Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب 3D Printing and Biofabrication الثلاثاء 15 نوفمبر 2022, 12:41 am | |
|
أخواني في الله أحضرت لكم كتاب 3D Printing and Biofabrication With 164 Figures and 34 Tables Aleksandr Ovsianikov , James Yoo , Vladimir Mironov Editors Reference Series in Biomedical Engineering Tissue Engineering and Regeneration Series Editor: Heinz Redl
و المحتوى كما يلي :
Contents Part I 3D Printing 1 Additive Manufacturing for Tissue Engineering 3 Solaleh Miar, Ashkan Shafiee, Teja Guda, and Roger Narayan Characterization of Additive Manufactured Scaffolds . 55 Giuseppe Criscenti, Carmelo De Maria, Giovanni Vozzi, and Lorenzo Moroni Vascular Networks Within 3D Printed and Engineered Tissues 79 Daniel Sazer and Jordan Miller Computational Methods for the Predictive Design of Bone Tissue Engineering Scaffolds . 107 Stefan Scheiner, Vladimir S. Komlev, and Christian Hellmich Quality Control of 3D Printed Resorbable Implants: The 3D Printed Airway Splint Example 131 Scott J. Hollister, Sarah Jo Crotts, Harsha Ramaraju, Colleen L. Flanagan, David A. Zopf, Robert J. Morrison, Andrea Les, Richard G. Ohye, and Glenn E. Green Bioceramics for Musculoskeletal Regenerative Medicine: Materials and Manufacturing Process Compatibility for Synthetic Bone Grafts and Medical Devices 161 Ciro A. Rodriguez, Hernan Lara-Padilla, and David Dean Medical Imaging for Three-Dimensional Computer-Aided Models 195 Paulo Henrique Junqueira Amorim, Thiago Franco de Moraes, Rodrigo Alvarenga Rezende, Jorge Vicente Lopes da Silva, and Helio Pedrini Mathematical Modeling of 3D Tissue Engineering Constructs . 223 Henrique Amorim Almeida and Paulo Jorge da Silva Bártolo ixPart II Biofabrication . 253 Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine 255 Monika Hospodiuk, Kazim Kerim Moncal, Madhuri Dey, and Ibrahim T. Ozbolat Inkjet Printing for Biofabrication . 283 Xinda Li, Jianwei Chen, Boxun Liu, Xiong Wang, Dongni Ren, and Tao Xu Laser-Based Cell Printing 303 Lothar Koch, Andrea Deiwick, and Boris Chichkov Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue 331 Paul Gatenholm, Hector Martinez, Erdem Karabulut, Matteo Amoroso, Lars Kölby, Kajsa Markstedt, Erik Gatenholm, and Ida Henriksson Photopolymerizable Materials for Cell Encapsulation 353 L. Tytgat, Stefan Baudis, H. Ottevaere, R. Liska, H. Thienpont, P. Dubruel, and S. Van Vlierberghe Fabrication and Printing of Multi-material Hydrogels . 397 Navein Arumugasaamy, Hannah B. Baker, David S. Kaplan, Peter C. W. Kim, and John P. Fisher Scaffold-Free Biofabrication 431 Ana Raquel Verissimo and Koichi Nakayama Translation and Applications of Biofabrication . 451 Ji Hyun Kim, Anthony Atala, and James Yoo Bioprinting: The Intellectual Property Landscape 485 Robert W. Esmond and Deborah Sterling Emerging Business Models Toward Commercialization of Bioprinting Technology . 