Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Hydraulics & Fluid Mechanics - including Hydraulics Machines الإثنين 08 أغسطس 2022, 7:51 am | |
|
أخواني في الله أحضرت لكم كتاب Hydraulics & Fluid Mechanics - including Hydraulics Machines (In SI Units) By Dr. P.N. Modi B.E., M.E., Ph.D Former Professor ofCivil Engineering, M.R. Engineering College, (Now M.N.I.T), Jaipur Formerly Principal, Kautilya Institute ofTechnology and Engineering, Jaipur and Dr. S.M. Seth B.E., M.E., M.I.E., Ph.D (Manchester) Former Director, National Institute ofHydrology, Roorkee Presently Principal, Kautilya Institute ofTechnology and Engineering, Jaipur
و المحتوى كما يلي :
Contents CHAPTER 1. PROPERTIES OF FLUIDS 1-35 1.1 Introduction 1 1.2 Definition of a Fluid 2 1.3 Development of Fluid Mechanics 2 1.4 Units of Measurement 3 1.5 Mass Density, Specific Weight, Specific Volume 7 1.6 Specific Gravity 8 1.7 Equation of State: The Perfect Gas 9 1.8 Viscosity 10 1.9 Vapour Pressure 12 1.10 Compressibility and Elasticity 13 1.11 Surface Tension and Capillarity 14 Sumary ofMain Points 33 Problems 34 CHAPTER 2. FLUID PRESSURE AND ITS MEASUREMENT 36-92 2.1 Fluid Pressure at a Point 36 2.2 Variation of Pressure in a Fluid 36 2.3 Equilibrium of a Compressible Fluid—Atmospheric Equilibrium 40 2.4 Pressure, Same in all Directions — Pascal’s Law 47 2.5 Atmospheric, Absolute, Gage and Vacuum Pressures 48 2.6 Mesurement of Pressure 49 2.7 General Comments on Connections for Manometers and Gages 65 Sumary ofMain Points 89 Problems 90 CHAPTER 3. HYDROSTATICFORCES ON SURFACES 93-154 3.1 Total Pressure and Centre of Pressure 93 3.2 Total Pressure on a Plane Surface 93vi J Contents 3.3 Pressure Diagram 102 3.4 Total Pressure on Curved Surface 103 3.5 Practical Applications of Total Pressure and Centreof Pressure 105 Sumary ofMain Points 151 Problems 152 CHAPTER 4. BUOYANCY AND FLOATATION 155-189 4.1 Buoyancy, Buoyant Force and Centre of Buoyancy 155 4.2 Metacentre and Metacentric Height 157 4.3 Stability of Submerged and Floating Bodies 158 4.4 Determination of Metacentric Height 161 4.5 Metacentric Height for Floating Bodies Containing Liquid 165 4.6 Time Period of Transverse Oscillation of a Floating Body 166 Sumary ofMain Points 187 Problems 188 CHAPTER 5. LIQUIDS IN RELATIVE EQUILIBRIUM 190-228 5.1 Introduction 190 5.2 Fluid Mass Subjected to Uniform Linear Acceleration 190 5.3 Liquid Containers Subjected to Constant Horizontal Acceleration 193 5.4 Liquid Containers Subjected to Constant Vertical Acceleration 196 5.5 Fluid Containers Subjected to Constant Rotation 199 Sumary ofMain Points 227 Problems 227 CHAPTER 6. FUNDAMENTALS OF FLUID FLOW 229-285 6.1 Introduction 229 6.2 Velocity of Fluid Particles 229 6.3 Types of Fluid Flow 231 6.4 Description of the Flow Pattern 234 6.5 Basic Principles of Fluid Flow 236 6.6 Continutty Equation 236 6.7 Acceleration of a Fluid Particle 246 6.8 Rotational and Irrotational Motions 251 6.9 Circulation and Vorticity 254 6.10 Velocity Potential 256 6.11 Stream Function 257 6.12 Streamlines, Equipotential Lines and Flow Net 260 6.13 Methods of Drawing Flow Nets 262 6.14 Use of the Flow Net 263 6.15 Limitations of Flow Net 265 Sumary ofMain Points 281 Problems 284 Final Proof/24.10.2009Contents vii CHAPTER 7. EQUATIONS OF MOTION AND ENERGY EQUATION 286-350 7.1 Introduction 286 7.2 Forces Acting on Fluid in Motion 287 7.3 Euler‘s Equation of Motion 288 7.4 Integration of Euler’s Equations 291 7.5 Bernoulli’s Equation from the Principle of Conservation of Energy 297 7.6 Kinetic Energy Correction Factor 301 7.7 Bernoulli’s Equation for a Compressible Fluid 302 7.8 Pressure Velocity Realationship 304 7.9 Applications of Bernoulli’s Equation 305 7.10 Venturi Meter 305 7.11 Orifice Meter 310 7.12 Nozzle Meter or Flow Nozzle 313 7.13 Other Flow Measurement Devices 313 7.14 Pitot Tube 314 7.15 Free Liquid Jet 317 7.16 Vortex Motion 319 7.17 Radial Flow or Radial Motion 323 7.18 Spiral Vortex Motion 326 Sumary ofMain Points 345 Problems 348 CHAPTER 8. IMPULSE MOMENTUM EQUATION AND ITS APPLICATIONS 351-382 8.1 Introduction 351 8.2 Impulse-momentum Equations 351 8.3 Momentum Correction Factor 354 8.4 Applications of the Impulse-MomentumEquation 355 8.5 Force on a Pipe Bend 355 8.6 Jet Propulsion—Reaction of Jet 357 8.7 Momentum Theory of Propellers 362 8.8 Angular Momentum Principle—Momentof Momentum Equation 365 Sumary ofMain Points 380 Problems 381 CHAPTER 9. FLOW THROUGH ORIFICES AND MOUTHPIECES 383-453 9.1 Definition 383 9.2 Classifications of Orifices and Mouthpieces 383 9.3 