Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Orthogonal Polynomials in MATLAB - Exercises and Solutions السبت 13 أغسطس 2022, 10:04 am | |
|
أخواني في الله أحضرت لكم كتاب Orthogonal Polynomials in MATLAB - Exercises and Solutions Walter Gautschi Purdue University West Lafayette, Indiana
و المحتوى كما يلي :
Contents Preface vii 1 A Guide to the Software Packages OPQ and SOPQ 1 1.1 Recurrence relation 1 1.2 Chebyshev and modified Chebyshev algorithm 3 1.3 Discretization procedures 5 1.4 Modification algorithms . 19 1.5 Sobolev orthogonal polynomials . 27 1.6 Quadrature formulae . 31 2 Answers to Exercises on Orthogonal Polynomials 35 2.1 Elementary properties 36 2.2 Symmetry 44 2.3 Orthogonality on two separate (symmetric) intervals 48 2.4 Modified and classical Chebyshev algorithm 58 2.5 Discretization method 120 2.6 Modification algorithms . 135 3 Answers to Exercises on Sobolev Orthogonal Polynomials 157 3.1 Elementary properties 158 3.2 Symmetry 161 3.3 Zeros . 162 4 Answers to Exercises on Quadrature 181 4.1 Elementary properties 183 4.2 Cauchy and Cauchy principal value integrals 188 4.3 Gauss–Radau and Gauss–Lobatto quadrature . 195 4.4 Gauss–Kronrod quadrature . 213 4.5 Gauss–Turán quadrature . 214 4.6 Polynomial/rational quadrature formulae of Gaussian type 215 4.7 Quadrature estimates of matrix functionals . 216 5 Answers to Exercises on Approximation 235 5.1 Special functions 236 5.2 Polynomial least squares approximation . 259 5.3 Moment-preserving approximation 272 5.4 Summation by integration 275 5.5 The spiral of Theodorus . 288 vvi Contents A The Software Package OPQ (Orthogonal Polynomials and Quadrature) 293 A.1 Orthogonal polynomials . 293 A.2 Quadrature . 303 A.3 Examples and tests . 308 A.4 Tables and figures . 310 A.5 Utility . 312 B The Software Package SOPQ (Symbolic Orthogonal Polynomials and Quadrature) 317 B.1 Orthogonal polynomials . 317 B.2 Quadrature . 320 B.3 Utility . 321 Bibliography 323 Software Index 327 Subject Index 33 Subject Index Airy differential equation inhomogeneous, 246 Airy function, 119 complex, 119, 244, 252, 253 Gauss quadrature approximation of, 247 inhomogeneous, 246 in the complex domain, 120 inhomogeneous, 117, 252 Althammer polynomials, 162 Altheimer’s polynomials, 28, 30 asymptotic expansion, 81 Poincaré-type, 255 atomic measure, 166 one-point, 166 Bessel function, 265, 280 modified, 117, 123, 278 Gaussian quadrature relative to, 117 bisection method of, 289 bisection routine, 290 Boltzmann constant, 215 Bose–Einstein measure, 104, 278 moments of, 104 square root, 104, 277, 281, 289 squared, 104 cancellation degree of, 248 Cauchy integral, 147, 148, 150, 168, 181, 189, 190, 282 Cauchy integrals ratios of, 23 Cauchy principal value integral, 181, 188, 190, 191 quadrature rule in the strict sense for, 194 Cauchy transform, 23 of a measure, 188 of the monic nth-degree orthogonal polynomial, 35, 139, 189 Chebyshev algorithm, 3, 36, 89 classical, viii, 4, 58, 66, 68, 94, 117, 119 in high precision, 94, 104, 107 in high-precision arithmetic, 88 in high precision, 110 modified, viii, 3, 36, 59, 60, 62, 88, 94, 97, 158, 162 Chebyshev orthogonal polynomials of a discrete variable, 260 Chebyshev polynomials discrete on [0,1), 6, 6 recurrence coefficients of, 6 discrete on [0,N], 2 elliptic, 4 monic, 53 monic discrete recurrence relation of, 261 recurrence relation of the second kind (in MATLAB), 40 Christoffel’s theorem, 136 generalized, 138, 141, 142, 145 circle theorem, 186 for algebraic/logarithmic weight functions plots of, 188 for Gauss–Jacobi quadrature, 185, 187 plots of, 187 for Gauss–Kronrod quadrature, 186 with Gauss–Jacobi weight function, 187 for Gauss–Kronrod quadrature and algebraic/logarithmic