513 Yakov M. Balakhovsky, Alexander Yu. Ostrovskiy, and Yusef D. Khesuani Commercial 3D Bioprinters 535 Frederico David A.S. Pereira, Vladislav Parfenov, Yusef D. Khesuani, Aleksandr Ovsianikov, and Vladimir Mironov Index 551 Index A Additive manufactured scaffolds biological properties characterization, 72–74 electrical properties characterization, 72 geometry on degradation kinetics, 62 imaging-based characterization, 59–62 mechanical properties characterization, 62–65 permeability, 70–72 porosity and pore characterization, 58–59 surface properties characterization, 66–69 wettability, 69–70 Additive manufacturing (AM) techniques, 5, 165, 174, 178, 184, 212 advantage, 7 biomaterials, 6 bone, 9–12 bottom-up approach, 5 cardiovascular system, 37 cartilage, 24 cartilage tissue, 8 cartilage tissue regeneration, 27 ligament and tendon scaffold synthesis, 36 muscle scaffold synthesis, 34 skeletal muscle regeneration, 26 tendon and ligament reconstruction, 31 Additives, 402, 414, 415 Agarose, 267 Alginate, 261–264, 338, 371, 404, 408, 412–413, 416, 418–421, 423 Alumina, 162, 163 America Invents Act (AIA), 495 Anastomosis, 97, 99 Anatomic model, 228 Angiogenesis, 98 Antioxidative proteins, 385 Apparent tissue surface tension (ATST), 38 Atomic-force icroscopy (AFM) analysis, 67 Auricular reconstructive surgery, 332–333 Average Intensity Projection (AIP), 209 B Bacterial nanocellulose (BNC), 339 Bathochromic shift, 358, 360 Binder jetting, 22 Bioactive glass, 163, 174, 175, 177 Bioactive properties, 386 Bioceramics bioactive, 162, 163 bioresorbable, 162 clinical and economic relevance, 164 historic perspective, 163–164 load-bearing implants, 166–167 passive, 162, 166 synthetic bone grafts (see Synthetic bone grafts, bioceramics) void filling, bone substitutes for, 167 Bio-compatible scaffold, 498 Biodegradation, 108 Biofabrication, 196, 211, 214, 216, 470–472 nerve graft, 335 Bioglass1, 162, 163 Bioimaging, 496–499 Bioimplant materials, 504 Bio inks, 261–270, 309–310, 399, 401–405, 408, 410, 413–422, 452, 477, 493, 499–502 bacterial endotoxin and in vitro cytotoxicity testing, 345–346 cell laden hydrogels, 336–338 commercialization, 346–348 Bio inks (cont.) complex constructs, 342, 344 crosslinking, 342–344 crosslinking time, 340 development work flow chart, 347 growth factor, 419, 422, 423 heterogeneous, 414, 420, 423 mechanical properties, 343–345 primary manufacturers of, 521 printability, 341–344 properties, 337 rheological properties, 338–342 S-test, 341 viscosity and rheological properties, 337–338 Biological heart valve prostheses, 40 bioLogic team, 525 Biomaterial implants, 497 Biomimetic, 217 Biomimicry, 217 Biomodels, 212 Biomonitoring, 509–510 Biopaper(s), 319, 499–502 Bioplotters, 18, 33, 261 Bioprinter(s), 452, 507 patents, 499–502 prices, 519 software, 519 Bioprinting additional patentable innovation, 510 cartilage tissue, 332–334 3D patent landscape, 5, 9, 37, 56, 87, 196, 214, 216, 304, 399, 452, 486–487, 493–495 nerve tissue, 334–335 industry and market development, 515–518 in-situ, 266, 273 skin tissue, 335–336 technology, 515–532 Bioprinting Station, 507 Bioreactor, 509–510 Bioresorbable airway splint, 136 Biphasic calcium phosphate (BCP), 168, 177 Bisacylphosphineoxide (BAPO), 358 Bladder, 80 Blood vessels, 440–441, 468–470 Blueprint patents, 496–499 Body-on-a-chip systems, 320 Bone, 459–461 bioceramics (see Synthetic bone grafts, bioceramics) Bone morphogenetic protein 2, 91 Bone tissue engineering scaffolds multi-scale modeling, 112–121 numerical modeling approaches, 110–112 C Calcium phosphate, 163, 168, 177 Calcium sulfate, 186 Cancer research, 473, 476–477 Cannulation, 100 Capillaries, 84, 97, 98 Carboxylic acid moieties, 370, 375, 376 Cardiac tissue, 470–471 Carrageenan, 373 