Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Numerical Methods with Worked Examples - Matlab Edition الأحد 05 فبراير 2023, 3:17 am | |
|
أخواني في الله أحضرت لكم كتاب Numerical Methods with Worked Examples - Matlab Edition Second Edition C. Woodford C. Phillips
و المحتوى كما يلي :
Contents 1 Basic Matlab . 1 1.1 Matlab - The History and the Product 1 1.2 Creating Variables and Using Basic Arithmetic . 2 1.3 Standard Functions . 2 1.4 Vectors and Matrices . 3 1.5 M-Files 5 1.6 The colon Notation and the for Loop 6 1.7 The if Construct . 7 1.8 The while Loop . 8 1.9 Simple Screen Output 9 1.10 Keyboard Input . 9 1.11 User Defined Functions . 10 1.12 Basic Statistics 11 1.13 Plotting 11 1.14 Formatted Screen Output 12 1.15 File Input and Output 14 1.15.1 Formatted Output to a File 14 1.15.2 Formatted Input from a File . 14 1.15.3 Unformatted Input and Output (Saving and Retrieving Data) 15 2 Linear Equations . 17 2.1 Introduction . 18 2.2 Linear Systems 19 2.3 Gaussian Elimination 22 2.3.1 Row Interchanges 24 2.3.2 Partial Pivoting 26 2.3.3 Multiple Right-Hand Sides . 30 2.4 Singular Systems . 32 2.5 Symmetric Positive Definite Systems 33 2.6 Iterative Refinement . 35 2.7 Ill-Conditioned Systems . 37 2.8 Gauss–Seidel Iteration 37 viiviii Contents 3 Nonlinear Equations . 47 3.1 Introduction . 48 3.2 Bisection Method 49 3.2.1 Finding an Interval Containing a Root . 50 3.3 Rule of False Position 51 3.4 The Secant Method . 52 3.5 Newton–Raphson Method 55 3.6 Comparison of Methods for a Single Equation . 58 3.7 Newton’s Method for Systems of Nonlinear Equations . 59 3.7.1 Higher Order Systems 63 4 Curve Fitting . 71 4.1 Introduction . 71 4.2 Linear Interpolation . 72 4.2.1 Differences 75 4.3 Polynomial Interpolation 77 4.3.1 Newton Interpolation 77 4.3.2 Neville Interpolation . 80 4.3.3 A Comparison of Newton and Neville Interpolation 81 4.3.4 Spline Interpolation . 83 4.4 Least Squares Approximation 86 4.4.1 Least Squares Straight Line Approximation . 86 4.4.2 Least Squares Polynomial Approximation . 89 5 Numerical Integration 97 5.1 Introduction . 98 5.2 Integration of Tabulated Functions . 98 5.2.1 The Trapezium Rule . 99 5.2.2 Quadrature Rules 101 5.2.3 Simpson’s Rule . 101 5.2.4 Integration from Irregularly-Spaced Data 102 5.3 Integration of Functions . 104 5.3.1 Analytic vs. Numerical Integration . 104 5.3.2 The Trapezium Rule (Again) 104 5.3.3 Simpson’s Rule (Again) . 106 5.4 Higher Order Rules . 109 5.5 Gaussian Quadrature . 110 5.6 Adaptive Quadrature . 112 6 Numerical Differentiation 119 6.1 Introduction . 120 6.2 Two-Point Formula . 120 6.3 Three- and Five-Point Formulae . 122 6.4 Higher Order Derivatives 125 6.4.1 Error Analysis 126 6.5 Cauchy’s Theorem 128Contents ix 7 Linear Programming . 135 7.1 Introduction . 136 7.2 Forming a Linear Programming Problem 136 7.3 Standard Form 140 7.4 Canonical Form . 141 7.5 The Simplex Method . 142 7.5.1 Starting the Simplex Method 146 7.6 Integer Programming 149 7.6.1 The Branch and Bound Method . 151 7.7 Decision Problems 153 7.8 The Travelling Salesman Problem 155 7.9 The Machine Scheduling Problem 156 8 Optimisation . 169 8.1 Introduction . 170 8.2 Grid Searching Methods . 171 8.2.1 Simple Grid Search . 171 8.2.2 Golden Section Search 173 8.3 Unconstrained Optimisation . 175 8.3.1 The Method of Steepest Descent 176 8.3.2 A Rank-One Method . 178 8.3.3 Generalised Rank-One Method . 181 8.4 Constrained Optimisation 184 8.4.1 Minimisation by Use of a Simple Penalty Function . 185 8.4.2 Minimisation Using the Lagrangian . 187 8.4.3 The Multiplier Function Method 188 9 Ordinary Differential Equations 197 9.1 Introduction . 