Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Heat and Mass Transfer الثلاثاء 25 أكتوبر 2022, 5:57 am | |
|
أخواني في الله أحضرت لكم كتاب Heat and Mass Transfer A textbook for the students preparing for B.E., B.Tech., B.Sc. Engg., AMIE, UPSC (Engg. Services) and GATE Examinations IN Er. R.K. RAJPUT M.E. (Hons.), Gold Medalist; Grad. (Meeh. Engg. & Elec. Engg.); MIE (India) MSESI; MISTE; CE (India) Recipient of : “Best Teacher (Academic) Award" "Distinguished Author Award" "Jawahar Lal Nehru Memorial Gold Medal" for an Outstanding Research Paper (Institution of Engineers-lndia) Principal (Formerly) Punjab College of Information Technology PATIALA
و المحتوى كما يلي :
CON Chapters Nomenclature 1. BASIC CONCEPTS Pages (xv)—(xvi) 1- 24 1.1. 1.2. 1.3. 1.4. Heat Transfer—General Aspects, 1 1.1.1. Heat, 1 1.1.2. Importance of heat transfer, 2 1.1.3. Thermodynamics, 2 1.1.3.1. Definition, 2 1.1.3.2. Thermodynamic systems, 3 1.1.3.3. Macroscopic and microscopic points of view, 4 1.1.3.4. Pure substance, 4 1.1.3.5. Thermodynamic equilibrium, 5 1.1.3.6. Properties of systems, 6 1.1.3.7. State, 6 1.1.3.8. Process, 6 1.1.3.9. Cycle, 7 1.1.3.10. Point function, 7 1.1.3.11. Path function, 7 1.1.3.12. Temperature, 7 1.1.3.13. Pressure, 8 1.1.3.14. Energy, 8 1.1.3.15. Work, 8 1.1.3.16. Heat, 9 1.1.3.17. Comparison of work and heat, 11 1.1.4 Differences between thermodynamics and heat transfer, 10 1.1.5. Basic laws governing heat transfer, 10 1.1.6. Modes of heat transfer, 11 Heat Transfer by Conduction, 13 1.2.1. Fourier's law of heat conduction, 13 1.2.2. Thermal conductivity of materials, 14 1.2.3. Thermal resistance (Rth), 16 Heat Transfer by Convection, 18 Heat Transfer by Radiation, 19 Highlights, 22 Theoretical Questions, 24 Unsolved Examples, 24 PART I : HEAT TRANSFER BY “CONDUCTION” 2. CONDUCTION-STEADY-STATE ONE DIMENSION 27—268 2.1. Introduction, 27 2.2. General Heat Conduction Equation in Cartesian Coordinates, 27 2.3. General Heat Conduction Equation in Cylindrical Coordinates, 32 2.4. General Heat Conduction Equation in Spherical Coordinates, 35 (vn)2.5. Heat Conduction Through Plane and Composite Walls, 38 2.5.1. Heat conduction through a plane wall, 38 2.5.2. Heat conduction through a composite wall, 42 2.5.3. The overall heat transfer coefficient, 45 2.6. Heat Conduction Through Hollow and Composite Cylinders, 87 2.6.1. Heat conduction through a hollow cylinder, 87 2.6.1.1. Logarithmic mean area for the hollow cylinder, 93 2.6.2. Heat conduction through a composite cylinder, 94 2.7. Heat Conduction Through Hollow and Composite Spheres, 128 2.7.1. Heat conduction through a hollow sphere, 128 2.7.1.1. Logarithmic mean area for the hollow sphere, 131 2.7.2. Heat condition through a composite sphere, 132 2.8. 2.9. 2.10. Critical Thickness of Insulation, 142 2.8.1. Insulation-General aspects, 142 2.8.2. Critical thickness of insulation, 143 Heat conduction with Internal Heat Generation, 150 2.9.1. Plane wall with uniform heat generation, 150 2.9.2. Dielectric heating, 167 2.9.3. Cylinder with uniform heat generation, 171 2.9.4. Heat transfer through the piston crown, 192 2.9.5. Heat conduction with heat generation in the nuclear cylindrical fuel rod, 193 2.9.6. Sphere with uniform heat generation, 200 Heat Transfer from Extended Surfaces (Fins), 203 2.10.1.Introduction, 203 2.10.2. Heat flow through "Rectangular fin", 205 2.10.2.1. Heat dissipation from an infinitel 2.10.2.2. Heat dissipation from a fin insulated at the tip, 213 2.10.2.3. Heat dissipation from a fin losing heat at the tip, 224 2.10.2.4. Efficiency and effectiveness of fin, 233 2.10.2.5. Design of rectangular fins, 238 2.10.3. Heat flow through "straight triangular fin", 242 2.10.4.Estimation of error in temperature measurement in a thermometer well, 245 2.10.5.Heat transfer from a bar connected