weight functions plots of, 188 for Gauss–Kronrod quadrature and Jacobi weight functions plots of, 188 classical Chebyshev algorithm, 66, 68, 119 Clenshaw’s algorithm, 262 complementary error function, 238 complex Airy function, 244, 252, 253 complex error function, 238 complex inhomogeneous Airy function, 246 condition numbers, 95 estimates of the, 89 for E m plot of, 90 connection formula, 255 constraint polynomial, 264 continued fraction, 42 infinite, 42 continued fractions, viii theory of, 42 curves C γ plot of, 172 Darboux formulae for Sobolev orthogonal polynomials, 29 Darboux’s formula, 37 for recurrence coefficients, 36 Dawson’s integral, 277, 289 degree of cancellation, 248 Demo 1.15, 30 Demo 1.14, 28 Demo 1.5, 11 331332 Subject Index Demo 1.3, 6 Demo 1.4, 7 Demo 1.2, 4 Demo 1.17, 31 Demo 1.9, 18 Demo 1.10, 19 Demo 1.7, 14 Demo 1.6, 12, 14 Demo 1.1, 3 Demo 1.8, 16 Demo 1.16, 31 Demo 1.13, 26 Demo 1.11, 21 Demo 1.12, 24 Dirac delta function, 159, 174, 235, 272 discretization 1-component, 12, 129 2-component, 10, 64 Fejér, 134 Gauss–Freud, 134 m-component, 9 multicomponent, 132 general-purpose, 17 discretization methods, 8, 120 discretization procedure, 5, 61, 65, 107, 110 3-component, 21 multicomponent, 36, 124 discretization routine multicomponent, 9 discretization scheme 2-component, 60 distribution half-range Hermite, 274 elliptic Chebyshev polynomials, 4 Erdos weight function, 124 ˝ error function complementary, 114, 238, 265 first and second derivatives of, 265 complex, 238 Euler’s formula, 278 Example 1.2, 10 Example 1.3, 12 Example 1.4, 16 Example 1.5, 30 Faddeeva function, 238 Fejér nodes and weights, 10 Fejér quadrature, 17, 123, 133 Fermi measure, 107 moments of, 107 square root, 107 moments of, 107 squared, 107 Fermi–Dirac integral generalized, 215 five-term recurrence relation advantage and disadvantage of, 161 for special Sobolev polynomials, 159, 161 merits of the, 159 fixed point attracting, 49 repelling, 49, 58 fixed point iteration, 49 Fokker–Planck equation, 129 Fourier coefficients, 235, 259 alternative form of, 260 Freud conjecture, 81 for half-range Freud polynomials, 81 Freud polynomials, 68, 79 half-range, 74 moments of, 80 positive zeros of, 80 plots of, 80 subrange, 68 lower symmetric, 75 upper symmetric, 77 zeros of, 68 Freud weight function, 129 functions T 2(·, b) and T3(·, b) plot of the, 288 gamma function, 114 reflection formula for, 120 Gauss formula, 44, 115 Gauss quadrature, 44, 63, 119, 153 error of, 122 for a logarithmic weight function, 186 relative error of, 245 relative to the half-range Hermite weight function, 239 Gauss quadrature approximation of the complex Airy function, 247 of the inhomogeneous Airy function Gi(z), 248 Gauss quadrature error plot of, 122 Gauss quadrature formula, 31 Gauss quadrature rule, 116 Gauss–Chebyshev quadrature, 10 Gauss–Freud quadrature, 129 Gauss–Freud quadrature points, 131 Gauss–Hermite quadrature, 121, 239 Gauss–Hermite quadrature rule half-range, 237 Gauss–Jacobi quadrature, 12, 64, 92, 170 Gauss–Jacobi quadrature rule, 64 Gauss–Kronrod formula for a logarithmic weight function, 186 Gauss–Kronrod quadrature, 33 Gauss–Kronrod quadrature rule, 181 Gauss–Laguerre quadrature, 16, 92, 125 Gauss–Legendre quadrature, 10, 63 Gauss–Legendre quadrature rule, 62 Gauss–Lobatto formula, 199 generalized, 201, 202 Gauss–Lobatto quadrature, 33, 195, 223, 228, 232 generalized, 208 Gauss–Lobatto quadrature rule, 181 Gauss–Lobatto rule generalized, 212 ordinary, 212 Gauss–Radau formula, 230 generalized, 200 positivity of, 208 Gauss–Radau quadrature, 33, 195, 223, 228 generalized, 203 Gauss–Radau quadrature rule, 181 Gauss–Radau rule left- and right-hand, 195 Gauss–Turán quadrature, 214 Gauss–Turán