198 9.2 First-Order Equations 200 9.2.1 Euler’s Method 200 9.2.2 Runge–Kutta Methods 202 9.2.3 Fourth-Order Runge–Kutta . 204 9.2.4 Systems of First-Order Equations 206 9.2.5 Higher Order Equations . 207 9.3 Boundary Value Problems 208 9.3.1 Shooting Method 208 9.3.2 Difference Equations 209 10 Eigenvalues and Eigenvectors 215 10.1 Introduction . 215 10.2 The Characteristic Polynomial . 217 10.3 The Power Method 218 10.3.1 Power Method, Theory . 219 10.4 Eigenvalues of Special Matrices . 222 10.4.1 Eigenvalues, Diagonal Matrix 222 10.4.2 Eigenvalues, Upper Triangular Matrix . 223x Contents 10.5 A Simple QR Method 223 11 Statistics 231 11.1 Introduction . 232 11.2 Statistical Terms . 232 11.2.1 Random Variable 232 11.2.2 Frequency Distribution . 232 11.2.3 Expected Value, Average and Mean . 234 11.2.4 Variance and Standard Deviation 234 11.2.5 Covariance and Correlation . 236 11.3 Least Squares Analysis . 239 11.4 Random Numbers 241 11.4.1 Generating Random Numbers 242 11.5 Random Number Generators 243 11.5.1 Customising Random Numbers . 243 11.6 Monte Carlo Integration . 244 Matlab Index 249 Index 253 Index B Backward substitution, 21 Boundary-value problem difference equations, 209 worked example, 210 shooting method, 207 worked example, 208 C Cauchy’s theorem, 128 Chebyshev’s theorem, 235 Cotes, 110 Curve fitting, 71 D Dependent variable, 18 Differences, 75 Differentiation accuracy of methods, 126 Cauchy’s theorem, 128 worked example, 128, 129 comparison of methods, 123, 130 five-point formula, 122 worked example, 124 higher order derivative, 125 worked example, 127 second-order derivative worked example, 125 three-point formula, 122 worked example, 123 two-point formula, 120 worked example, 120, 123 E Eigenvalue, 216 characteristic polynomial, 217 worked example, 217 largest, 218 worked example, 218 power method, 218 simple QR method, 223 worked example, 223 smallest, 221 worked example, 221 upper triangular matrix worked example, 223 Eigenvector, 216 normalised, 217 worked example, 216 Extrapolation, 73 F Francis, 227 Frequency, 232 Frequency distribution, 232 G Gauss–Seidel iteration, 37 worked example, 38 Gaussian elimination, 21 multiplier, 23 partial pivoting, 26 worked example, 26, 28 pivot, 26 pivotal equation, 26 row interchange, 24 worked example, 21, 22 Global minimum, 170 H Hilbert, 43 Histogram, 232 I IEEE standards, 26 Independent variable, 18 Initial-value problem Euler’s method, 200 worked example, 200 Runge–Kutta, 202, 204, 206 worked example, 202, 205, 206 Integer programming, 136, 149 branch and bound, 150 worked example, 151 continuous problem, 150 decision problem, 153 decision variable, 154 worked example, 154 the machine scheduling problem, 156 worked example, 156 the travelling salesman problem, 155 worked example, 155 Integrand, 97 Integration adaptive quadrature, 112 worked example, 112 comparison of methods, 109, 114 Gaussian quadrature, 110 worked example, 111 higher order rules, 109 Monte Carlo, 244 worked example, 244 Newton Cotes, 109 three-eighths rule, 109 of analytic function, 104 worked example, 108 of irregularly tabulated function, 102 worked example, 102 of tabulated function, 98 worked example, 98 Simpson’s rule, 101, 106 worked example, 101 trapezium rule, 99, 101, 104 worked example, 99 Integration by parts, 98 Interpolating polynomial comparison of methods, 81 Neville, 80 worked example, 80 Newton, 77 worked example, 78, 79 spline, 82 worked example, 84 Interpolation inverse, 73 Lagrange, 108 linear, 72 piecewise, 84 worked example, 72 piecewise linear, 74 polynomial, 77 piecewise (spline), 84 Iterative refinement, 35 residual, 36 worked example, 35 J Josephson junction, 198 L Lagrangian, 187 Least squares