Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Refrigeration and Air Conditioning الخميس 10 نوفمبر 2022, 1:32 am | |
|
أخواني في الله أحضرت لكم كتاب Refrigeration and Air Conditioning Ramesh Chandra Arora Formerly Professor Department of Mechanical Engineering Indian Institute of Technology Kharagpur
و المحتوى كما يلي :
Contents Preface xiii Acknowledgements xv 1 History of Refrigeration 1–18 1.1 Introduction 1 1.2 Natural Cooling Processes 2 1.3 Mechanical Cooling Processes 3 References 17 Review Questions 17 2 Thermal Principles—A Review of Fundamentals 19–96 2.1 Introduction 20 2.2 Thermodynamic Properties 20 2.3 Closed and Open Systems 21 2.4 Units 22 2.5 The Four Laws of Thermodynamics 28 2.6 Zeroth Law of Thermodynamics 28 2.7 First Law of Thermodynamics 29 2.8 First Law of Thermodynamics for Open Systems 31 2.9 Second Law of Thermodynamics 32 2.10 Fundamental Relations of Thermodynamics 36 2.11 Third Law of Thermodynamics 38 2.12 Perfect Gas 38 2.13 Mixture of Ideal Gases 39 2.14 Real Gas and Vapours 40 2.15 Dry Air 42 2.16 Properties of Pure Substance 43 vi Contents 2.17 Correlations for Properties of Refrigerants 49 2.18 Heat Transfer 50 2.19 Conduction 50 2.20 Fick’s Law of Diffusion 53 2.21 Thermal Radiation 54 2.22 Convection 59 2.23 Condensation Heat Transfer 66 2.24 Boiling Heat Transfer 67 2.25 Reynolds Analogy 69 2.26 Analogy between Heat, Mass and Momentum Transfer 69 2.27 Heat Transfer through Composite Walls and Cylinder 70 2.28 Heat Exchangers 75 2.29 Fluid Flow 77 2.30 Cooling Processes 85 References 95 Review Questions 95 3 Mechanical Vapour Compression Cycles 97–170 3.1 Introduction 98 3.2 Vapour Compression Cycle 98 3.3 Refrigeration Capacity 99 3.4 Coefficient of Performance 99 3.5 Reversed Carnot Cycle or Carnot Refrigeration Cycle 100 3.6 External Regime and Internal Regime 106 3.7 Gas as Refrigerant 108 3.8 Pure Substance as Refrigerant 116 3.9 Standard Vapour Compression Cycle or Vapour compression Cycle or Single Stage Saturation (SSS) Cycle 121 3.10 Representation of Work as Areas on the T–s Diagram 125 3.11 Comparison of Standard Refrigeration Cycle with Reversed Carnot Cycle 126 3.12 Refrigerant Tables—Thermodynamic Properties 130 3.13 Subcooling and Superheating 132 3.14 Performance of Single Stage Saturation Cycle 137 3.15 Effect of Refrigerant Properties 141 3.16 Suction State for Optimum COP, Ewing’s Construction 143 3.17 Actual Cycle Diagram 148 Review Questions 169 4 Compressors 171–241 4.1 Introduction 172 4.2 Thermodynamics of Compression 172 4.3 Reciprocating Compressors 177 4.4 Hermetic Compressors 197 4.5 Rotary Compressors 205 4.6 Centrifugal Compressors 214 4.7 Comparison with Reciprocating Compressor 235 4.8 Capacity Control 238 Contents vii 4.9 Selection of Compressors 239 References 240 Review Questions 241 5 Performance of Single Stage Saturation Cycle with Reciprocating Compressor 242–268 5.1 Introduction 243 5.2 Volumetric Efficiency and Mass Flow Rate 245 5.3 Work Requirement and HP/TR 246 5.4 Specific Refrigeration Effect and Refrigeration Capacity 247 5.5 Swept Flow Rate per TR 248 5.6 Adiabatic Discharge Temperature 249 5.7 Coefficient of Performance 250 5.8 Methods of Improving COP 250 5.9 Choice of Intermediate Pressure 254 5.10 Optimum Intermediate Pressure for Ideal Gas Compressor with Ideal Intercooling 255 5.11 Optimum Intermediate