Sharp-edged Orifice Discharging Free 384 9.4 Experimental Determination of the Coefficients for an Orifice 388 9.5 Flow Through Large Vertical Orifice 394 9.6 Flow Under Pressure Through Orifices 398 9.7 Flow Through Submerged (or Drowned)Orifice 398 Final Proof/24.10.2009viii Contents 9.8 9.9 Energy or Head Losses of Flowing Liquid Due to Sudden Change in Velocity Flow Through an External Cylindrical Mouthpiece 400 407 9.10 Flow Through A Convergent Divergent Mouthpiece 411 9.11 Flow Through Internal or Re-Entrant or Borda’s Mouthpiece 413 9.12 Flow Through an Orifice or a Mouthpiece Under Variable Heads 416 9.13 Flow of Liquid From one Vessel to Another 421 9.14 Time of Emptying and Filling of a Canal Lock 423 Sumary ofMain Points 449 Problems 452 CHAPTER 10. FLOW OVER NOTCHES AND WEIRS 454-493 10.1 Introduction 454 10.2 Classification of Notches and Weirs 454 10.3 Flow Over a Rectangular Sharp-Crested Weir or Notch 455 10.4 Calibration of Rectangular Weir or Notch 458 10.5 Empirical Fomula for Discharge over Rectangular Weirs 459 10.6 Ventilation of Weirs 461 10.7 Flow Over a Triangular Weir (v-Notch Weir) or Triangular Notch (v-Notch) 463 10.8 Flow Over a Trapezoidal Weir or Notch 465 10.9 Time Required to Empty a Reservoir with Rectangular Weir 467 10.10 Effect on Computed Discharge over a weir or Notch Due to Error in the Measurement of Head 469 10.11 Broad Crested Weir 470 10.12 Submerged Weirs 472 10.13 Spillway and Siphon Spillway 473 10.14 Proportional Weir or Sutro Weir 475 Sumary ofMain Points 490 Problems 492 CHAPTER 11. FLOW THROUGH PIPES 494-566 11.1 Introduction 494 11.2 Two Types of Flow—Reynolds’ Experiment 494 11.3 Laws of Fluid Friction 497 11.4 Froude’s Experiments 498 11.5 Equation for Head Loss in Pipes Due to Friction—Darcy-Weisbach Equation 499 11.6 Other Formulae for Head Loss Due to Friction in Pipes 500 11.7 Other Energy Losses in Pipes 502 11.8 Hydraulic Grade Line and Energy Grade Line 503 11.9 Flow Through Long Pipes 507 11.10 Pipes in Series or Compound Pipe 508 11.11 Equivalent Pipe 509 11.12 Pipes in Parallel 510 11.13 Flow Through a Bye-Pass 511 Final Proof/24.10.2009Contents 1 ix 11.14 Branched Pipes 512 11.15 Siphon 515 11.16 Loss of Head Due to Friction in Tapering Pipe 517 11.17 Loss of Head Due to Friction in a Pipe with Side Tappings 519 11.18 Time of Emptying a Reservoir Through Pipe 520 11.19 Transmission of Power Through Pipes 522 11.20 Flow Through Nozzle at the end of Pipe 523 11.21 Water Hammer in Pipes 526 11.22 Pipe Networks 531 Sumary ofMain Points 560 Problems 564 CHAPTER 12. BOUNDARY LAYER THEORY 567-600 12.1 Introduction 567 12.2 Thickness of Boundary Layer 567 12.3 Boundary Layer along a Long Thin Plate and its Characteristics 569 12.4 Boundary Layer Equations 571 12.5 Momentum Integral Equation of the Boundary Layer 574 12.6 Laminar Boundary Layer 577 12.7 Turbulent Boundary Layer 580 12.8 Laminar Sublayer 582 12.9 Boundary Layer on Rough Surfaces 582 12.10 Separation of Boundary Layer 583 12.11 Methods of Controlling the Boundary Layer 585 12.11.1 Motion of Solid Boundary 585 12.11.2 Acceleration of the Fluid in the Boundary Layer 585 12.11.3 Suction of the Fluid from the Boundary Layer 586 12.11.4 Streamlining of Body Shapes 586 Sumary ofMain Points 598 Problems 600 CHAPTER 13. LAMINAR FLOW 601-657 13.1 Introduction 601 13.2 Relation between Shear and Pressure Gradients in Laminar Flow 601 13.3 Steady Laminar Flow in Circular Pipes—Hagen-Poiseuille Law 603 13.4 Laminar Flow Through Inclined Pipes 608 13.5 Laminar Flow Through Annulus 610 13.6 Laminar Flow between Parallel Plates-Both Plates at Rest 612 13.7 Laminar Flow between Parallel Flat Plates—one Plate Moving and Other at Rest—Couette Flow 615 13.8 Laminar Flow of Fluid in an Open Channel 619 13.9 Laminar Flow Through Porous Media 620 13.10 Laminar Flow Around a Sphere—Stokes’ Law 622 13.11 Lubrication Mechanics 623 Final Proof/24.10.2009X J Contents 13.11.1 Slipper Bearing 623 13.11.2 Journal Bearing 627 13.11.3 Properties of Lubricant 629 13.1 2 Dash-Pot Mechanism 630 13.1 3 Measurement of Viscosity—Viscometers 633 Sumary ofMain Points 653 Problems 656 CHAPTER 14. TURBULENT FLOW IN PIPES 658-700 14.1 Introduction 658 14.2 Shear Stresses in Turbulent Flow 658 14.3 Formation of Boundary Layer in Pipes—Establishment of Flow in Pipes 661 14.4 Hydrodynamically Smooth and Rough Boundaries 662 14.5 Velocity Distribution for Turbulent Flow in Pipes 663 14.6 Velocity Distribution for Turbulent Flow in Hydrodynamically Smooth and Rough Pipes—Karman Prandtl Velocity