approximation, 85 confidence interval, 240 linear, 86 worked example, 86 normal equations, 88 polynomial, 88, 91 worked example, 89 residual, 86 Legendre polynomial, 110 Linear approximation, 72 Linear dependence, 33 Linear equation comparison of methods, 38 Linear programming, 135 basic variables, 144 canonical form, 140, 141 worked example, 141 constraints, 135 costs, 140 dual problem, 146 feasible region, 138 feasible vertex, 142 graphical method, 138 worked example, 138 objective, 135 optimal solution, 136 problem variables, 140 simplex method, see separate entry, 142 slack variables, 141 standard form, 141 worked example, 141 trivial constraints, 138 vertex, 140 Linear relation, 18 example Hooke’s law, 18 Kirchoff’s law, 18 mercury thermometer, 18 Linear system, 18 as a model of physical processes, 20 banded, 211Index 255 Linear system (cont.) example portal frame, 20 ill-conditioned, 37 in matrix–vector form, 19 worked example, 19 infinity of solutions, 32 worked example, 32 multiple right hand sides, 30 worked example, 30 no solution, 32 worked example, 32 no unique solution, 32 worked example, 32 overdetermined, 86 singular, 33 sparse, 211 symmetric positive definite, 33 worked example, 33 upper triangular system, 20 worked example, 20 Local minimum, 170 comparison of methods, 174, 181 constrained variables, 184 golden section search, 172 worked example, 173 grid search, 171 worked example, 171 method of steepest descent, 176 worked example, 176 multiplier penalty function method, 186 worked example, 188 penalty function method, 185 worked example, 185 rank-one method, 178 worked example, 179 rank-two method, 184 single variable, 171 LU decomposition, 24 M Matrix coefficient matrix, 19 determinant, 217 diagonally dominant, 35 Jacobian, 63 permutation matrix, 28 singular, 33 sparse, 38 symmetric positive definite, 33 unitary, 229 upper triangular, 21 Mean value theorem, 60 Mixed integer programming, 136 N Natural vibration, 216 Nonlinear equation bisection method, 48 worked example, 49 comparison of methods, 58 example Butler–Volmer, 48 Newton–Raphson method problems, 58 worked example, 56 rule of false position, 51 worked example, 51 secant method, 52 breakdown, 54 worked example, 52 Nonlinear system, 58 example metal plate, 59 turbine rotor, 63 Newton’s method, 58 worked example, 59, 63 Normal distribution, 233 O Operations research, 159 Order of convergence, 58 Ordinary differential equation, 198 boundary-value problem, see separate entry, 199 comparison of methods, 203 first-order, 198 higher order equations, 207 initial-value problem, see separate entry, 199 local truncation error, 205 nth-order, 199 second-order, 199 P Pseudo-random number, 242 generator, 242 multiplicative congruential, 242 R Random number, see also pseudo-random number, 241 Random variable, 232 average, 233 correlation, 236 worked example, 237 covariance, 236 dispersion, 234 expected value, 233256 Index Random variable (cont.) mean, 233 mean and standard deviation worked example, 235 standard deviation, 234 variance, 234 Raphson, 47 Regression, 239 standard error estimate, 239 worked example, 239 Root, 47 Rounding error, 26 S Similarity transformation, 223 Simplex method all slack solution, 144 artificial variable, 148 basic feasible solution, 144 non-basic variables, 143 pseudo objective, 147 revised simplex method, 146 worked example, 142, 144, 147, 148 Stochastic variable, 232 T Taylor series, 120, 179, 204 Z Zero (of a function), 47 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Numerical Methods with Worked Examples - Matlab Edition رابط مباشر لتنزيل كتاب Numerical Methods with Worked Examples - Matlab Edition
|
|