Pressure if Intercooling is Done Up to Temperature Tw 258 5.12 Optimum Intermediate Pressures for Three-Stage Compression 259 Reference 267 Review Questions 267 6 Multistage Refrigeration Systems 269–349 6.1 Introduction 270 6.2 Two-stage NH3 Cycle 270 6.3 Recommended Temperature Ranges for Multistage Systems 291 6.4 Multi-evaporator Systems 303 6.5 Two-stage Reversed Carnot Cycle 316 6.6 Limitations of Multistage Systems 318 6.7 Cascade Refrigeration System 320 6.8 Dry Ice Manufacture 337 6.9 Auto-cascade System 347 References 348 Review Questions 348 7 Absorption Refrigeration Systems 350–409 7.1 Introduction 351 7.2 Absorption Cycle of Operation 351 7.3 Maximum COP 353 7.4 Properties of Solutions 354 7.5 Aqua–Ammonia Solution 360 7.6 Simple Absorption System 369 7.7 h–x Diagram for Simple Absorption System 373 7.8 Drawbacks of Presence of Water Vapour in Evaporator and Condenser 379 7.9 Ammonia Enrichment Process 380 7.10 Water–Lithum Bromide Absorption Refrigeration System 393 7.11 The Platen–Munters System 404 viii Contents 7.12 Properties of Refrigerant Pairs for Absorption Systems 407 7.13 Comparison of Absorption System with Mechanical Vapour Compression Refrigeration System 408 References 408 Review Questions 409 8 Refrigerants 410–471 8.1 Introduction 410 8.2 Designation of Refrigerants 411 8.3 Some Commonly Used Refrigerants 414 8.4 Desirable Properties of Refrigerants 415 8.5 Reaction with Lubricating Oil 423 8.6 Reaction with Moisture 425 8.7 Thermodynamic Properties 426 8.8 Alternative Refrigerants 432 8.9 Mixtures 436 8.10 Alternatives to Various Popular Refrigerants 456 8.11 Natural Refrigerants 462 8.12 Secondary Refrigerants 465 References 468 Review Questions 470 9 Expansion Valves 472–504 9.1 Introduction 473 9.2 Capillary Tube 473 9.3 Automatic Expansion Valve 486 9.4 Thermostatic Expansion Valve 492 9.5 Float Type Expansion Valve 499 9.6 Electronic Type Expansion Valve 501 9.7 Some Practical Problems in Operation of Expansion Valves 502 References 503 Review Questions 503 10 Condensers 505–548 10.1 Introduction 505 10.2 Heat Rejection Ratio 506 10.3 Types of Condensers 506 10.4 Comparison of Water-cooled and Air-cooled Condensers 507 10.5 Comparison of Water-cooled and Evaporative Condensers 508 10.6 Air-cooled Condenser 508 10.7 Mean Temperature Difference for Crossflow Heat Exchanger 510 10.8 Fin Efficiency 514 10.9 Heat Transfer Areas 520 10.10 Overall Heat Transfer Coefficient 522 10.11 Heat Transfer Coefficients 523 10.12 Water Cooled Condensers 530 References 547 Review Questions 548 Contents ix 11 Evaporators 549–570 11.1 Introduction 549 11.2 Classification of Evaporators 549 11.3 Natural Convection Coils 550 11.4 Flooded Evaporator 551 11.5 Shell-and-Tube Liquid Chillers 552 11.6 Direct Expansion Coil 556 11.7 Plate Surface Evaporators 556 11.8 Finned Evaporators 558 11.9 Boiling Heat Transfer Coefficients 567 Reference 570 Review Questions 570 12 Complete Vapour Compression System 571–582 12.1 Introduction 571 12.2 Reciprocating Compressor Performance Characteristics 572 12.3 Condenser Performance Characteristics 573 12.4 Evaporator Performance Characteristics 576 12.5 Expansion Valve Characteristics 577 12.6 Condensing Unit characteristics 577 12.7 Performance of Complete System—Condensing Unit and Evaporator 579 12.8 Effect of Expansion Valve 581 12.9 Conclusion 581 