Distribution Equation 665 14.7 Velocity Distribution Equation for Turbulent Flow in Terms of Mean Velocity, for Smooth and Rough Pipes 669 14.8 Resistance to Flow of Fluid in Smooth and Rough Pipes 671 14.9 Types of Problems in Pipeline Designs 679 14.10 Friction in Non-Circular Conduits 679 Sumary ofMain Points 698 Problems 700 CHAPTER 15. FLOW IN OPEN CHANNELS 701-781 15.1 Introduction 701 15.2 Types of Flow in Channles 702 15.3 Geometrical Properties of Channel Section 703 15.4 Velocity Distribution in a Channel Section 705 15.5 Uniform Flow in Channles 706 15.6 Most Economical or Most Efficient Section of Channel 711 15.7 Open Channel Section for Constant Velocity at all Depths of Flow 719 15.8 Computation of Uniform Flow 721 15.9 Specific Energy and Critical Depth 722 15.10 Momentum in Open-Channel Flow-Specific Force 725 15.11 Critical Flow and its Computation 727 15.12 Application of Specific Energy and Discharge Diagrams to Channel Transitions 731 15.13 Metering Flumes 735 15.14 Determination of Mean Velocity of Flow in Channels 738 15.15 Practical Channel Sections 740 15.16 Measurement of Discharge in Rivers 741 Sumary ofMain Points 777 Problems 779 Final Proof/24.10.2009Contents 1 xi CHAPTER 16. NON-UNIFORM FLOW IN CHANNELS 782-835 16.1 Introduction 782 16.2 Gradually Varied Flow 782 16.3 Classification of Channel Bottom Slopes 788 16.4 Classification of Surface Profiles 789 16.5 Characteristics of Surface Profiles 790 16.6 Integration of the Varied Flow Equation 796 16.7 Hydraulic Jump 800 16.8 Location of Hydraulic Jump 805 16.9 Surges in Open Channels 808 Sumary ofMain Points 833 Problems 834 CHAPTER 17. DIMENSIONAL ANALYSIS, HYDRAULIC SIMILITUDE AND MODEL INVESTIGATION 836-891 17.1 Introduction 836 17.2 Dimensions 836 17.3 Dimensional Homogeneity 840 17.4 Methods of Dimensional Analysis 842 17.5 Outline of Procedure for Buckingham Method 846 17.6 Number of Dimensionless Groups in a Complete Set of Variables 847 17.7 Superfluous and Omitted Variables 849 17.8 Use of Dimensional Analysis in Presenting Experimental Data 850 17.9 Model Investigation 851 17.10 Similitude—Types of Similarties 852 17.11 Force Ratios—Dimensionless Numbers 855 17.12 Similarity Laws or Model Laws 857 17.13 Types of Models 860 17.14 Merits and Limitations of Distorted Models 861 17.15 Scale Effect in Models 861 17.16 Application of Dynamic Similarity to Specific Model Investigations 862 Sumary ofMain Points 888 Problems 889 CHAPTER 18. FLUID FLOW AROUND SUBMERGED OBJECTS—DRAG AND LIFT 892-937 18.1 Introduction 892 18.2 Types of Drag 895 18.3 Dimensional Analysis of Drag and Lift 898 18.4 Drag on a Sphere 899 18.5 Drag on a Cylinder 903 18.6 Drag on a Flat Plate 909 Final Proof/24.10.2009xii Contents 18.7 Drag on an Airfoil 910 18.8 Effect of Free Surface on Drag 911 18.9 Effect of Compressibility on Drag 912 18.10 Development of Lift on Immersed Bodies 914 18.11 Induced Drag on an Airfoil of Finite Length 924 18.12 Polar Diagram for Lift and Drag of an Airfoil 927 Sumary ofMain Points Problems CHAPTER 19. FLOW OF COMPRESSIBLE FLUIDS 935 936 938-977 19.1 Introduction 938 19.2 Basic Relationship of Thermodynamics 938 19.3 ContinuIty Equation 941 19.4 Momentum Equation 941 19.5 Energy Equation 941 19.6 Propagation of Elastic Waves Due to Compression of Fluid, Velocity of Sound 943 19.7 Mach Number and its Significance 945 19.8 Propagation of Elastic Waves Due to Disturbance in Fluid 946 19.9 Stagnation Pressure in Ccompressible Flows 947 19.10 19.11 Flow of Compressible Fluid with Negligible Friction Through a Pipe of varying Cross-section Flow of Compressible Fluid in Convergent—Divergent Passages 949 951 19.12 Normal Shock Waves 956 19.13 Measurement of Compressible Fluid Flow 958 Sumary ofMain Points Problems CHAPTER 20. IMPACT OF FREE JETS 974 976 978-1020 20.1 Introduction 978 20.2 Force Exerted by Fluid Jet on Stationary Flat Plate 978 20.3 Force Exerted by Fluid Jet on Moving Flat Plate 981 20.4 Force Exerted by a Fluid Jet on Stationary Curved Vane 985 20.5 Force Exerted by a Fluid Jet on Moving Curved Vane 989 20.6 Torque Exerted on a Wheel with Radial Curved Vanes 997 Sumary ofMain Points Problems CHAPTER 21. HYDRAULIC TURBINES 1017 1018 1021-1086 21.1 Introduction 1021 21.2 Elements of Hydroelectric Power Plants 1022 21.3 Head and Efficiencies of Hydraulic Turbines 1023 21.4 Classification of Turbines 1026 21.5 Pelton Wheel 1027 Final Proof/24.10.2009Contents | xiii 21.6 Work Done and Efficiencies of Pelton Wheel 1028 21.7 Working Proportions of Pelton Wheel 1032 21.8 Design of