quadrature rule, 182, 214 Gauss-type quadrature applied to a discrete measure, 182 involving derivatives, 33 Gaussian quadrature, viii, 9, 113, 121, 236Subject Index 333 relative to a Freud-type weight function, 247 relative to a modified Bessel weight function, 244 Riemann–Hilbert approach to, 120 Gaussian quadrature formula, 35, 181 n-point weights of, 189 Gaussian quadrature rule, 110 Gaussian quadrature sum expressed in terms of the Jacobi matrix, 185 Gaussian weights, 184 Gautschi–Stieltjes procedure, 5 generalized Laguerre polynomial, 86 Gram–Schmidt orthogonalization, 37 Gram–Schmidt procedure, 36 ground measure, 166 Hahn polynomial, 6 half-range Freud polynomials, 74, 86 Freud conjecture for, 81 moments of, 75 zeros of, 75 plots of, 75 half-range Gauss–Hermite quadrature rule, 237 half-range Hermite distribution, 272 half-range Hermite measure, ix, 18 half-range Hermite polynomials, 66 half-range Hermite weight function, 239 step function approximation of plot of, 275 Hardy–Littlewood function, 278, 279 plot of, 279 hat function, 60 Heaviside step function, 274 Hermite measure generalized, 166 half-range, ix Hermite polynomial, 274 Hermite–Sobolev polynomials, 166 generalized, 166 histogram for the zeros of the symmetric Laguerre measure, 126 histograms for the zeros of πn, 125 homogeneous Airy differential equation, 253 incomplete gamma function, 94 lower, 241 symbolic routines for, 95 upper, 241 inhomogeneous Airy differential equation, 246 inhomogeneous Airy functions, 252 integral representations of, 247 inner product, 1, 36 discrete, 44 Gegenbauer-like, 168 positive definite, 36 shift property of, 158 interpolation polynomial, 264 Jacobi continued fraction, 35, 42 numerator in the nth convergent of the, 43 Jacobi matrix, 2, 35, 39, 184, 185, 223, 228, 232 eigenvalues of, 184 eigenvectors of, 184 extended, 6 spectral resolution of, 185 Jacobi measure, 197, 199 normalized plus a discrete measure, 12 plus a one-point atomic measure, 12 Jacobi polynomials monic, 200 Jacobi–(left-hand)Radau matrix, 197 Jacobi–Lobatto matrix, 199 Jacobi–Radau matrix, 196, 196 Krylov space, 216 Lagrange interpolation formula, 192 Lagrange interpolation polynomial elementary, 184, 193 sum of, 193 Laguerre measure, 166 generalized, 197 plus an atomic measure, 166 Laguerre polynomial, 92 generalized, 86, 197 monic generalized, 197 Lanczos algorithm, 182, 216, 217, 223, 228 Lanczos algorithm routine, 219, 223 correctness of, 220 Lanczos vectors, 216–218, 220 orthogonality of, 218 Lanczos’s method, 6 Laplace transform, 275, 282 convolution theorem for, 277 least squares approximation equally weighted, 260 polynomial, 235, 259 least squares error, 259, 260 least squares problem, 235 constrained, 236, 264, 265 Legendre measure, 47 Legendre polynomials, 45, 61 shifted, 97 loading multiprecision arrays, ix logistic measure, 16 long recurrence relation for Sobolev orthogonal polynomials, 159 lower incomplete gamma function, 241 in Tricomi’s form, 241 Macdonald functions, 123 MATLAB Symbolic Toolbox, ix matrix functionals quadrature estimates of, 216 Maxwell velocity distribution, 274 measure absolutely continuous, vii positive definite, 37 atomic, 166 discrete, 5 discrete N-point positive definite, 37 discretization of, viii half-range Hermite, 18 logistic, 16 modification of, viii modification of the by m linear divisors, 146 by a linear divisor, 139 by a polynomial divisor, 138, 144334 Subject Index by a quadratic divisor, 141, 149 by a quadratic factor, 136, 264 modified, viii, 19 multipoint atomic, 173 successive modifications of a by linear divisors, 145 symmetric, 44, 45, 61 Meijer’s polynomials, 31 minimal solution of three-term recurrence relation, 43, 44 mixed moments, 58 