Reference 582 Review Questions 582 13 Gas Cycle Refrigeration 583–658 13.1 Introduction 583 13.2 Ideal Gas Behaviour 584 13.3 Temperature Drop Due to Work Output 584 13.4 Temperature Drop in Steady Flow Due to Change in Kinetic Energy 585 13.5 Temperature Drop in Closed System Due to Change in Kinetic Energy 586 13.6 Reversed Carnot and Joule Cycles for Gas Refrigeration 586 13.7 Aircraft Refrigeration Cycles 608 13.8 Vortex Tube Refrigeration 633 13.9 Pulse Tube 637 13.10 Stirling Cycle 641 13.11 Air Liquefaction Cycles 648 Review Questions 656 14 Water—Steam Ejector—Refrigeration System and Thermoelectric Refrigeration System 659–688 14.1 Introduction 659 14.2 Principle of Operation 660 14.3 Centrifugal Compressor-Based System 661 14.4 Steam-Jet Ejector System 664 x Contents 14.5 Thermoelectric Refrigeration or Electronic Refrigeration 674 Reference 687 Review Questions 687 15 Air Conditioning 689–695 15.1 Historical Review 689 15.2 HVAC Systems 691 15.3 Classifications 692 References 695 Review Questions 695 16 Thermodynamic Properties of Moist Air 696–730 16.1 Mixtures of Gases 697 16.2 Amagat–Leduc’s Law 697 16.3 Gibbs–Dalton’s Law 699 16.4 Properties of Air–Water Vapour Mixture 701 16.5 Specific Humidity or Humidity Ratio 707 16.6 Humidity Ratio at Saturation 707 16.7 Degree of Saturation 709 16.8 Relative Humidity 709 16.9 Dew Point 710 16.10 Enthalpy of Moist Air 711 16.11 Humid Specific Heat 711 16.12 Thermodynamic Wet-Bulb Temperature 712 16.13 Goff and Gratch Tables 715 16.14 Psychrometric Charts 724 16.15 Typical Air Conditioning Processes 730 Review Questions 730 17 Elementary Psychrometric Processes 731–759 17.1 Introduction 731 17.2 Sensible Heating or Cooling of Moist Air 732 17.3 Humidification 734 17.4 Pure Humidification 736 17.5 Combined Heating and Humidification or Cooling and Dehumidification 737 17.6 Adiabatic Mixing of Two Streams of Moist Air 740 17.7 Adiabatic Mixing of Two Streams with Condensation 742 17.8 Air Washer 752 17.9 Adiabatic Dehumidification 756 17.10 Dehumidification by Hygroscopic Spray 757 17.11 Sprayed Coils 758 Review Questions 758 18 Wetted Surface Heat Transfer—Psychrometer, Straight Line Law and Psychrometry of Air Conditioning Processes 760–818 18.1 Introduction 761 18.2 Heat and Mass Transfer Relations 761 18.3 Theory of Psychrometer 765 Contents xi 18.4 Humidity Standards 781 18.5 Other Methods of Measuring Humidity 782 18.6 Cooling and Dehumidification through Cooling Coil 783 18.7 Air Conditioning System 790 References 817 Review Questions 817 19 Comfort—Physiological Principles, IAQ and Design Conditions 819–871 19.1 Introduction 820 19.2 Mechanical Efficiency of Humans 820 19.3 Metabolic Heat 820 19.4 Energy Balance and Models 823 19.5 Energy Exchange with Environment 824 19.6 Thermoregulatory Mechanisms 832 19.7 Heat Transfer Coefficients 834 19.8 Environmental Parameters 836 19.9 Application of Physiological Principles to Comfort Air Conditioning Problems 837 19.10 Prediction of Thermal Comfort and Thermal Sensation 839 19.11 Standard Effective Temperature and Modified Comfort Chart 843 19.12 Effect of Other Variables on Comfort 846 19.13 Indoor Air Quality 847 19.14 Inside Design Conditions 861 19.15 Outdoor Design Conditions 864 References 870 Review Questions 871 20 Solar Radiation 872–902 20.1 Introduction 872 20.2 Sun 873 20.3 Earth 873 20.4 