Pelton Turbine Runner 1033 21.9 Multiple Jet Pelton Wheel 1033 21.10 Radial Flow Impulse Turbine 1034 21.11 Reaction Turbines 1034 21.12 Francis Turbine 1035 21.13 Work Done and Efficiencies of Francis Turbine 1037 21.14 Working Proportions of Francis Turbine 1039 21.15 Design of Francis Turbine Runner 1039 21.16 Draft Tube Theory 1040 21.17 Shape of Francis Turbine Runner and Development of Kaplan Turbine Runner 1042 21.18 Kaplan Turbine 1043 21.19 Working Proportions of Kaplan Turbine 1044 21.20 New Types of Turbines 1045 21.21 Governing of Turbines 1047 21.22 Runaway Speed 1050 21.23 Surge Tanks 1050 Sumary ofMain Points Problems CHAPTER 22. PERFORMANCE OF TURBINES 1082 1084 1087-1130 22.1 Introduction 1087 22.2 Performance Under Unit Head—Unit Quantities 1087 22.3 Performance Under Specific Conditions 1090 22.4 Expressions for Specific Speeds in Terms of Known Coefficients for Different Turbines 1093 22.5 Performance Characteristic Curves 1096 22.6 Model Testing of Turbines 1101 22.7 Cavitation in Turbines 1105 22.8 Selection of Turbines 1107 Sumary ofMain Points Problems CHAPTER 23. RECIPROCATING PUMPS 1127 1129 1131-1176 23.1 Introduction 1131 23.2 Main Components and Working of a Reciprocating Pump 1131 23.3 Types of Reciprocating Pumps 1133 23.4 Work Done by Reciprocating Pump 1135 23.5 Coefficient of Discharge, Slip, Percentage Slip and Negative Slip of Reciprocating Pump 1137 23.6 23.7 Effect of Acceleration of Piston on Velocity and Pressure in the Suction and Delivery Pipes Indicator Diagrams 1137 1143 23.8 Air Vessels 1148 Final Proof/24.10.2009xiv Contents 23.9 23.10 Multi-Cylinder Pumps Operating Characteristic Curves of Reciprocaing Pumps Sumary ofMain Points Problems 1157 1157 1174 1175 CHAPTER 24. CENTRIFUGAL PUMPS 1177-1245 24.1 Introduction 1177 24.2 Advantages of Centrifugal Pumps over Reciprocating Pumps 1178 24.3 Component Parts of a Centrifugal Pump 1178 24.4 Working of Centrifugal Pump 1179 24.5 Types of Centrifugal Pumps 1181 24.6 Work done by the Impeller 1184 24.7 Head of Pump 1185 24.8 Losses and Efficiencies 1190 24.9 Minimum Starting Speed 1194 24.10 Loss of Head Due to Reduced or Increased Flow 1195 24.11 Diameters of Impeller and Pipes 1196 24.12 Specific Speed 1197 24.13 Model Testing of Pumps 1199 24.14 Pump in Series—Multi-Stage Pumps 1201 24.15 Pumps in Parallel 1202 24.16 Performance of Pumps—Characteristic Curves 1203 24.17 Limitation of Suction Lift 1206 24.18 Net Positive Suction Head (npsh) 1207 24.19 Cavitation in Centrifugal Pumps 1208 24.20 Computation of the Total Head of Pumping—System Head Curves 1209 24.20.1 Operating Point or Operating Range of a Centrifugal Pump 1210 24.20.2 Selection of a Pumping Unit 1212 24.20.3 Pumps Operated in Series 1212 24.20.4 Pumps Operated in Parallel 1213 24.21 Priming Devices 1214 24.22 Centrifugal Pump-Troubles and Remedies 1214 Sumary ofMain Points 1241 Problems 1243 CHAPTER 25. MISCELLANEOUS HYDRAULIC MACHINES 1246-1277 25.1 Introduction 1246 25.2 Hydraulic Accumulator—Simple and Differential Types 1246 25.3 Hydraulic Intensifier 1248 25.4 Hydraulic Press 1250 25.5 Hydraulic Crane 1251 25.6 Hydraulic Lift 1253 25.7 Hydraulic Ram 1254 Final Proof/24.10.2009Contents I xv 25.8 Hydraulic Couplings and Torque Converters 1257 25.9 Air Lift Pump 1259 Sumary ofMain Points 1275 Problems 1276 CHAPTER 26. ELEMENTS OF HYDROLOGY 1278-1297 26.1 Definition 1278 26.2 The Hydrologic Cycle 1278 26.3 Precipitation 1279 26.4 Measurement of Rainfall and Snowfall 1279 26.4.1 Measurement of Rainfall 1279 26.5 Mean Depth of Rainfall over an Area 1282 26.5.1 Arithmetic Mean Method 1282 26.5.2 Theissen Polygon Method 1283 26.5.3 Isohyetal Method 1284 26.6 Evaporation, Transpiration and Evapo-Transpiration 1284 26.7 Infiltration 1286 26.8 Runoff and Factors Affecting Runoff 1287 26.8.1 Factors Affecting Runoff 1288 26.9 Hydrograph 1289 26.10 Methods of Determination of Runoff 1290 Sumary ofMain Points 1296 Problems 1297 CHAPTER 27. WATER POWER ENGINEERING 1298-1321 27.1 Introduction 1298 27.2 Hydroelectric Power Development of India and The World 1298 27.3 Comparison of Thermal and Hydroelectric Power Costs 1300 27.4 Assessment of Available Power 1300 27.5 Storage and Pondage 1301 27.6 Essential Stream Flow Data for Water Power Studies 1302 27.7 Flow Duration Curve 1302 27.8 Mass Curve 1305 27.9 Types of Hydropower Plants 1307 27.10 Typical Hydroelectric Developments of India 1309 27.10.1 Bhakra-Nangal Hydroelectric Project 1309 27.10.2 Chambal Valley Development Scheme 1311 27.11 Firm (or primary) and Secondary