to the two heat sources at different temperatures, 250 Highlights, 259 Theoretical Questions, 263 Unsolved Examples, 263 3. CONDUCTION-STEADY-STATE TWO DIMENSIONS AND THREE DIMENSIONS 269-289 3.1. Introduction, 269 3.2. Two Dimensional Steady State Conduction, 270 3.2.1. Analytical method, 270 (viii)3.2.1.1. Two-dimensional steady state heat con¬ duction in rectangular plates, 270 3.2.1.2. Two-dimensional steady state heat con duction in semi-infinite plates, 272 3.2.2. Graphical method, 277 3.2.3. Analogical method, 284 3.2.4. Numerical methods, 285 3.3. Three-dimensional Steady State Conduction, 287 Highlights, 289 Theoretical Questions, 289 Unsolved Examples, 289 4. CONDUCTION-UNSTEADY-STATE (TRANSIENT) 290—336 4.1. Introduction, 290 4.2. Heat conduction in Solids having Infinite Thermal Conductivity (Negligible Internal Resistance) — Lumped Parameter Analysis, 291 4.3. Time constant and Response of Temperature Measuring Instruments, 304 4.4. Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances (0 < B. < 100), 308 4.5. Transient Heat Conduction in Semi-infinite Solids (h or B. «>), 318 4.6. Systems with Periodic Variation of Surface Tem¬ perature, 326 4.7. Transient Conduction with Given Temperature Distribution, 328 Typical Examples, 328 Highlights, 329 Theoretical Questions, 333 Unsolved Examples, 333 PART II : HEAT TRANSFER BY “CONVECTION” 5. INTRODUCTION TO HYDRODYNAMICS 5.1. Introduction, 339 5.2. Ideal and Real Fluids, 339 5.3. Viscosity, 340 5.4. Continuity Equation in Cartesian Coordinates, 341 5.5. Equation of Continuity in Polar Coordinates, 343 5.6. Velocity Potential and Stream Function, 343 5.6.1. Velocity potential, 343 5.6.2 Stream function, 345 5.7. Laminar and turbulent flows, 347 Highlights, 350 Theoretical Questions, 351 339-351 (.VC)6. DIMENSIONAL ANALYSIS 352 — 372 7. A. 6.1. Introduction, 352 6.2. Dimensions, 353 6.3. Dimensional Homogeneity, 353 6.4. Methods of Dimensional Analysis, 354 6.4.1. Rayleigh's Method, 354 6.4.2. Buckingham'sK-Method/Theorem, 356 6.5. Dimensional Analysis Applied to Forced Convection Heat Transfer, 362 6.6. Dimensional Analysis Applied to Natural or Free Convection, 364 6.7. Advantages and Limitations of Dimensional Analysis, 365 6.8. Dimensional Numbers and their Physical significance, 366 6.9. Characteristic Length or Equivalent Diameter, 369 6.10. Model Studies and Similitude, 371 6.10.1. Model and prototype, 371 6.10.2. Similitude, 371 Highlights, 371 Theoretical Questions, 372 FORCED CONVECTION LAMINAR FLOW,373 7.1. Laminar Flow over a Flat Plate, 373 7.1.1. Introduction to boundary layer, 373 7.1.1.1. Boundary layer definitions and characteristics, 374 7.1.2. Momentum equation for hydrodynamic boundary layer over a flat plate, 380 7.1.3. Blasius (exact) solution for laminar boundary layer flows, 382 7.1.4. Van-Karman integral momentum equation (Approximate hydro-dynamic boundary layer analysis), 387 7.1.5. Thermal boundary layer, 398 7.1.6. Energy equation of thermal boundary layer over a flat plat, 399 7.1.7. Integral energy equation (Approximate solution of energy equation), 406 7.2. Laminar Tube Flow, 424 7.2.1. Development of boundary layer, 424 7.2.2. Velocity distribution, 425 7.2.3. Temperature distribution, 428 373- 505 WB.TURBULENTFLOW,435 7.3. Introduction, 435 7.3.1. Turbulent boundary layer, 436 7.3.2. Total drag due to laminar and turbulent layers, 439 7.3.3. Reynolds analogy, 446 7.4. Turbulent Tube Flow, 457 7.5. Empirical Correlations 465 7.5.1. Laminar flow over flat plates and walls, 465 7.5.2. Laminar flow inside tubes, 466 7.5.3. Turbulent flow over flat plate, 470 7.5.4. Turbulent flow in tubes, 470 7.5.5. Turbulent flow over cylinders, 480 7.5.6. Turbulent flow over spheres, 486 7.5.7. Flow across bluff objects, 487 7.5.8. Flowthrough packed beds, 487 7.5.9. Flow across a bank