Basic Solar Angles 875 20.5 Time 876 20.6 Derived Solar Angles 878 20.7 Angle of Incidence 882 20.8 Solar Radiation Intensity 888 20.9 The Radiation Intensity on Earth’s Surface 890 20.10 Shading of Surfaces from Direct Radiation 897 References 902 Review Questions 902 21 Load Calculations 903–992 21.1 Introduction 904 21.2 Steady-State Heat Transfer through a Homogeneous Wall 904 21.3 Non-homogeneous Wall 906 21.4 Solar Radiation Properties of Surfaces 913 21.5 Radiation Properties of Diathermanous Materials 915 xii Contents 21.6 Heat Balance for the Glass 922 21.7 Periodic Heat Transfer through Walls and Roofs 936 21.8 Z-Transform Methods 954 21.9 Infiltration 956 21.10 Water Vapour Transfer through Building 970 21.11 Load Calculations—General Considerations 971 21.12 Internal Heat Gains 972 21.13 System Heat Gain 978 21.14 Cooling Load Estimate 982 21.15 Heating Load Estimate 983 References 991 Review Questions 992 22 Room Airflow and Duct Design 993–1050 22.1 Introduction 993 22.2 Continuity Equation 996 22.3 Momentum Conservation 997 22.4 Energy Equation 999 22.5 Static, Dynamic and Total Pressure 999 22.6 Pressure Drop 1001 22.7 Conversion from Circular to Rectangular Dimensions 1006 22.8 Minor Losses 1010 22.9 Airflow through Duct Systems with Fan 1020 22.10 Air Duct Design 1022 22.11 Room Air Distribution 1032 22.12 Air Distribution System Design 1043 References 1049 Review Questions 1050 23. Fans 1051–1070 23.1 Introduction 1051 23.2 Performance of Fans 1052 23.3 Fan Characteristics 1055 23.4 Vaneaxial Fan 1057 23.5 Fan Laws 1057 23.6 Fan Selection 1058 23.7 System Characteristics 1061 23.8 Ductwork in Series and Parallel 1062 23.9 Effect of Change in Fan Speed 1063 23.10 Effect of Change in Air Density 1064 23.11 Fan Installation 1066 23.12 Fans for Variable Volume Systems 1067 23.13 Fans in Series and Parallel 1068 Reference 1070 Review Questions 1070 Appendix 1071–1079 Index 1080–1087 1081 Index Absolute zero, 38 Absorption refrigeration system, 351 ammonia absorption system, 352 comparison with mechanical vapour compression system, 408 COP, 353 drawbacks of, 379 dual-effect system, 397 h–x diagram, 373 Platen–Munters system, 404 properties of refrigerant pairs, 407 water–lithium bromide system, 393 Adiabatic dehumidification, 766 Adiabatic demagnetization, 92 Adiabatic discharge temperature, 143 Adiabatic equivalent temperature, 832 Adiabatic mixing, 369 with heat rejection, 370 Adiabatic saturation temperature, 711, 753, 831 Adjusted dry-bulb temperature, 843 Air cleaning, 858 Air conditioning, 8 classification, 692–695 historical review, 689 a typical system, 994 Air distribution performance index (ADPI), 1044 Air liquefaction cycles, 648 Claude cycle, 654 Linde cycle, 651 Air–vapour mixture, 701 Air washer, 752 processes, 754 Aircraft refrigeration cycles bootstrap system, 616 classification of, 610 comparison of, 624 cooling loads, 609 based upon DART, 625 reduced ambient, 622 with regeneration, 620 simple aircraft refrigeration system, 610 Amagat–Leduc’s law, 697 Apparatus dew point, 787, 792 Approach factor, 757 Aqua–ammonia solution ammonia enrichment process, 380 cooling of, 372 enthalpy, 363 eutectic points, 361 heating of, 371 throttling, 373 vapour concentration, 363 vapour pressure, 361 Auto-cascade system, 347 Automatic expansion valve, 486 Availability, 33 Azeotropes, 453 maximum