modification algorithms, viii, 19, 135 modified measure, 19 modified moment routines, 100 modified moments, viii, 28, 36, 58, 60, 61, 64, 92, 94, 97, 99, 162 of exponential integral weight function, 92 relative to the monic Chebyshev polynomials, 4 moment map condition of, 103 moment-preserving approximation, 235, 272 moments, viii, 3, 35, 37, 66, 68, 72, 75, 77, 104, 110, 111, 114, 119, 190, 236, 274 mixed, 58 modified, 3, 28, 36, 58, 60–62, 64, 92, 94, 97, 99, 162 of a weight function, vii of the exponential integral weight function, 89 ordinary, 58, 94 multiatomic Sobolev orthogonal polynomials, 173 multiatomic Sobolev polynomial special, 173 multicomponent discretization, 8 multipoint atomic measure, 173 Newton’s method, 243 ordinary moments, 58 orthogonal polynomials classical, 2 routines for, 2 constructive theory of, viii discrete, viii, viii with respect to Fejér nodes and weight, generated by stieltjes.m, lanczos.m, 7 formal, 19 formal properties of, 35 monic, vii relative to the exponential integral weight function, 88 relative to the hat function, 60 orthonormal polynomials, 38 leading coefficient of, 50 partition 4-component, 132 5-component, 132 plasma dispersion function, 238 Poincaré-type asymptotic expansion, 255 power orthogonality, 182 quadrature formula polynomial/rational of Gaussian type, 215 recurrence matrix of atomic Sobolev orthogonal polynomials, 166 recurrence relation for monic Sobolev orthogonal polynomials, 157, 158 repeated integral of the coerror function, 236 represented as a single integral, 236 Riemann zeta function, 104, 107 s-orthogonal polynomial, 182, 214 Scorer functions, 246 series slowly convergent, 97 summation of, 235 Sobolev Fourier sums and their first two derivatives evaluating, 268 Sobolev inner product, 157, 158 symmetric, 161 Sobolev least squares approximation to the complementary error function, 265 Sobolev least squares error, 265 Sobolev orthogonal polynomials, 27, 157, 158, 159 atomic, 166 discrete, 236 multiatomic, 173 recurrence coefficients of, 266 relative to a Gegenbauer-like inner product, 168 zeros of, 168 special multiatomic, 177 with only a few real zeros, 30 special functions, 236 evaluation of, 235 spectral resolution, 218 spiral of Theodorus, 236, 288 and its twin spiral plot of, 291 spline approximation moment-preserving, 236 Stieltjes, 36 Stieltjes algorithm, 158 discretized for Sobolev orthogonal polynomials, 29 Stieltjes method, 18 Stieltjes polynomial, 181 monic, 213 Stieltjes procedure, 5, 7, 30, 36 discretized, 5, 36 instability of, 168 typical difficulty with, 6 Stieltjes transform, 56 of the Chebyshev weight function, 55 subrange Freud polynomials, 68 lower one-sided, 68 moments of, 69 zeros of, 68, 70, 71 lower symmetric, 75 moments of, 76 positive zeros of, 77 upper one-sided, 71 moments of, 72 zeros of, 74 upper symmetric, 77 moments of, 78 positive zeros of, 79 summation by integration, 275 Szego–Bernstein measure, 145 ˝ Theodorus constant, 276, 277 three-term recurrence relation, 1, 35, 37Subject Index 335 coefficients of, 1 for the orthonormal polynomials, 38 minimal solution of, 43, 44 twin-spiral of Theodorus, 289 upper incomplete gamma function, 241 weight function double exponential, 123 half-range Freud, 87 close relative of, 87 half-range Hermite, 239 symmetric, 35, 48 zeros of Freud polynomials, 68 of Gegenbauer–Sobolev polynomials, 165 of symmetric Sobolev orthogonal polynomials, 162 of the nth-degree orthogonal polynomial, 35 of the lower one-sided subrange Freud polynomials, 68 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Orthogonal Polynomials in MATLAB - Exercises and Solutions رابط مباشر لتنزيل كتاب Orthogonal Polynomials in MATLAB - Exercises and Solutions
|
|