Power 1311 27.12 Load Factor, Utilisation Factor and Capacity Factor 1311 27.13 Components of Hydropower Plants 1312 Sumary ofMain Points 1321 Problems 1321 Final Proof/24.10.2009xvi Contents CHAPTER 28. FLUVIAL HYDRAULIC 1322-1339 28.1 Introduction 1322 28.2 Sediment Transport in Channels 1322 28.3 Sediment Properties 1323 28.4 Modes of Sediment Movement 1324 28.5 Types of Sediment Load 1325 28.6 Initiation of Sediment Motion 1325 28.7 Bed Deformations in Alluvial Streams 1329 28.8 Resistance to Flow in Alluvial Streams 1330 28.9 Design of Unlined Alluvial Channels—Kennedy’s and Lacey’s Theories 1332 28.9.1 Kennedy’s Theory 1332 28.9.2 Lacey’s Regime Theory 1333 Sumary ofMain Points 1339 CHAPTER 29. FLOW MEASUREMENT AND LABORATORY EXPERIMENTS 1340-1346 29.1 Introduction 1340 29.2 Fluid flow Measurements 1340 29.3 Flow Visualization Techniques 1344 29.4 List of Experiments 1344 29.5 Writing of Report 1346 Multiple Choice Questions 1347 Appendix -1 (Main Relations of Fluid Mechanics in Vector Notation) 1373 Appendix - II (Comparative Study ofFlow ofIncompreessible and Compressiblefluids) 1376 Appendix - III (Some Important Conversion Factors) 1379 Appendix - IV (Source, Sink and Doublet) 1382 Appendix - V (Cavitation) 1385 Appendix - VI (Flow in Curved Channels) 1387 Appendix - VII (Control Valvesfor Pipes) 1389 Appendix - VIII (Hydraulic Transport of Solid Material in Pipes) 1392 Bibliography 1394 Author Index 1396 Index 139 Author Index Allen, C.M., 1342 Archimedes, 3, 155 Bazin, H., 459, 709 Bernoulli, D., 293, 294, 300 Blasius, H., 672 Bourdon, E., 63 Bresse, J.A.C., 799 Chezy, A., 500, 709 Cipolletti, C., 465 Colebrook, C.F., 677 Couette, M.F.A., 616 Darcy, H., 500 Euler, L., 229, 288, 857 Francis, J.B., 459 Froude, W., 364, 498, 856 Ganguillet, E., 709 Garde, R.J., 1331 Gibson, N.R., 1342 Hagen, G.H.L., 607 Herschel, C., 305 Hugoniot, H., 959 Joukowski, M.W.,918 Kaplan, V., 1044 Karman, T.V., 906 Kennedy, R., 1333 Kutta, M. W., 918 Kutter, W.R., 709 Lacey, G., 1334 Lamb, H., 906 de Lavel, C.G.P., 955 Mach, E., 857 Magnus, H.G., 918 Manning, R., 501, 710 Moody, L.F., 677, 1105 Newton, I., 12, 286, 857 Nikuradse, J., 663 Oseen, C.W., 901 Parshall, R.L., 738 Pascal, B., 47 Pelton, L.A., 1028 Poiseuille, J.L.M., 607 Prandtl, L., 3, 317, 567 Ranga Raju, K.G., 1331 Rankine, W., 959 Rayleigh, Lord, 843 Rehbock, T., 461 Reynolds, O., 494, 658, 856 Shields, A., 1327 Stanton, T.E., 674 Stokes, G.G., 11, 622 Strouhal, V., 908 Taylor, E.A., 1342 Thoma, D., 1106 Torricelli, E., 386 Venturi, G.B., 305 Weber, W.E., 858 Weisbach, J., 500 White, C.M., 1329Subject Index A Absolute pressure, 48 Absolue system, 3 Acceleration, 246 convective, 247 local, 247 normal, 248 tangential, 248 Acceleration of piston, 1138 uniform horizontal, 193 uniform rotational, 199 uniform vertical, 196 Adhesion, 14 Adiabatic process, 939 Adverse slope, 790 Air foil drag of, 911 lift on, 919 Air vessel, 1149 Allievi formula, 530 Alternate depth, 723 Angle of attack, 920 Angular deformation, 252 Archimedes, Principle of, 155 Aspect ratio, 920 Atmosphere, equilibrium of, 40 adiabatic or isentropic, 42 isothermal, 41 polytropic, 44 standard, 46 Atmospheric pressure, 48 Avogadro’s law, 10 Average height of protrusions, 662 B Base units, 4 Bazin’s formula, 459, 709 Bend meter, 314 Bend, losses in, 407 Bernoulli’s equation, 293, 294, 300 Blasius formula, 672 Body force, 286 Borda’s mouthpice, 413 Boundary layer, 567, 661 laminar, 570, 577 transition, 570 turbulent, 570, 580 Bourdon gage, 63 Branching pipes, 512 Bresse’s method, 799 Broad crested weir, 470 Buckingham’s pi method, 844 Bulk modulus of elasticity, 13 Buoyancy, 155 centre of, 155 Buoyant force, 155 Butterfly valve, 1393 Bye pass, 511 C Canal lock, 423 Capillarity, 16 Cauchy number, 857 Cavitation, in pumps, 1209 in turbines, 1106 Celerity of elastic waves, 944 Centipoise, 11 Centistoke, 11 Centre of buoyancy, 155 Centre of pressure, 93 Centrifugal pumps, 1178 Characteristice curvres, of pumps, 1158, 1204 of turbines, 1097 Chezy’s equation, 500, 709 Cipolletti weir, 465 Circulation, 2541398 Coefficient of contraction, 386 discharge, 387 drag, 893 dynamic viscosity, 11 lift, 893 resistance, 388 velocity, 386 Cohesion, 14 Colebrook and White equation, 677 Commercial pipe, resistance of, 676 Compressible flows, 302, 939 Compressibility, 13 Conjugate depth, 802 Conservation of mass, 236 Continuity equation, 236, 942 Contraction, loss at sudden, 403 Control surface, 236 Control volume, 236 Convective acceleration, 247 Convergent divergent mouthpiece, 411 