boiling, 453 minimum boiling, 453 1082 Index Balancing the flow, 1027 Bell–Coleman cycle, 112 Bernoulli’s equation, 78, 999 Blackbody, 54 absorptivity, 56 emissivity, 56 monochromatic emissivity, 56 Boiling heat transfer, 67 Bubble point curve, 358, 438 Building related illnesses, 996 Bypass factor, 787 effect of, 800 typical factors, 789, 790 Capillary tube, 473 advantages/disadvantages of, 486 analysis of flow, 478 balance point between the compressor and the capillary tube, 473 selection of, 478 Carnot heat engine, 33, 34 Carnot vapour cycle, 101 Cascade condenser, 320 Cascade refrigeration system, 320 applications of, 337 optimum intermediate temperature, 322 performance improvement of, 330 Ceiling diffuser, 1038 Chill factor, 995 Clapeyron equation, 48 Clausis inequality, 105 Closed system, 21 Clothing efficiency, 828 Clothing, evaporative resistance, 830 Clothing insulation, 827 Clothing, surface area, 830 Clothing, thermal and moisture resistance, 827 Coefficient of performance (COP), 99, 143 effect of refrigerant properties, 141 single stage saturation cycle, 141 suction state for optimum COP, 143 Comfort zone, 995 Complete vapour compression system, 571 performance of, 579 Compressors aspirated volume, 180 centrifugal, 214 performance characteristics, 230 polytropic efficiency, 216, 217 pressure rise, 219 small-stage efficiency, 216, 217 work done, 219 clearance volume, 178 clearance volumetric efficiency, 180, 181 effect of pressure drops, 183 effect of heat transfer, 184, 185 hermetic, 197 overall volumetric efficiency, 186 power requirement, 187 actual compressor, 191 ideal cycle, 190 real blowby, 194 effect of heat transfer, 194 effect of kinetic energy, 194 effect of leakages, 196 effect of speed, 196 effect of superheat, 195 reciprocating, 177 adiabatic discharge temperature, 249 choice of intermediate pressure, 254 coefficient of performance, 250 methods of improving, 250 mass flow rate, 245 optimum intermediate pressure, 258 pressure–volume diagram, 244 refrigeration capacity, 247 specific refrigeration effect, 247 swept flow rate, 248 volumetric efficiency, 245 work requirement, 246 rotary, 205 multiple van, 208 rolling piston, 205 rotating vane, 207 screw, 208 selection of, 239 superheating effect, 186 thermodynamics of, 172 Condenser, 505 circular plate fin, 517 fin efficiency, 514 heat transfer areas, 520 heat transfer coefficients, 523 performance characteristics, 573 rectangular continuous plate fin, 578 rectangular fin, 515 types of, 506 Condensing unit, characteristics of, 577 Condition line, 783 Convection, 59 Index 1083 Cooling load, 732 Cooling processes, 85 Daily range, 937 Dalton’s law, 699 Declination angle, 876, 877 Dehumidified air quantity, 792 Dehumidified temperature rise, 792 Dense air cycle, 605 Density, 23 Dew point curve, 358, 438 Dew point temperature, 43, 710 Diathermanous materials, 915 Diffusion coefficient, 53 Fick’s law, 53 Direct expansion coil, 556 Displacement ventilation, 858 Domestic refrigerator, 7 Draft, 995 Draft coefficient, 963 Dry air, 42, 702 enthalpy of, 704 Dry Air Rated Temperature (DART), 625 Dry type evaporator, 553 Dubois area, 820, 824 Duct design, 1022, 1027 methods, 1025 equal pressure drop, 1029 static regain, 1030 velocity reduction, 1028 Ducts air flow with fan, 1020 classification, 1024 effect of grille, 1012 loss in branches, 