of tubes, 489 7.5.10. Liquid metal heat transfer, 492 Highlights, 495 Theoretical Questions, 499 Unsolved Examples, 500 8. FREE CONVECTION 506- 538 8.1. Introduction, 506 8.2. Characteristic Parameters in Free Convection, 507 8.3. Momentum and Energy Equation for Laminar Free Convection Heat Transfer on a Flat Plate, 508 8.4. Integral Equations for Momentum and Energy on a Flat Plate, 509 8.4.1. Velocity and temperature profiles on a vertical flat plate, 509 8.4.2. Solution of integral equations for vertical flat plate, 510 8.4.3. Free convection heat transfer coefficient for a vertical wall, 511 8.5. Transition and Turbulence in Free Convection, 512 8.6. Empirical Correlations for Free Convection, 512 8.6.1. Vertical platesand cylinders, 512 8.6.2. Horizontal plates, 512 8.6.3. Horizontal cylinders, 513 8.6.4. Inclined plates, 513 8.6.5. Spheres, 513 8.6.6. Enclosed spaces, 513 8.6.7. Concentric cylinders space 514 8.6.8. Concentric spheres spaces, 514 8.7. Simplified Free Convection Relations for Air, 514 8.8. Combined Free and Forced Convection, 514 8.8.1. External flows, 515 8.8.2. Internal flows, 515 Typical Examples, 533 Highlights, 536 Unsolved Examples, 537 (xi)9. BOILING AND CONDENSATION 539- 573 9.1. Introduction, 539 9.2. BoilingHeat Transfer, 540 9.2.1. General aspects, 540 9.2.2. Boilingregimes, 541 9.2.3. Bubble shape and size consideration, 542 9.2.4. Bubble growth and collapse,543 9.2.5. Critical diameter of bubble, 544 9.2.6. Factors affectingnucleate boiling, 544 9.2.7. Boilingcorrelations, 545 9.2.7.1. Nucleate pool boiling, 545 9.2.7.2. Critical heat flux for nucleate pool boiling, 546 9.2.7.3. Film pool boiling, 546 9.3. Condensation Heat Transfer, 550 9.3.1. General aspects, 550 9.3.2. Laminar film condensation on a vertical plate, 552 9.3.3. Turbulent film condensation, 557 9.3.4. Film condensation on horizontal tubes, 558 9.3.5. Film condensation inside horizontal tubes, 558 9.3.6. Influence ofthe presence of non-condensable gases, 559 Highlights, 570 Theoretical Questions, 572 Unsolved Examples, 572 10. HEAT EXCHANGERS 574- 669 10.1. Introduction, 574 10.2. Types of Heat Exchangers, 574 10.3. Heat Exchanger Analysis, 580 10.4. Logarithmic Mean Temperature Difference (LMTD), 581 10.4.1. Logarithmic mean temperature difference for parallel-flow, 581 10.4.2. Logarithmic mean temperature difference for counter-flow, 583 10.5. Overall Heat Transfer Coefficient, 585 10.6. Correction Factors for Multi-pass Arrangements, 622 10.7. Heat Exchanger Effectiveness and Number of Transfer Units (NTU), 627 10.8. Pressure Drop and PumpingPower, 631 10.9. Evaporators, 659 10.9.1. Introduction, 659 10.9.2. Classification of evaporators, 659 Highlights, 665 Theoretical Questions, 666 Unsolved Examples, 666 (xii)PART III : HEAT TRANSFER BY “RADIATION” 11. THERMAL RADIATION-BASIC RELATIONS 673- 687 11.1. Introduction, 673 11.2. Surface Emission Properties, 674 11.3. Absorptivity,Reflectivity and Transmissivity, 675 11.4. Concept of a Black body, 677 11.5. The Stefan-Boltzmann Law, 678 11.6. Kirchoff's Law, 678 11.7. Planck's Law, 679 11.8. Wien Displacement Law, 680 11.9. Intensity of Radiation and Lambert's Cosine Law, 681 11.9.1. Intensity of radiation, 681 11.9.2. Lambert's cosine law, 683 Highlights, 686 Theoretical Questions, 687 Unsolved Examples, 687 12.RADIATION EXCHANGE BETWEEN SURFACES 688 — 764 12.1. Introduction, 688 12.2. Radiation Exchange Between Black Bodies Separated by an a Non-absor¬ bingMedium, 688 12.3. Shape Factor Algebra and Salient Features of the Shape Factor, 692 12.4. Heat Exchange Between Non-black Bodies, 710 12.4.1. Infinite parallel planes, 710 12.4.2. Infinite longconcentric cylinders, 710-711 12.4.3. Small gray bodies, 714 12.4.4. Small body in a large enclosure, 714 12.5. Electrical Network Analogy for Thermal Radiation