Cartilage, 80, 443, 461–464 tissue engineering, 24 Cell aggregates, 270 scaffold-free, 271 Cell-cell interaction studies, 317–319 CELLINK, 348 Cell laden hydrogels, 336–337, 401, 404 Cell-laden scaffolds, 26 CELLMIXER, 346–348 Cell properties, in 2D and 3D structure, 522 Cell sheets, 434, 435, 440, 442, 443, 445 Cell sorting, 38 Cell source, 478 Cellulose, 338, 372 Cell viability, 338, 346, 400, 402, 404–407, 413, 416, 419, 420 Chain-growth photopolymerization, 370 Chemotaxis, 98 Chitosan, 266–267 Chondrocytes, 383 Chondroitin sulphate (CS), 377, 378 Clinical design hypothesis (CDH), 135–137 Clinical trials, 441, 443 Coaxial extrusion, 87–89 Collagen, 310, 364 Collagen type I, 265 crosslinking mechanism, 265 fabrication, 265 Computer aided design (CAD), 496–499 models, 247 Computer-aided tissue engineering, 497 Confocal laser scanning microscopy, 68 Construct design, 437–438 Continuous inkjet (CIJ) printers, 284 Contrast enhancement, 200, 203, 204 Copyright, 488 Cornea, 80 Covalent incorporation of proteins, 383 Creep and stress relaxation tests, 65 552 IndexCrosslink, 398–401, 405–410, 412, 414, 419, 422 alginate, 412 entangle, 406, 411 ionic, 405, 406, 408–409, 412, 423 thermal, 408, 411, 412, 423 Customized porous scaffold, 10 Cyborg organs, 274 D Darcy equation, 110 Decell, 409–411 Decellularized extracellular matrix, 271 Dental implant, 167 Depyrogenation, 345 Design control waterfall, 135 Design model output (DMO), 148–149 Design patent, 488–489 Design verification, 134 Dexamethasone, 379 Dextran, 373 Dicalcium silicate, 183 DICOM format, 199, 200 Digital image correlation (DIC), 64 Digital light processing (DLP), 14, 178, 543 Digital micromirror device (DMD), 93 Digital volume correlation (DVC), 64 3D inkjet bioprinting, 379 Direct ink writing/robocasting (DIW), 175 Direct metal laser sintering (DMLS), 22 Direct micromirror device (DMD), 175, 178 Direct volume rendering, 207–211 Direct-write technologies [DWDT, 509 Direct writing, 10 Distinctive, 492 Double-network (DN), 368, 369 Droplet-based bioprinting, 273 Droplet-based printing, 286 Droplet volume control, 311–313 Drug delivery, 398, 399 Drug discovery, 472 Drug formulation, 296 Drug screening, 473 Dynamic mechanical analysis, 65 Dynamic release layer, 308–309 E ECM, see Extracellular matrix (ECM) Edge detection, 200, 202 Electron beam melting (EBM), 7, 18 Electroprocessed collagen, 504, 505 Electrospinning (ELS), 81, 92, 175, 176, 508 Electrostatic inkjet printing, 285, 286 Encompassing, 495 Endotoxin-mediated pyrogen test, 345 Energy dispersive X-ray spectroscopy, 60 Engineered biological nerve graft, 500 Environmental scanning electron microscopy (ESEM), 60 Envisiontec, 506 Eosin Y, 359, 361, 375, 382 Extracellular matrix (ECM), 354, 364, 366, 373, 375, 377, 378, 382, 383, 387 Extrusion-based bioprinting, 540–542 biomaterials, 257 3D constructs, 260 dispensing, 257 3D scaffold, 256, 257–261 gelation, 272 printing stage, 261 shear-thinning, 260 tissue construct, 257 Extrusion-based manufacturing, 30 Extrusion bioprinters, 400, 402, 404, 408, 410, 412, 416, 421, 422 Extrusion printing, 304 F Failure mode effects analysis (FMEA), 143 Fibrin, 265–266, 409, 423 in-situ bioprinting, 266 Fibrin gel, 310 Fibrinogen, 381, 386, 409, 420, 421 Finite element modelling, 66 Fractal, 85 Fused deposition modeling (FDM), 16, 25, 171, 175, 176, 536 Fused filament fabrication (FFF) method, 11 G Gartner’s Hype Cycle, 515, 518 Gas foaming, 81 Gelatin, 264–265, 366, 399, 404, 407, 409, 412, 413, 415, 417, 419, 421, 423 Gelatin methacrylamide Gel-MOD, 360, 366, 369, 374 Gelatin methacrylate (GelMA), 338, 412, 414–419, 421 Gelation, 272 Gellan gum, 368 Geometric transformations, 206 Index 553Granular, hydroxyapatite-based biomaterial, 114–121 Growing technique, 205 H Hardware, 494 Heart valve, 470–471 Heparin, 375 Heterotypic interactions, 89 Hierarchical branching, 84, 89, 93, 95 High throughput screening and cancer research, 295 Hip, 163, 178 Homogenization of conglomerate stiffness, 117–119 of granule stiffness, 117 of hydroxyapatite matrix stiffness, 116–117 Humanitarian device exemption (HDE), 134, 137, 155 Human mesenchymal stem cells, 380 Human nasoseptal chondrocytes (hNC), 340 Human organism, 495 Hyaluronic acid (HA), 268–269, 374, 413–414, 423 Hyaluronic acid methacrylate (HA-MA), 414 Hybrid hydrogel, 374 Hydrogel(s), 333, 336, 354, 355, 357, 358, 360, 363, 366, 368, 375, 378, 380, 385, 399–405 cell laden, 336, 346 characteristics and limitations, 261 constructs using stereolithography, 505 degradation, 270 multi-chamber single-nozzle unit, 269 multi-material printing, 265 synthetic, 269 Hydroxyapatite (HAP), 162, 163, 167, 169, 174, 176, 177 2-Hydroxyethyl acrylate, 359 I Image preprocessing, 200 Image registration, 206 Image segmentation, 205 Imaging techniques, 196, 197 Inflammation, 101 Inkjet bioprinters, 400–402, 410, 412, 416, 418, 422, 540 Inkjet-mediated gene transfection (IMGT), 294 Inkjet printing (3DP), 174, 175, 304 applications, 295 characteristics, 287 cytocompatibility of, 290 and functional repair, 297 planar cell patterns, 288 print proteins, 292 regenerative medicine in, 296 and structural repair, 296 technology, 24 technology map, 284, 285 of tissues and cells, 506, 508 2D and 3D cell pattern fabrication, 86, 291 of viable cells, 500 In situ biofabrication, 545 In-situ bioprinting, 266, 273, 545 In situ printing, 323 Integrated global layout, 498 Intellectual property (IP) protection, 487–493 copyright, 488 design patent, 488 hardware, 494 materials, 493 methods, 494 product, 495 software, 494 trade dress, 491 trade mark, 489 trade secret, 492 utillity patents, 493 InVesalius, 196 In vitro bioprinted muscle, 32 In vitro tissue/organ model, 471–473 Irgacure 2959, 357, 358, 360, 363, 367, 369, 372, 374, 375, 378, 380, 382, 383, 386, 387 Isosurface rendering, 207–208 J Joint replacement (arthroplasty), 163, 178 K Kenzan method, 440, 441 Kidneys, 441–442 Knee, 163, 178 L Laser-assisted bioprinters (LABs), 323, 400, 402, 403, 412 Laser-based biofabrication, 256 Laser-based bioprinters, 542–543 Laser-based cell printing techniques 554 Indexapplications, 314–323 laser-guided direct write, 305–306 laser-induced forward transfer, 306–308 Laser Doppler, 99 Laser-guided direct write (LGDW), 305–306 Laser-induced forward transfer (LIFT), 306–308, 542 Laser parameters, 310–311 Laser printing, 12 Laser surface scanners, 336 Liquid-frozen deposition manufacturing (LFDM), 25, 26 Liver, 442 Local microstructure topology optimization, 498 Low-temperature deposition manufacturing (LDM), 18 Low-temperature deposition modeling (LDM), 175 M Macroporosity, 499 Magnetic