1019 loss in gradual expansion, 1014 loss in sudden contraction, 1015 loss in sudden expansion, 1012 losses at discharge, 1011 losses at inlet, 1010 material and construction, 1024 Ductwork parallel connection, 1062 series connection, 1062 Dynamic loss coefficient, 1013 Effective Room Latent Heat (ERLH), 801 Effective Room Sensible Heat (ERSH), 801 Effective temperature, 832, 836, 843 Electronic type expansion valve, 501 Energy balance of human body models, 824 Enthalpy, 31, 39 of moist air, 711 potential, 560 of evaporation, 4 Entropy, 32, 33, 35, 36, 38 Environmental indices, 836 Equation of state, 38, 40 Beattie Bridgman equation, 41 Benedict–Webb–Rubin (BWR) equation, 41 Canahan–Starling–Desaints, 445 Cubic equation of state, 443 Dieterici equation, 41 Martin–Hu (MH) equation, 42, 445 Peng–Robinson equation, 41, 444 Redlich–Kwong equation, 41, 444 Soave Redlich–Kwong equation, 444 Van der Wall’s equation, 40, 444 Virial equation of state, 443 Equation of time, 877 Equilibrium construction lines, 366 Equivalent temperature difference, 947 Evaporative coding, 2 Evaporator(s), 4 bonded plate, 557 classification of, 549 finned, 558 flooded, 551 performance characteristics, 576 shell-and-tybe type, 552, 553 starving of, 581 Ewing’s construction, 143, 145 Excess property, 440 Expansion valve, 473 characteristics, 577 some practical problems, 502 types of, 473 Fans axial, 1052 centrifugal, 1052, 1053 characteristics, 1055, 1061 installation, 1066 laws, 1057 performance of, 1052, 1063 selection, 1058 speed, 1063 system effect factor, 1066 vaneaxial, 1052 Flash chamber, 284 1084 Index Flash intercooler, 272 Float type expansion valve, 499 Floor registers, 1038 Flow work, 30, 79 Fluid flow, 77 Force, 22 Free jet, 1033 entrained air, 1034, 1035 induction ratio, 1035 primary air, 1034, 1035 surface effect, 1035, 1036 total air, 1035 Freezing point, 43 Friction factor, 83, 1002 Frictional pressure drop, 1001 Gas cycle refrigeration actual cycle, 592 Bell–Coleman, 588 effect of pressure ratio on performance, 589 Joule cycle, 588 effect of pressure drops, 598 variation of COP with pressure ratio, 591 open at the warm end, 606 Regenerative Joule cycle, 601 Reversed Brayton cycle, 588 Reversed Cornot cycle, 586 Gibbs–Dalton’s law, 699 Gibbs function, 36 Glide temperature, 439 Global warming, 421 Global Warming Potential (GWP), 432 Grand total heat (GTH) load, 795 Gray body, 56 Gregorian correction, 873 Heat exchanger, 75 Heat transfer, 25, 27, 50 coefficients, 71, 834 combined convection and radiation, 70 condensation, 66 conduction, 50 Fourier’s law, 51 conduction equation, 52 correlations, 63 evaporative, 825 periodic through a wall, 936, 940 radiation, 58 through walls and roofs, 936 Heating load, 732 Heating Ventilating and Air Conditioning (HVAC) system, 691, 993 elements of, 994 Helmholtz function, 36 Homogeneous mixture, 697 Humid air specific heat, 711, 733 Humid operative temperature, 832, 836 Humidification process, 734, 735 Humidity measurement, 781 dew point indicator, 782 Humidity ratio, 707, 781 Hydrocarbons, 413 Hydrodynamic boundary layer, 60 Hygrometer, 781, 782 Hygroscopic spray, 757 Ideal solutions, 354 Index run, 1027 Indoor air quality (IAQ), 731, 847 methods, 851 Infilteration, 956 methods for estimating, 956 Internal energy, 29, 39 Inversion curve, 89 Isentropic efficiency of compressor, 125 