Convergent divergent nozzle, 955 Convergent mouthpiece, 412 Correction factors, energy, 301 momentum, 354 Couette flow, 616 Critical depth, 723 Critical flow in channels, 728 in pipes, 495 Critical pressure ratio, 954 Critical Reynolds number, 495 Critical slope, 789 Critical velocity, 495, 723 Current meter, 739 Curved surfaces, pressure on, 103 Cylinder, drag on, 904 lift on, 915 Hydraulics and Fluid Mechanics E d’ Alembert’s paradox, 353 Darcy-Weisbach formula, 500 Dash-pot mechanism, 630 Deformation drag, 897 Deformation of fluid angular, 251 linear, 251 Delivery stroke, 1134 Density, 7 Depth, alternate, 723 conjugate, 802 critical, 723 initial, 802 sequent, 802 subcritical, 723 supercritical, 724 Derived units, 5 Dimensional analysis, 837 Dimensions of physical quantities, 837 Dimensional homogeneity, 841 Dimensionally homogeneous equation, 841 Dimensionless numbers, 856 Discharge coefficient of mouthpiece, 409, 414, 416 of orifice, 387, 393 of weirs, 456 Discharge meaurement in rivers, 742 Displacement thickness, 568 Distorted models, 861 Draft tube, 1037 Drag deformation, 897 form, 897 friction, 894 induced, 925 pressure, 894 residual, 912 total, 894 Drag coefficient, 896 effect of compressibility on, 913 effect of free surface on, 912 of three dimensional bodies, 900 of two dimensional bodies, 904 Drag on, airfoil, 911 cylinder, 904 disc, 898 plate, 910 sphere, 900 Dupuit’s equation, 510 Dynamic similarity, 854 Dynamic viscosity, 11 E Economical channel section, 712 Eddy kinematic viscosity, 659 Eddy viscosity, 659 Efficiency, Froude of propeller, 364 hydraulic of pumps, 1195 hydraulic of turbines, 1026 manometric of pumps, 1192 mechanical of pumps, 1193 mechanical of turbines, 1026 overall of pumps, 1193 overall of turbines, 1026 volumetric of pumps, 1193 volumetric of turbines, 1026 Efficient cross-section of channel, 712 Elastic modulus of fluids, 13 Elastic waves, 944, 947 Elbow meter, 314 Electrical analogy, 263 Electronic pressure cells, 1341 Energy correction factor, 301 Energy equation for compressible flow, 302, 9421399 for incompressible flow, 300 Energy gradient, 506 Energy line, total, 503 Energy losses, 400, 502 Energy thickness, 569 English system units, 3 Enthalpy, 942 Entropy, 941 Entry loss, 405, 502 Equation of continuity, 236, 942 energy, 293, 302, 942 momentum, 353, 942 motion, 288 state, 9 Equilibrium of floating body, 158 neutral, 159 stable, 159 unstable, 159 Equipotential lines, 260 Equivalent pipe, 509 Equivalent sand grain roughness, 676 Eulerian method, 229 Euler number, 857 Euler’s equation of motion, 288 Exit loss, 405, 502 Expansion, gradual, 406 sudden, 401 F Fanno curve, 958 Flat plate, moving, 982 stationary, 979 Floating bodies, 155 Floats, 740 Flow net, 260 methods of drawing, 262 limitations of, 265 use of, 264 Flow through nozzle, 523 Fluid properties, 7 Fluids, compressible, 40, 293, 939 Subject Index ideal, 2, 12 Newtonian, 12 plastics, 12 real or practical, 2 thixotropic, 12 Force, due to elasticity, 287, 855 due to gravity, 287, 854 due to inertia, 287, 854 due to pressure gradient, 287, 855 due to surface tension, 287, 855 due to turbulence, 287 due to viscosity, 287, 567, 854 Forces on immersed surfaces, 93 Forces on fixed and moving plates, 979, 982 Form drag, 897 Francis formula, 459 Francis turbine, 1036 Free liquid jet, 317 Friction factor, 500 Friction factor diagram, 678 Froude efficiency of propeller, 364 Froude number, 856 Froude’s experiments, 498 G Gas constant, 9 Ganguillet-Kutter Formula, 709 Gage pressure, 48 Geometric similarity, 853 Globe valve, 1393 Governing of turbines, 1048 Gradually varied flow, 783 equation, 785 integration of equation, 797 Graphical method of flow net, 262 Gravity force, 287, 855 Guide vanes, 1036 H Hagen-Poiseuille formula, 607 Hardy-Cross method, 532 Head, manometric, 1186 piezometric, 294 potential, 294 pressure, 39, 294 static, 1186 total, 294 velocity, 294 Head loss, due to friction, 499 Head loss, due to other causes, 400, 502 Homologous, 854 Hook gage, 1342 Hot-film anemometer, 963 Hot-wire anemometer, 962 Hydraulic accumulator, 1247 Hydraulic couplings, 1258 Hydraulic crane, 1252 Hydraulic depth, 704 Hydraulic efficiency of pumps, 1195 of turbines, 1026 Hydraulic grade line, 503 Hydraulic gradient, 506 Hydraulic intensifier, 1249 Hydraulic jump, 801 Hydraulic lift, 1254 Hydraulic mean depth, 499, 704 Hydraulic radius, 499, 704 Hydraulic press, 1251 Hydraulic ram, 1255 Hydraulic transport of solids in pipes, 1395 Hydrodynamically, rough surface, 662 smooth surface, 662 Hypersonic