bioprinting technology, 539 Magnetic resonance imaging (MRI), 257 Manufacturing process compatibility and bioceramics, see Bioceramics Material extrusion bioplotter and 3D plotter, 18 fused deposition modeling, 16 LDM, 18 precision extruding deposition, 17 robocasting, 16 Matrigel, 267–268, 319, 411, 421–423 Maturongens, 509–510 Maximum intensity difference accumulation (MIDA), 209 Maximum intensity projection (MIP), 209 Mechanical micro-extrusion, 259 Mechanotransduction, 98 Medical imaging, modalities, 196 Melt electrospinning (MES), 175, 176, 536 Melt extrusion, 81, 92 Mesenchymal stem cells (MSCs), 334, 335 Methacrylate, 372 Methylcellulose (MC), 269–270 Michael-type addition, 354, 376, 386 Microcarriers, 270 Micro computed tomography, 61 Microfluidic organs-on-a-chips, 471 Microporosity, 499 Microwave sintering, 11 Minimum intensity projection (MinIP), 209 Mini-organs, 471 Modification of biomaterial surfaces, 502 Modular fabrication systems and methods, 501, 505 Modular implant manufacturing, 7 Modular tissue engineering, 8 Modulus, 412, 413, 416, 420, 421 Mohr-Coulomb-type criteria, 113 Monoacylphosphineoxide (MAPO), 358 Multicellular aggregates, 86 Multi-material hydrogels, 409–422 Multi-photon polymerization, 95 Multi-photon processing, 543 Multi-scale modeling, bone tissue engineering bone regeneration kinetics, 120 micromechanical model representation, 114–115 micromechanical stiffness estimation, 116–119 micromechanical strength estimation, 119 motivation, 112 numerical studies, 120–121, 123–125 N Nanocellulose, 338 alginate composite biomaterial, 339 biomedical application, bacterial, 339 viscosity curves, 340 Nanocellulose-alginate bioinks, 346 Nano-hydroxyapatite, 183, 188, 323 Nanoindentation, 345 Nanoporosity, 499 Near-infrared light (NIR), 356 Near-infrared (NIR) lasers, 311 Needle arrays, 440 Neovascularization, 3D printed and engineered tissues, 271 Nerve, 466–468 Noise filtering, 200, 202 Non-adhesive scaffold surface, 67 Non-neuronal autologous tissues, 334 Nuclear magnetic resonance imaging, 61 Nucleus pulposus tissue engineering, 371 O Octacalcium phosphate, 173 One-photon-initiators (1PIs), 356, 357 Organ biofabrication line, 217, 543–544 Organ fabrication, 272 Organ modules, 274 Organoids, 471 Index 555Organ-on-a-chip devices, 274 Organ printing, 215, 217 Organ transplants, demand for, 514 Osteogenic differentiation, 90, 91 P 2PA cross-section, 360, 362 Parenchyma, 38, 91, 469 P2CK, 362, 367 PEG diacrylate (PEG-DA), 375, 378, 380 Perfusion culture, 81, 82, 87, 91, 94 Periodontal regeneration, 442–443 Pharmaceutics, 273 Photo-crosslinkable, 401, 407 Photoencapsulation, 382 Photoinitiators (PIs), 87, 354, 402, 404, 406, 407, 421 two-photon-initiators, 360 type I one-photon-initiators, 357 type II one-photon-initiators, 358 Photolithography, 82, 84 Photonic explorers by biologically localized embedding (PEBBLEs), 68 Photopolymerizable materials, cell encapsulation PEG derivatives, 378 and photoinitiators, 356 poloxamer, 385 polysaccharides, 371 proteins, 364 PVA derivatives, 382 Photopolymerization, 354, 355, 368, 370, 371, 376, 378, 380, 382, 384, 387 Piezoelectric inkjet printing method, 286 PIs, see Photoinitiators (PIs) Pluronic F127, 409, 422 Pluronic1 polymer, 90, 266 Pneumatic-based extrusion, 257 Poloxamer, 385 Polyamide, 183 