Isomers, 412 Joule cycle, 112 analysis for perfect gas, 114 Joule–Thomson coefficient, 88, 89, 584 Kelvin–Planck statement, 100 Kinetic energy, 27 Kirchhoff’s law, 56 Kyoto Protocol, 433 Latent heat, 4, 732 Liquid chillers double pipe, 555 shell-and-coil, 554 Log mean temperature difference for crossflow heat exchanger, 510 for water-cooled condenser, 532 Mass fraction, 354 Mass velocity, 479 Index 1085 Maxwell’s relations, 37 Mean radiant temperature, 842 Melting point, 43 Metabolic rate, 820, 822 basal, 821 heat generation values, 821 Minor losses, 1001, 1010 in bends, elbows and tees, 1016 Mixture of ideal gases Dalton’s law of partial pressures, 40 Mixtures cubic equations, 449 cycle diagrams, 451 equations of state, 448 Helmholtz energy, 450 non-azeotropic, 413 ozeotropic, 413 Modified effective temperature, 839 Moist air, 39 adiabatic mixing of two streams, 740 with condensation, 742 Mole fraction, 355 Montreal Protocol, 433 Multistage systems, 270 intermediate pressure, 280 limitation of, 318 multi-evaporator, 303 one compressor and two evaporators, 303 two compressors and two evaporators, 309 oil wondering, 280, 319 temperature ranges, 291 Natural convection coils, 550 Natural ice, 2 Navier Stokes equations, 998 Nocturnal cooling, 2 Noise, 1042 Nonideal solutions, 356 Normal boiling point, 43 Occupied zone bypass factor, 853 Open system, 21 Operative temperature, 825, 843 Outside air latent heat (OALH), 795 Outside air sensible heat (OASH), 795 Outside air total heat (OATH), 795 Ozone Depletion Potential (ODP), 432 Particulate matter, removal of, 859 Perfect gas, 38 Perpetual Motion Machine of First Kind (PMMFK), 32 Physiological hazards, 834 Planck’s law, 54 Point function, 29 Pollutants, 848 Potential energy, 27 Power, 28 Predicted Mean Vote (PMV), 839 Predicted Percentage of Dissatisfied (PPD), 839 Pressure, 23 Processes irreversible, 32, 33, 35 reversible, 32, 33 Pulse tube, 637 Pure humdification, 736 Pure substances, 43, 358 Psychrometer practical use of, 772 theory of, 765 Psychrometric parameters, 836 Psychrometric processes, 732 Ram effect, 611 Ram efficiency, 612 Raoult’s law, 355 Recovery factor, 586 temperature, 586 Refrigerant tables, 130 Refrigerants, 9 alternatives, 432, 456 classification of, 410, 411 commonly used, 414 designation of, 411 desirable properties of, 415 GWP of, 433 high normal boiling point, 428 low normal boiling point, 428 mixtures of, 436 temperature–composition diagram, 438 natural, 462 ODP of, 433 reaction with lubricating oils, 423 reaction with moisture, 425 thermodynamic properties, 426 types of, 411 Refrigerating efficiency, 125 Refrigeration, 98 gas cycle, 13 magnetic, 16 1086 Index mechanical vapour compression, 3, 5 solar energy based, 12 steam jet, 14 thermoelectric, 15 vapour absorption, 11, 12 Refrigeration capacity, 28, 99 Reflectivity, 57 Regain, 998 Relative humidity, 709 Respiratory losses, 826 Reversed Brayton cycle, 112 Reversed Carnot cycle, 100, 108, 126 with saturated vapour, 118, 119 with wet vapour, 116, 117 Reversed Cornot theorems, 104 Reversible heat engine, 100 Reversible refrigeration system, 103 Reynolds analogy Room air drop, 1032 distribution patterns, 1037 entrained, 1033 motion, 1036 throw, 1032 Room Latent Heat (RLS) load, 790 Room Sensible Heat Factor (RSHF) line, 792 Room Sensible Heat (RSH) load, 790 Room total heat (RTH) load, 