Systems, 716 12.6. Radiation Heat Exchange for Three Gray Surfaces, 718 12.7. Radiation Heat Exchange for Two Black Surfaces Connected by a Single Refractory surface, 719 12.8. Radiation Heat Exchange for Two Gray Surfaces Connected by Single Refractory Surface, 720 12.9. Radiation Heat Exchange for Four Black Surfaces, 721 12.10. Radiation Heat Exchange for Four Gray Surfaces, 721 12.11. Radiation Shields, 742 12.12. Coefficient of Radiant Heat Transfer and Radiation Combined with Convection, 754 12.13. Error in Temperature Measurement due to Radiation, 756 12.14. Radiation from Gases, Vapours and Flames, 760 Highlights, 762 Theoretical Questions, 763 Unsolved Examples, 763 (xiii)PART IV : MASS TRANSFER 13.MASS TRANSFER 767—808 13.1. Introduction, 767 13.2. Modes of Mass Transfer, 768 13.3. Concentrations, Velocities and Fluxes, 768 13.3.1. Concentrations, 768 13.3.2. Velocities, 769 13.3.3. Fluxes, 770 13.4. Fick's Law, 772 13.5. General Mass Diffusion Equation in Stationary Media, 777 13.6. Steady-State Diffusion in Common Geometries, 779 13.6.1. Steady state diffusion through a plain membrane, 779 13.6.2. Steady state diffusion through a cylindrical shell 781 13.6.3. Steady state diffusion through aspherical shell, 783 13.7. Steady-State Equimolar Counter Diffusion, 785 13.8. Steady State Undirectional Diffusion (Steady state Diffusion through a stagnant Gas Film), 788 13.9. Steady State Diffusion in Liquids, 794 13.10. Transient Mass Diffusion in Semi-finite Stationary Medium, 795 13.11. Mass Transfer Co-efficient, 796 13.12. Convective Mass Transfer, 799 13.13. Correlations for Connective Mass Transfer, 800 13.14. Reynolds and Colburn Analogies for Mass Transfer-Combined Heat and Mass Transfer, 801 Highlights, 805 Theoretical Questions,806 Unsolved Examples, 807 14. UNIVERSITIES' QUESTIONS (Latest) - with Solutions 809-821 ADDITIONAL/TYPICAL WORKED EXAMPLES 822-845 (QuestionsselectedfromUniversities’and Competitive Examinations) PART V : OBJECTIVE TYPE QUESTIONS BANK WITH ANSWERS & INDEX Objective Type Questions Index 849-901 902-903 (xiv)INDEX B Biot number, 294 Black body, 676 Blasius exact solution for laminar boundary layer flow, 382 Boiling and condensation, 539 Boiling heat transfer, 540 - boilingcorrelations,545 - boilingregimes,541 - bubble growth and collapse, 543 - bubble shape and size consideration, 542 - critical diameterof bubble,544 - factorsaffecting nucleateboiling,544 c Characteristic length, 369 Condensation heat transfer, 550 - dropwise condensation, 551 - film condensation,551 - laminar film condensation on a vertical plate, 552 - turbulent film condensation, 557 Convective mass transfer, 799 correlation for, 800 Conduction-unsteady state, 290 - in semi-finite solids, 318 - lumped parameter analysis, 291 - thermal time constant, 293 Conduction shape factor, 279 Continuity equation, 341 - in cartesian coordinates, 342 - in polar coordinates, 343 Critical thickness of insulation, 143 - for cylinder, 143 - for sphere, 145 Cycle, 7 D Dimensional analysis, 352 Dimensions, 353 Dimensional homogeneity, 353 - advantages and limitations of, 365 - applications of, 353 - applied to forced convention heat transfer, 362 - applied to natural or free convection heat transfer, 364 - methods of, 354 - Buckingham’s method, 356 Dimensional numbers, 366 E Energy, 8 Evaporators, 659 F Fick’s law, 772 Forced convection, 373 - empirical correlationsfor, 465 - laminar flowover flat platesand walls, 465 - laminar flow inside tubes, 466 - turbulent flow over flat plate, 470 - turbulent flow in tubes, 470 - turbulent flow over cylinders, 480 - turbulent flow over spheres, 486 - flow across bluff bodies, 487 - flow through packed beds, 489 - flow across a bank of tubes, 489 - liquid metal heat transfer, 492 - laminar flowovera flat plate, 373 - boundary layer thickness, 