Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Digital Signal Processing using MATLAB الخميس 18 أغسطس 2022, 10:40 pm | |
|
أخواني في الله أحضرت لكم كتاب Digital Signal Processing using MATLAB André Quinquis
و المحتوى كما يلي :
Table of Contents Preface . ix Chapter 1. Introduction 1 1.1. Brief introduction to MATLAB . 1 1.1.1. MATLAB software presentation 1 1.1.2. Important MATLAB commands and functions 3 1.1.3. Operating modes and programming with MATLAB . 8 1.1.4. Example of work session with MATLAB . 10 1.1.5. MATLAB language 13 1.2. Solved exercises . 13 Chapter 2. Discrete-Time Signals 23 2.1. Theoretical background . 23 2.1.1. Mathematical model of 1D and 2D discrete-time signals 25 2.1.2. Basic 1D and 2D discrete-time signals . 26 2.1.3. Periodic 1D and 2D discrete-time signals representation using the discrete-time Fourier series 26 2.1.4. Representation of non-periodic 1D and 2D discrete-time signals by discrete-time Fourier transform . 27 2.1.5. Analytic signals . 27 2.2. Solved exercises . 29 2.3. Exercises . 51 Chapter 3. Discrete-Time Random Signals 55 3.1. Theoretical background . 55 3.1.1. Introduction . 55 3.1.2. Real random variables . 56 3.1.3. Random processes . 60vi Digital Signal Processing using MATLAB 3.2. Solved exercises . 64 3.3. Exercises . 80 Chapter 4. Statistical Tests and High Order Moments . 83 4.1. Theoretical background . 83 4.1.1. Moments . 84 4.1.2. Cumulants 84 4.1.3. Cumulant properties 85 4.1.4. Chi-square (Chi2) tests . 86 4.1.5. Normality test using the Henry line . 86 4.2. Solved exercises . 88 4.3. Exercises . 99 Chapter 5. Discrete Fourier Transform of Discrete-Time Signals 103 5.1. Theoretical background . 103 5.1.1. Discrete Fourier transform of 1D digital signals 104 5.1.2. DFT of 2D digital signals . 105 5.1.3. Z-transform of 1D digital signals 106 5.1.4. Z-transform of 2D digital signals 106 5.1.5. Methods and algorithms for the DFT calculation . 106 5.2. Solved exercises . 109 5.3. Exercises . 134 Chapter 6. Linear and Invariant Discrete-Time Systems 137 6.1. Theoretical background . 137 6.1.1. LTI response calculation 137 6.1.2. LTI response to basic signals . 139 6.2. Solved exercises . 141 6.3. Exercises . 169 Chapter 7. Infinite Impulse Response Filters . 173 7.1. Theoretical background . 173 7.1.1. Transfer function and filter specifications for infinite impulse response (IIR) filters . 173 7.1.2. Design methods for IIR filters 174 7.1.3. Frequency transformations 180 7.2. Solved exercises . 182 7.3. Exercises . 194Preface vii Chapter 8. Finite Impulse Response Filters 197 8.1. Theoretical background . 197 8.1.1. Transfer function and properties of FIR filters . 197 8.1.2. Design methods . 199 8.1.3. General conclusion about digital filter design . 203 8.2. Solved exercises . 204 8.3. Exercises . 213 Chapter 9. Detection and Estimation 215 9.1. Theoretical background . 215 9.1.1. Matched filtering: optimal detection of a known noisy signal 215 9.1.2. Linear optimal estimates 216 9.1.3. Least squares (LS) method 221 9.1.4. LS method with forgetting factor 222 9.2. Solved exercises . 223 9.3. Exercises . 239 Chapter 10. Power Spectrum Density Estimation 241 10.1. Theoretical background 241 10.1.1. Estimate properties 241 10.1.2. Power spectral density estimation . 242 10.1.3. Parametric spectral analysis . 245 10.1.4. Superresolution spectral analysis methods 250 10.1.5. Other spectral analysis methods 256 10.2. Solved exercises 257 10.3. Exercises . 277 Chapter 11. Time-Frequency Analysis . 