791 Saturated air, 701, 707 liquid, 43 liquid line, 44 vapour, 43 vapour line, 44 Saturation, degree of, 709 Saturation pressure, 4 Saturation properties, 47 Saturation temperature, 43 Sensible cooling, 732 Sensible heat factor, 739 Sensible heat transfer, 824 Sensible heating, 732 Sensible loads, 732 Sick building syndrome, 996 Simple summer air conditioning system, 791 with ventilation and non-zero bypass factor, 799 with ventilation and zero bypass factor, 794 Single stage saturation (SSS) cycle, 121, 126 performance of, 137 Solar angles basic, 875 derived, 878 Solar constant, 888 Solar heat gain factor (SHGF), 820 Solar radiation intensity direct beam radiation, 889 on earth’s surface, 890 reflected radiation, 889 sky radiation, 889 Solution properties of, 354 temperature–composition diagram, 357, 359 Specific heat at constant pressure, 25 at constant volume, 25 Specific refrigeration effect, 142 Specific volume, 23 Specific work, 143 Spray washer, 753 Sprayed coils, 758 Stack effect, 963 Stagnation enthalpy, 586, 611 temperature, 586 Standard effective temperature, 837, 843 Standard vapour compression cycle, 121, 122 Static regain, 82, 1001, 1013 Static temperature, 586 Steam-jet ejector system, 664 advantages and limitations, 669 performance, 670 Stefan–Boltzmann law, 55 Stirling cycle, 641 actual cycle, 648 analysis of, 643 refrigeration effect, 645 Stratification factor, 854 Subcooling, 132 Sublimation process, 44 Superheating, 135 Temperature, 24 Thermal boundary layer, 60 Thermal comfort, 820, 823, 839 Thermal conductivity, 51 Thermal diffusivity, 52 Thermal environment, 839, 872 Thermal radiation, 54 Thermal sensation, 839, 840 Index 1087 Thermodynamic equilibrium, 20 property, 20 state, 20, 21 Thermodynamics, first law, 29 for a closed system, 30 four laws of, 28 fundamental relations, 36 for an open system, 31 second law, 32 Clausius inequality, 35 Clausius statement, 32 Kelvin–Planck statement, 32 third law, 38 zeroth law, 28 Thermoelectric cooling, 91, 674 Thermoelectric refrigeration, 677 Thermoregulatory mechanisms, 832, 833, 834 Thermostatic expansion valve, 492 Total latent heat (TLH), 795 Total sensible heat (TSH), 795 Transmissivity, 57 Triple point, 43 Throttling, 88, 584 Trouton number, 49, 427 Turbulent flow, 60 Vapour compression cycle, 98, 121 actual cycle, 148, 150 heat transfer, 148 isentropic efficiency, 148 pressure drops, 148 with subcooling, 133 with superheating, 135 ten point cycle, 153 Vapour pressure, 4 Velocity pressure, 958, 999 Ventilation efficiency, 854 Virial equation of state, 42, 702 Volumic refrigeration capacity, 124 Volumic refrigeration effect, 139, 142 Vortex tube, 16, 93, 633 advantages and disadvantages, 637 analysis of, 636 counterflow type, 634 uniflow type, 635 Wake, 958 Water refrigeration, 659 centrifugal compressor-based 661 principle of evaporation, 660 Water vapour enthalpy of, 704 properties of, 703 Wet-bulb temperature, 711, 712 psycholometer, 773 thermodynamic, 773 Wet finned-tube heat exchanger, 564 Wetted fin efficiency of, 561 overall heat transfer coefficient, 562 Wetted surface, 761 Wien’s displacement law, 55 Z-transform methods conduction transfer functions, 955 response factors, 955
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Refrigeration and Air Conditioning رابط مباشر لتنزيل كتاب Refrigeration and Air Conditioning
|
|