (VV&A), 161 von Neumann, John, 3 V&V. See Verification and validation (V&V) VV&A (verification, validation, and accreditation), 161 W While loops, MATLAB and Python, 99 whos() function, 28t Y Yellowstone National Park, 174, 174f Z Zero-indexed array, 37–38 zeros() function, 27, 37 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Introduction to Modeling and Simulation with MATLAB and Python رابط مباشر لتنزيل كتاب Introduction to Modeling and Simulation with MATLAB and Python
|
|