279 11.1. Theoretical background 279 11.1.1. Fourier transform shortcomings: interpretation difficulties 279 11.1.2. Spectrogram 280 11.1.3. Time-scale analysis – wavelet transform . 281 11.1.4. Wigner-ville distribution . 284 11.1.5. Smoothed WVD (SWVD) 287 11.2. Solved exercises 288 11.3. Exercises . 304 Chapter 12. Parametrical Time-Frequency Methods 307 12.1. Theoretical background 307 12.1.1. Fractional Fourier transform . 307viii Digital Signal Processing using MATLAB 12.1.2. Phase polynomial analysis concept . 309 12.1.3. Time-frequency representations based on warping operators . 314 12.2. Solved exercises 317 12.3. Exercises . 338 Chapter 13. Supervised Statistical Classification . 343 13.1. Theoretical background 343 13.1.1. Introduction 343 13.1.2. Data analysis methods 344 13.1.3. Supervised classifiers . 348 13.2. Solved exercises 362 13.3. Exercises . 379 Chapter 14. Data Compression 383 14.1. Theoretical background 383 14.1.1. Transform-based compression methods 384 14.1.2. Parametric (predictive) model-based compression methods 385 14.1.3. Wavelet packet-based compression methods . 386 14.1.4. Vector quantization-based compression methods 387 14.1.5. Neural network-based compression methods . 388 14.2. Solved exercises 390 14.3. Exercises . 403 References . 405 Index . Index A a posteriori probabilities 354 additive information measure 387 Akaike information criterion 248, 255 amplitude modulated 31, 32 analog filter design 174, 176, 188 analytic signal 27, 28, 286 anti-aliasing filter 33, 34 AR-2D model 385 Atlas-Marinovich distribution (AMD) 317 auto regressive (AR) model 246–249, 265, 266, 268, 277, 386 auto regressive moving average (ARMA) model 245, 246, 277 autocorrelation matrix estimation 250 auto-terms 314 B backpropagation algorithm 354 bandpass filter 78, 80, 165, 214, 238, 266, 282 bandstop filter 207 Bayes classifier 349, 354, 367, 368, 371, 375, 381 best basis 387 Bienaymé-Tchebycheff inequality 57 bilinear transformation method 179 binary information transmission 40 Blackman window 127, 205, 263, 269 Butterworth filters 34, 79 C Capon’s method 257 Cauer filters 154 central limit theorem 70, 100 characteristic function 56, 57, 60, 83 Chebychev filters 176, 186, 189, 190, 191, 195, 224 chirp signal 39, 40, 234, 235, 288–290, 318, 319, 340 Chi-square (Chi2) test 86, 90, 92 clustering methods 387 Cohen class 315, 317 composed hypothesis 86 compression rate 383, 384, 387, 392, 395, 399, 403 constant-Q filtering 282 Cooley-Tukey algorithm 107 correlation coefficient 76, 77 correlogram 20, 241, 244 covariance matrix 62, 63, 219, 220, 345, 379, 384, 389 cross-terms 313, 314, 316, 324, 333, 340 cumulants 57, 83–85, 89, 96, 101 cumulative distribution function (cdf) 56, 60, 87 D data analysis 5, 9, 344–346, 348 data compression 383–385, 387, 389 data overfitting 350 data redundancy 385, 386408 Digital Signal Processing using MATLAB Daubechies wavelets 303 decimation-in-frequency 107 decimation-in-time 107 decision threshold 223–225 decomposition bases 386 decomposition tree 282 detection probability 227, 235, 239 digital filter design 174, 203 digital signal processing 1, 103 digital system modeling and simulation 1 discrete cosine transform (DCT) 105, 121, 125, 383, 384, 390, 392, 395–399, 403, 404 discrete Fourier transform (DFT) 27, 103– 108, 111–116, 119, 124–128, 131–134, 202, 242, 247, 383 discrete-time Fourier series (DTFS) 26, 47, 48 discrete-time Fourier transform (DTFT) 27, 28, 48, 49, 51, 52 discrete-time system 137 discriminant functions 349, 350, 354, 368 discriminant information 344 E empirical mean error probability 349, 350 ergodicity 60, 61, 73, 81, 220 ESPRIT algorithm 