flow, 947 I Ideal fluid, 2, 12 Impulse momentum equation, 351 Impulse turbine, 1024 Indicator diagram, 11441400 Induced drag, 925 Instantaneous closure of valve, 526 Integration of Euler’s equation, 291 Intergration of varied flow equation, 797 Irrotational flow, 233, 252 Isentropic process, 940 Isentropic supersonic flow, 957 Isothermal process, 939 J Jet contraction, 386 Jet, free, 317 Jet, reaction of, 357 Jet propulsion, 357 Journal bearing, 627 Jump, Hydraulic, 801 K Kaplan turbine, 1044 Karman constant, 663 Karman-Prandtl equations, 665 Karman vortex trail, 906 Kennedy’s theory, 1333 Kinematic eddy viscosity, 659 Kinematic similarity, 854 Kinematic viscosity, 11 Kinetic energy correction factor, 301 Kutta-Joukowski equation, 918 L Lacey’s theory, 1334 Lagrangian method, 229 Laminar flow, 233, 601 between parallel plates, 612 in channels, 619 in circular pipes, 603 through porous media, 620 Laminar sublayer, 570, 582 Laplace equation, 256 Hydraulics and Fluid Mechanics Large orifice, 394 de Laval nozzle, 955 Length of jump, 805 Lift, coefficient, 896 definition, 915 development, 915 due to circulation, 916 effect of compressibility, 925 on an airfoil, 919 Liquid jets, 317 List of experiments, 1345 Local acceleration, 247 Location of hydraulic jump, 806 Logarithmic velocity distribution, 665 Long pipe, 507 Loss, due to friction, 499 due to sudden contraction, 403, 502 due to sudden expansion, 401, 502 in pipe fittings, 407, 503 M Mach angle, 947 Mach cone, 947 Mach number, 857, 946 Magnus effect, 918 Manning’s formula, 501, 710 Manning’s roughness factor, table of, 710 Manometers, 49 Manometric, efficiency, 1192 head, 1187 Mass density, 7 Measurement of depth, 1342 discharge, 305, 742, 959 flow direction, 963 pressure, 49, 1341 rainfall, 1280 snowfall, 1283 velocity, 314, 739, 960, 1342 Metacentre, 157 Metacentric height, 157 Metric slug, 4 Metric system, 3 Micromanometer, 61 Mild slope, 789 Minor losses, 502 Mixing length, 660 Model laws, 858 Model scale ratios, 859 Models, distorted, 861 undistorted, 861 Modular limit of weir, 473 Momentum, angular, 365 correction factor, 354 equation, 351, 942 Momentum thickness, 568 Moody’s diagram, 678 Mouthpieces, 407 Multicylinder pumps, 1158 Multistage pumps, 1202 N Nappe, 454 Navier-Stokes’ equation, 288 Needle valve, 1393 Newton number, 857 Newtonian fluids, 12 Nikuradse’s experiments, 662 Non-uniform flow, 232 in channels, 783 Normal depth, 708 No-slip condition, 567 Notch, rectangular, 455 trapezoidal, 465 V or triangular, 463 Nozzle convergent, 952 convergent-divergent, 955 Nozzle meter, 313 NPSH, 12081401 O Omitted variable, 850 One dimensional flow, 233 Open channels, flow in, 702 Optimum cross-section, 712 Orifice, discharge through, 384 large, 394 Orifice meter, 310 Orifice submerged, partially, 399 totally, 398 Orifice tank, 357 Oseen’s formula, 901 P Parshall flume, 738 Pascal’s law, 47 Path line, 235 Pelton wheel, 1028 Performance, of pumps, 1158, 1204 of turbines, 1088 Perimeter, wetted, 704 ‘Pi’ method Buckingham’s, 844 Piezometer tube, 49 Piezometric head, 294 Pipe bend, force on, 355 as a meter, 314 Pipe networks, 531 Pipe, varying sections, 517, 950 Pipe with side tappings, 519 Pipes, branched, 512 Pipe, byepass, 511 Pipes in parallel, 510 Pipes in series, 508 Pipe-siphon, 515 Pipe tapering, 517 Pitot cylinder, 963 Pitot sphere, 964 Pitot static tube, 316 Pitot tube, 314, 960 Plug valve, 1393 Poise, 11 Subject Index Polar diagram, 928 Potential flow, 257 Prandtl Glauert rule, 925 Prandtl’s boundary layer theory, 567 Prandtl’s pitot tube, 317 Precipitation, 1280 Pressure, 36 absolute, 48 atmospheric, 48 gage, 48 total, 93 vacuum, 48 Pressure, centre of, 95 equation, 293 Pressure coefficient, 857, 948 Pressure diagram, 102 Pressure distribution around airfoil, 912 hydrostatic, 105 Pressure drag, 897 Pressure force, 287, 855 Pressure gages, 49, 63 Pressure gradient, 601 Pressure head, 39, 294 Pressure rise due to gradual closure of valve, 526 instantaneous closure of valve, 526 Pressure transducers, 1341 Pressure variation, 36 Preston tube, 1344 Principle of conservation of energy, 236 of mass, 236 of momentum, 236 Prismatic channel, 703 Properties of common fluids, 18 Propeller, 362 Propeller turbine, 1027 Propeller type currentmeter, 739 Proportional weir, 475 Pumps, air lift, 1260 centrifugal, 1178 reciprocating, 1132 R Radial flow, 323 Rain gages, 1280 Rankine-Hugoniot equations, 959 Rapid flow in open channel, 783 Rayleigh line, 958 Rayleigh-Pitot equation, 961 Reaction turbine, 1027 Real fluids, 2 