375 - displacement thickness, 375 - energy thickness, 377 - integral energy equation, 406 - momentum thickness, 376 - momentum equation for hydrodynamic layer, 380 - thermal boundary layer, 398 - Fourier’s law, 13 Fourier number, 294 Free convection, 506 - characteristics parameters in, 507 - empiricalcorrelations,512 - concentric cylinders spaces, 514 - enclosed spaces, 513 - horizontal plates, 512 - horizontal cylinders, 513 - inclined plates, 512 - spheres, 513 - vertical plates and cylinders, 512 - transition and turbulence in, 512 G Gaussian error function, 319 H Heat, 1, 9 Heat exchangers, 574 - analysis of, 580 - compact, 579 - concentric tubes, 578 - condensers, 579 - counter-flow, 576 - cross-flow, 577 - effectiveness and NTU, 627 - logarithmic mean temperature difference, 581 - for parallel-flow,581 - for counter-flow, 583 - overall heat transfercoefficient, 585 - parallel-flow,576 - pressure drop and pumping power, 631 - recuperators, 576 - regenerators,575 - types of, 563 Heat transfer, 1 - from fins, 203 902Chapter : 9 : Boiling and Condensation 903 - straight triangular fin, 242 - rectangular fin, 205 - modes of, 11 - conduction, 11 - convection, 12 - radiation, 12 Heister charts, 309 I Integral energy equation, 406 K Kirchhoff’s law, 19, 678 L Laminar flow, 347, 373 - over a flat plate, 373 Lambert’s cosine law, 681 Laminar tube flow, 424 - development of boundary layer, 424 - temperature distribution, 428 - velocity distribution, 425 M Mass transfer, 767 - concentrations, 768 - mass concentration, 768 - mass fraction, 769 - molar concentration, 768 - mole fraction, 769 - convective mass transfer, 799 - mass diffusion coefficient, 774 - fluxes,770 - mass diffusion equation, 777 - mass transfer coefficient, 796 - modes of, 768 - by change of phase, 768 - by convection, 768 - by diffusion, 768 - steady state equimolar counter diffusion, 785 - velocities, 769 - mass-average velocity,769 - mass-diffusion velocity, 770 - molar-average velocity,769 - molar-diffusion velocity, 770 Model studies and similitude, 371 o Opaque body, 676 Overall heat transfer coefficient, 45 P Path function, 7 Planck’s law, 679 Point function, 7 Process, 6 Pure substance, 4 R Radiation exchange between surfaces, 688 - electrical network analogy, 716 - gray body factor, 718 - irradiation, 716 - radiosity, 716 - space resistance, 717 - heatexchange between non-black bodies, 710 - infinite parallel planes, 710 - infinite long concentric cylinders, 711 - small gray bodies, 714 - small body in a largeenclosure, 714 - radiation shields, 742 - shape factor algebra, 692 Radiation heat transfer, 673 - absorptivity, reflectivity and transmissivity, 675 - black body, 676 - intensity of radiation, 681 - surface emission properties, 674 - monochromatic emissive power, 674 - total emissive power, 674 - the Stefan-Boltzmann law, 678 Rayleigh’s method, 354 Rectangular fin, 205 - design of, 238 - effectiveness of, 233 - efficiency of, 233 Recuperators, 576 Regenerators, 575 Reynolds number, 349 s Shape factor algebra, 692 State, 6 Stefan-Boltzmann law, 678 Stefan’s law for diffusion, 790 Stream function, 345 - properties of, 346 T Temperature, 7 Thermal conductivity, 14 Thermal resistance, 16 Thermal boundary layer, 398 - energy equation of, 399 - Pohlhausen solution, 401 Thermal contact resistance, 44 Thermal diffusivity, 30 Thermodynamics, 3 Thermodynamic equilibrium, 5 Thermodynamic systems, 3 Turbulent flow, 348, 435 Turbulent boundary layer, 436 Turbulent tube flow, 457 V Velocity potential, 343 Viscosity, 340 - Newton’s law of, 341 - units of, 341 Von Karman integral momentum equation, 387 W White body, 676 Wien’s displacement law, 680 Wien’s law, 19 Work, 8
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Heat and Mass Transfer رابط مباشر لتنزيل كتاب Heat and Mass Transfer
|
|