253, 272 estimate bias 257 estimate variance 76, 243, 244, 248, 258 eye diagram 225, 226 F false alarm probability 227, 235, 239 fast Fourier transform (FFT) 126, 133, 243, 260, 280, 311, 328 feature extraction 348 feature space 345 feature vector 344, 345, 348 filter bank 80, 282 filter coefficients 212, 303 filter gain 215 filter order 186, 195, 205 filter specifications 173–175, 179, 203, 210, 237 final prediction error (FPE) criterion 248 finite impulse response (FIR) filters 100, 197–214 Fletcher and Powell method 175 Fourier transform (FT) 26, 27, 57, 62, 103, 104, 110, 124, 126, 131, 132, 243–245, 249, 257, 269, 271, 273, 274, 279–282, 285, 310 fractional Fourier transform (FRFT) 307, 308, 317–320, 338 frequency sampling method 199, 202, 203, 206, 207, 214 frequency transformations 180, 181 fuzzification 352, 353 fuzzy KNN 351, 352, 367, 369, 371 fuzzy perceptron 356, 357, 359, 375, 376, 379 G Gabor transform 281 Gaussian classes 356, 362, 366, 367 Gaussian distribution 64 Gaussian random process 63, 73 generalization capability 350, 362, 371, 380, 384 Gibbs phenomenon 200, 212 H Haar wavelet 300, 303 Hamming window 131, 207, 271 Hanning window 132 Hebb and anti-Hebb rules 354, 389 Heisenberg-Gabor uncertainty principle 280 Henry line 86, 87, 89, 90, 101 high order ambiguity function (HAF) 309, 311, 312, 322, 324–330, 339, 340 high order instantaneous moment (HIM) 310–313 high order statistics 84, 85, 93 highpass filter 180, 206, 214 Hilbert transform (HT) 28, 29, 49–51, 199, 214 hyperbolic TFR class 316 I image compression 383, 385, 390 impulse invariance method 176–178Index 409 independent random variables 67 indicial response 139, 154, 165, 166, 169, 183 infinite impulse response (IIR) filters 173, 174, 197, 203 instantaneous frequency 39, 286–288, 305, 315, 318, 319, 321–325, 327, 331, 338, 339, 341 interference terms 286, 287, 295, 304, 307 J, K JADE algorithm 97 Kalman filter 218–220, 232, 233, 240 Karhunen-Loève transform (KLT) 345, 384, 385, 388, 389, 392, 395, 401, 403 kernel functions 361 K-means algorithm 387, 390, 399, 401 KNN (K nearest neighbor) classifiers 351– 353, 367, 369, 371, 381 kurtosis 85 L Lagrange multipliers 360 learning techniques 343 learning vector quantization (LVQ) 354 least squares (LS) method 203, 207, 214, 221, 222 Leonov-Shiryayev relationship 84 Levinson-Durbin algorithm 247 linear convolution 138, 144, 145, 148, 249 linear discriminant analysis (LDA) 346, 347, 362, 365, 366, 380 linear time-invariant system (LTI) 137, 139, 140, 141, 150, 151, 159, 162, 165–167, 169, 245 linearly separable classes 348, 356 Lorentz’s equations 44 lowpass filter 75, 164, 174, 180, 182, 186, 188, 194, 204, 210–214 M matched filter 215, 216, 223–225, 234, 235 MATLAB commands 3, 35 MATLAB functions 2, 9, 213, 258 MATLAB software 1, 2 MATLAB toolbox 376 matrix eigenanalysis 270, 275 matrix eigenvalues 6, 255 matrix eigenvectors 252, 384, 385 matrix operations 12 mean square error 345, 346, 354, 383, 385, 388, 390, 391, 394, 395, 401 membership coefficients 351–353, 357, 358 minimal entropy criterion 386 minimum description length (MDL) criterion 256 mirror filters 282 model order estimation 247, 248 modified periodogram 243, 244, 258, 260, 261, 263, 264, 277 Morlet wavelet 292, 294 mother wavelet 281 moving average (MA) model 246, 248, 249 multi-component PPS (mc-PPS) 309, 312 multi-lags HAF (ml-HAF) 312, 326–328, 330, 339, 340 multilayer perceptron 354, 355, 371, 372, 374, 375 multiresolution analysis 281–284, 300, 302, 303, 386 MUSIC algorithm 251, 253, 257, 269, 271 N neural KLT 388 neural networks 2, 348, 