Reciprocating pump, 1132 components, 1132 Rehbock’s formula, 461 Relative equilibrium, 190 Relief valve, 1050 Residual drag, 912 Resistance coefficient, 388 Reversible process, 940 Reynolds equation, 287 Reynolds experiment, 494 Reynolds number, 495, 856 Rheology, 12 Rotameter, 313 Rotational flow, 233, 251 Rotation, pure, 251 Rough boundary, 662 Rough pipes, resistance of, 671 Runaway speed, 1051 Runoff, 1288 S Salt dilution method, 1343 Salt velocity method, 1342 Scale effect, 862 Scale ratios for models, 853 Separation, 583 Sharp crested weir, 455 Shear velocity, 582, 608 Shear stress in turbulent flow, 6581402 Shock wave, 956 normal, 957 ‘SI’ units, 4 Similarity, 853 Similitude, 853 Similarity laws for general models, 858 pumps, 1200 turbines, 1102 Siphon, 515 Siphon spillway, 474 Slip, 1138 Slipper bearing, 623 Slopes, open channel, 789 adverse, 790 critical, 789 horizontal, 790 mild, 789 steep, 790 Smooth boundary, 662 Smooth pipes, resistance, 671 Sonic velocity, 944, 947 Specific energy, 723 curve, 724 Specific force, 726 curve, 727 Specific gravity, 8 Specific speed, pumps, 1198 turbines, 1092 Specific volume, 8 Specific weight, 7 Speed ratio, 1033 Spillway, 473 Stability of floating bodies, 158 Stagnation point, 314 Stagnation pressure, 314, 949 Stall point, 924 Stalling angle, 924 Standing wave, 737, 801 Stanton diagram, 674 Stanton tube, 1343 Starting vortex, 922 Hydraulics and Fluid Mechanics Steady flow, 231 energy equation, 293 Steep slope, 790 Step method of integration, 797 Stokes law, 622 Streak line, 235 Stream filament, 235 Stream function, 257 Stream line, 260 Stream lined body, 897 Stream tube, 234 Strickler’s formula, 712 Strouhal number, 908 Subcritical flow, 723 Sublayer, laminar, 570, 582 Submerged, orifice, 398 weir, 472 Suction specific speed, 1107, 1209 Suction stroke, 1133 Supercritical flow, 724 Superfluous variable, 850 Surface profiles, 790 Surface tension, 14 Surges, 809 Surge tanks, 1051 System headcurves, 1210 T Tail race, 1024 Tangential acceleration, 248 Thickness of boundary layer, 567 laminar sublayer, 570, 582 Thixotropic liquids, 12 Thoma’s cavitation factor, 1106, 1209 Thomson’s theorem, 923 Three dimensional flow, 232 Time of emptying, 417, 467 Tip vortices, 926 Torricelli’s formula, 386 Total energy line, 503 Total head, 294 Tranquil flow, 723 Transitions, channels, 732 Transition from laminar to turbulent flow, 495 Translation, pure, 251 Transmission of power through pipes, 522 Transport of solids in pipes, 1395 Turbines, types, 1027 efficiency, 1024 Francis, 1036 heads, 1024 impulse, 1027 Kaplan, 1044 Pelton, 1028 performance, 1088 reaction, 1027 working proportions, 1033, 1040, 1045 Turbulent boundary layer, 570, 580 Turbulent flow, 233, 658 velocity distribution, 663 Turbulent mixing, 659 Turbulent shear stress, 658 Two dimensional flow, 232 Types of flow, 231 U Undistorted models, 861 Uniform depth, 708 Uniform flow, 231, 703 Unit discharge, 1090 Unit power, 1090 Unit speed, 1089 Units of measurement, 3 Universal gas constant, 9 Unsteady flow, 231V Vacuum pressure, 48 Vapour pressure, 12 Variables, dependent, 843 independent, 843 non-repeating, 845 repeating, 845 Varied flow gradually, 783 rapidly, 783, 801 Velocity, approach, 385, 456 critical, 495, 723 defect, 665 fluctuation, 660 gradient, 663 head, 294 local, 606 maximum, 606 shear, 582, 608 Velocity distribution between parallel plates, 612 in boundry layer, 570 in open channels, 706 in turbulent flow, 663 Subject Index near rough boundary, 669 near smooth boundary, 666 Velocity, measurement of, 314, 739, 960, 1342 Velocity of sound, 944, 947 Velocity of whirl, 995 Velocity potential, 256 Venacontracta, 384 Ventilation of nappe, 461 Venturi flume, 736 Venturi meter, 305 Viscometer coaxial-cylinder, 633 capillary tube, 635 falling sphere, 637 Redwood, 637 Saybolt, 636 Viscosity dynamic, 11 eddy, 659 kinematic, 11 Viscosity index, 630 Volumetric efficiency pumps, 1193 I 1403 turbines, 1026 Volute casing, 1182 Vortex, free, 319 forced, 320 Rankine, 321 spiral, 323 Starting, 922 Vortex pair, 907 Vortex street, 907 Vorticity, 254 W Wake, 895, 897, 898, 906 Water hammer, 526 Weber number, 858 Weir, broad crested, 470 Cipolletti, 465 proportional, 475 rectangular, 455 sharp crested, 455 submerged, 472 trapezoidal, 465 triangular, 463 Wetted perimeter, 704 Writing of report, 1347
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Hydraulics & Fluid Mechanics - including Hydraulics Machines رابط مباشر لتنزيل كتاب Hydraulics & Fluid Mechanics - including Hydraulics Machines
|
|