Polycaprolactone, 183, 186, 188 Poly(ethylene glycol) (PEG), 268, 378, 409, 412, 414, 418, 419, 423 Polylactide acid, 186, 188 Poly(L-lactide-co-D,L-lactide), 186 Poly(propylene fumarate), 188 Polysaccharides, 371 Poly(vinyl alcohol) (PVA), 382 Porosity, 58 Porous PLA screw-like scaffold with hydroxyapatite coating, 35 Powder bed and inkjet, 3D printing (PBIH), 22 Powder bed fusion DMLS, 22 electron beam melting, 18 selective heat sintering, 21 selective laser sintering, 19 Precision extruding deposition (PED), 17, 175 Pre-market approval (PMA) pathway, 134 Pressure assisted dispensing (PAD), 175 Pressure-assisted micro syringe (PAM) method, 11 Printed multicellular arrays, 317–319 Printed skin tissue, 320–323 Printed stem cell grafts, 315 Process impact, cells, 313–314 Production of three-dimensional structure of cells, 502 Product of nature, 495 Progenitor cells, 508 Proteins, 364 PVA-Tyr hydrogels, 384 R Radiometric transformations, 206 Rapid prototyping, 212 Reconstructive surgery, 167 Regeneration, 454 Regenerative medicine, 454 Regenova, 440 Replica molding, 83–85 Representative volume element (RVE), 112, 115, 118 Reverse transcription polymerase chain reaction (RT-PCR) analysis, 73 Rheology, 338 Robocasting, 16, 499 Rotating bioreactor, 509, 510 Runge-Kutta method, 110 S Sacrificial templating, 89–92 Scaffold(s), 214, 217, 360 Scaffold design, 247 computer-aided porous, 227 heterogeneous porous, 225, 228, 229 Scaffold fabrication, 30 Scaffold-free advantages and challenges, 443–445 aggregation/spheroid-based approaches, 435–437 bioprinting methods and equipment, 438–440 556 Indexblood vessels, 440 cartilage, 443 classification, 434–435 kidney, 441 liver regeneration, 442 multicellular spheroids and construct design, 437–438 periodontal regeneration, 442 tissue engineering, 432–434 Scaffold’s tensile stress ratio, 238 Scanning electron microscopy, 60 Schoen surfaces, 235, 238, 242, 245, 246 Schwarz surfaces, 234, 238 Selective heat sintering (SHS), 21 Selective laser melting (SLM), 174, 175 scaffolds, 71 Selective laser sintering (SLS), 11, 19, 96, 175 Self-assembling cell aggregates, 499, 500 Self-assembling multicellular bodies, 499 Self-assembly, 434, 435, 445 Self-organization, 434 Sericin, 385 Shear stress, 272 Shear-thinning, 91, 260 Shear viscosity curve, 338 Single-action three-dimensional model printing methods, 496 Skeleton, 179 Skin, 80, 464–466 Slide, 173 Slurry, 95, 96 Soft lithography, 84, 85, 100 Software, 494–495 Solenoid micro-extrusion, 259 Solid-scaffold-free, 214 Sphere-shaped scaffold model, 232 Spherical cellular bioinks, 39 Spheroid, 435–438 Splint design model, 147 Spray skin, 336 Sr-hardystonite, 183 Stackable biopapers, printed cells, 319–320 Stereolithography (SLA), 13, 93, 94, 175, 400–404, 407, 543 Stress, 399, 400, 404–405 Stroma, 91 Styrenated gelatin, 370 Support, 95, 398, 399, 402–404, 407, 410, 411, 420 Suture strength, 92 Synthetic bone grafts, bioceramics, 167–170 additive manufacturing methods, 174–177 graded materials, 178–179 high resolution manufacturing processes and composites, 178 molds, bioceramic devices in, 173–174 morphology and mechanical properties of scaffolds, 170–172 standardized in vivo testing, 179 surface treatment methods, 177 Synthetic hydrogels, 269, 378 T Technology trigger phase, 516 Tensile/compressive