350, 353, 354, 388 Neyman-Pearson criterion 239 noise subspace 250, 252 non-linear frequency modulation 309 non-parametric estimation 351 non-stationary signals 280 normality test 86, 87 Nyquist theorem 177 O Occam razor principle 350 optimal decision 223, 224, 226, 354 optimization methods 199, 203 orthonormal basis 384410 Digital Signal Processing using MATLAB P parametric estimation 350, 351 parametric spectral analysis 245, 277 Parseval theorem 104, 134 passband ripple 174, 194, 209, 237 pattern recognition 343, 344, 348 pattern signature 343 polynomial modeling 309, 323, 324, 330 polynomial phase signal (PPS) 309–313, 330, 339, 340 power spectral density (PSD) 41, 62, 63, 73, 76, 78, 81, 120, 121, 215, 218, 238, 240, 242, 243, 245–249, 253, 257, 258, 266–268, 271, 277, 278, 288 prewarping 315, 316 Prewitt filter 229 principal component analysis (PCA) 345, 346, 362–364, 366, 380 probability density function (pdf) 56–62, 64–70, 80, 81, 83–86, 88, 216, 349, 350 projection methods 345 Prony’s method 256 pulse modulation 40 R Rader’s algorithm 108 radial basis function (RBF) 354, 361, 362 random vector 57, 58 receiver operating characteristics (ROC) 239 rectangular window 126, 131, 132, 200, 201, 205, 243 recursive least square (RLS) method 222, 229 Remez method 208, 209 Roberts filters 229 root-MUSIC algorithm 253 S Sammon method 345, 347, 348, 380 Sammon stress 348 Schwarz inequality 59 self-organizing Kohonen map 389 separating hyperplane 356, 357, 359, 360 Shannon-Weaver entropy 386 short-time Fourier transform (STFT) 280– 282, 284 signal reconstruction 382 signal subspace 250, 252, 254–256, 271 signal-to-noise ratio (SNR) 20, 22, 64, 81, 269, 273, 274, 276, 328, 338, 339 skewness 85 smoothed WVD (SWVD) 287, 304 Sobel’s filters 227, 229 spectral aliasing 33, 285 spectral leakage 119, 133, 277 spectral resolution 118, 127–130, 132–134, 243–247, 250, 253, 257, 260, 263, 268, 269, 280, 282, 291, 292, 294 spectrogram 280, 282, 284, 288, 290–292, 305 stability 159, 176, 179 state-space model 219, 240 statistical classification 343, 344 statistical moments 58, 83 stochastic process 55, 56, 241 stopband attenuation 203, 205 strict sense stationarity (SSS) 60, 61 super-resolution spectral analysis 273, 250 supervised learning 343 support vector machines (SVM) 356, 359, 360–362, 375, 376, 379, 382 support vectors 359, 360, 379 T time-frequency analysis 281, 290 time-frequency atoms 296, 304, 305 time-frequency plane 280, 282, 285, 287, 288, 292, 300, 307, 315 time-frequency representation (TFR) 96, 97, 290, 297, 305, 307, 309, 314–317, 331, 333, 334, 336, 340, 341 time-scale analysis 281 Toeplitz structure 63, 247 transfer function poles 151 transfer function sampling 175, 176 transfer function zeros 122, 151, 163, 170, 191, 194, 195, 218 transition band 33, 174, 200, 201, 203–205 triangular window 243Index 411 U, V unwarping 316 vector quantization (VQ) 354, 387–389, 401, 403 W warping operators 314, 315, 331, 334, 336, 337 wavelet family 281 wavelet packets 386 wavelet transform (WT) 281–283, 292, 295 Welch’s method 243, 244 wide sense stationarity (WSS) 61, 62 Wiener-Khintchine theorem 218, 245 Wigner-Ville distribution (WVD) 284, 285, 295–299, 305, 307, 331, 333, 340 windowg method 199, 200, 202, 204, 207 Winograd algorithm 108 Y, Z Yule-Walker equations 246, 247, 249, 385 zero-padding 118, 134 zero-phase transfer function 197, 200, 202, 203 Z-transform (ZT) 103, 106, 121, 122 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Digital Signal Processing using MATLAB رابط مباشر لتنزيل كتاب Digital Signal Processing using MATLAB
|
|