testing, 63–65 Tetracalcium phosphate, 186 Thermal inkjet printer, 285, 286 Thiol-ene photopolymerization, 380 3D bioprinters, 478, 536 components, 538 definition of, 536–537 design and functionality of, 545–546 extrusion-based bioprinters, 540–542 ink-jet technology, 540 in situ biofabrication, 545 laser-based bioprinters, 542–543 organ biofabrication line, 543–544 shape and size of, 538 3D bioprinting, 514 of biosynthetic cellulose (BC), 504 commercialization, 521 in Gartner reports, 516 legal issues of, 525–527 market segments and business models, 518–525 methods and equipment, 439 opportunities, 527–528 Porter’s analysis, industry development, 528–531 technology, 332, 333, 336, 337, 344 (see also Bio inks) 3D Bioprinting Patent Landscape, 493–495 Three-dimensional (3D) models, 196 Three-dimensional printing, 498 Three-dimensional visualization, 197 3D Plotter, 18 3D printed patient specific devices clinical objectives and clinical design hypothesis, 135 design and manufacturing processes, 147–151 design control, 133–134 design inputs and risk analysis, 137–143 development planning, 147 Index 5573D printed patient specific devices (cont.) testing, design verification and design validation, 151–157 3D printed personalized titanium plates, 7 3D printing, 196, 208, 211, 358, 366 3D printing (laser sintering) splints, 149–151 Thresholding, 205 Tissue engineering, 224, 226, 246, 247, 454, 497 Tissue engineering, additive manufacturing in cardiovascular system, 35–40 cartilage, 12–26 skeletal muscle regeneration, 26–31 tendon and ligament reconstruction, 31–35 Tissue glue, 100 Tissue vascularization, 37 Toxicity test, 473 Trachea, 80 Tracheobronchomalacia (TBM), 135, 136 Trademark, 489–491 Transfer function, 208, 210 Translation, 454, 472 Translational applications, 454 Transplantation, 455, 514 Triangle mesh, 207, 212 Triazene, 309 Tricalcium phosphate (TCP), 163, 164, 167, 171, 174, 176 Triple periodic minimal surfaces (TPMS), 225 definition, 231 elastic modulus, 238–242 functionally gradient scaffold, 245–248 periodic surface modelling, 232–235 Schoen surface, 235 Schwarz surface, 234–236 shear modulus, 244–245 Tweaking, 494 Two-dimensional slices, 197 Two-photon-absorption (2PA), 356, 360, 362 Two-photon-initiators (2PIs), 356, 360 Two-photon-polymerization (2PP), 357, 360, 367, 368, 387 Two photon printing, 14 Type I one-photon-initiators, 357 Type II one-photon-initiators, 358 U Ultraviolet (UV) light, 385 Urethra, 80 uSLA, 15 Utility patent landscape, 499 V VA-086, 358, 367 Vascular endothelial growth factor (VEGF), 97 Vascularized tissue, 274 Vascular networks, 468–470 advanced fabrication technologies, 95–97 coaxial extrusion, 87 extrusion of solid materials, 85–87 in vivo integration, 99–101 macroporous scaffolds, 81–83 multiscale vasculature, endothelial matrix invasion, 97–99 replica molding, 83 sacrificial templating, 89 stereolithography, 92–95 Vasculogenesis, 98 Vat photopolymerization digital light processing, 14 stereolithography, 13 two photon printing, 14 uSLA, 15 Vertebra (spine), 167 W Watershed, 206 Z Zirconia, 162, 163 ,#3D,#Printing,#3D_Printing,#3D-Printing,#3DPrinting,#الطباعة_ثلاثية_الأبعاد,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب 3D Printing and Biofabrication رابط مباشر لتنزيل كتاب 3D Printing and Biofabrication
|
|