Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Statistics in Engineering With Examples in MATLAB and R السبت 24 أكتوبر 2020, 1:54 am | |
|
أخوانى فى الله أحضرت لكم كتاب Statistics in Engineering With Examples in MATLAB and R Second Edition Andrew Metcalfe David Green Tony Greenfield Mahayaudin Mansor Andrew Smith Jonathan Tuke
و المحتوى كما يلي :
Contents Preface xvii 1 Why understand statistics? 1 1.1 Introduction . 1 1.2 Using the book 2 1.3 Software . 2 2 Probability and making decisions 3 2.1 Introduction . 3 2.2 Random digits 4 2.2.1 Concepts and uses 4 2.2.2 Generating random digits 5 2.2.3 Pseudo random digits 6 2.3 Defining probabilities 7 2.3.1 Defining probabilities { Equally likely outcomes 8 2.3.2 Defining probabilities { Relative frequencies 11 2.3.3 Defining probabilities { Subjective probability and expected monetary value . 13 2.4 Axioms of probability . 15 2.5 The addition rule of probability 15 2.5.1 Complement . 16 2.6 Conditional probability . 18 2.6.1 Conditioning on information 18 2.6.2 Conditional probability and the multiplicative rule 18 2.6.3 Independence . 20 2.6.4 Tree diagrams . 23 2.7 Bayes’ theorem . 25 2.7.1 Law of total probability . 26 2.7.2 Bayes’ theorem for two events 27 2.7.3 Bayes’ theorem for any number of events . 28 2.8 Decision trees 29 2.9 Permutations and combinations 31 2.10 Simple random sample . 33 2.11 Summary . 35 2.11.1 Notation 35 2.11.2 Summary of main results 36 2.11.3 MATLAB R and R commands . 36 2.12 Exercises . 37 vvi Contents 3 Graphical displays of data and descriptive statistics 55 3.1 Types of variables 55 3.2 Samples and populations 58 3.3 Displaying data . 61 3.3.1 Stem-and-leaf plot 61 3.3.2 Time series plot . 62 3.3.3 Pictogram . 65 3.3.4 Pie chart . 68 3.3.5 Bar chart . 68 3.3.6 Rose plot . 70 3.3.7 Line chart for discrete variables . 70 3.3.8 Histogram and cumulative frequency polygon for continuous variables 73 3.3.9 Pareto chart . 77 3.4 Numerical summaries of data . 79 3.4.1 Population and sample . 79 3.4.2 Measures of location . 81 3.4.3 Measures of spread 90 3.5 Box-plots 95 3.6 Outlying values and robust statistics . 97 3.6.1 Outlying values 97 3.6.2 Robust statistics . 98 3.7 Grouped data 99 3.7.1 Calculation of the mean and standard deviation for discrete data . 99 3.7.2 Grouped continuous data [Mean and standard deviation for grouped continuous data] . 100 3.7.3 Mean as center of gravity 101 3.7.4 Case study of wave stress on offshore structure . 103 3.8 Shape of distributions . 103 3.8.1 Skewness . 103 3.8.2 Kurtosis 104 3.8.3 Some contrasting histograms 105 3.9 Multivariate data 108 3.9.1 Scatter plot . 108 3.9.2 Histogram for bivariate data 110 3.9.3 Parallel coordinates plot . 111 3.10 Descriptive time series . 113 3.10.1 Definition of time series . 113 3.10.2 Missing values in time series . 114 3.10.3 Decomposition of time series 114 3.10.3.1 Trend - Centered moving average 114 3.10.3.2 Seasonal component - Additive monthly model . 115 3.10.3.3 Seasonal component - Multiplicative monthly model 115 3.10.3.4 Seasonal adjustment 116 3.10.3.5 Forecasting . 116 3.10.4 Index numbers 119 3.11 Summary . 121 3.11.1 Notation 121 3.11.2 Summary of main results 121 3.11.3 MATLAB and R commands . 122 3.12 Exercises . 123Contents vii 4 Discrete probability distributions 137 4.1 Discrete random variables . 137 4.1.1 Definition of a discrete probability distribution 138 4.1.2 Expected value 139 4.2 Bernoulli trial 140 4.2.1 Introduction . 140 4.2.2 Defining the Bernoulli distribution . 141 4.2.3 Mean and variance of the Bernoulli distribution 141 4.3 Binomial distribution 142 4.3.1 Introduction . 142 4.3.2 Defining the Binomial distribution . 142 4.3.3 A model for conductivity 147 4.3.4 Mean and variance of the binomial distribution 148 4.3.5 Random deviates from binomial distribution . 149 4.3.6 Fitting a binomial distribution . 149 4.4 Hypergeometric distribution 150 4.4.1 Defining the hypergeometric distribution 151 4.4.2 Random deviates from the hypergeometric distribution . 152 4.4.3 Fitting the hypergeometric distribution 152 4.5 Negative binomial distribution . 153 4.5.1 The geometric distribution . 153 4.5.2 Defining the negative binomial distribution 154 4.5.3 Applications of negative binomial distribution . 155 4.5.4 Fitting a negative binomial distribution 157 4.5.5 Random numbers from a negative binomial distribution . 157 4.6 Poisson process . 158 4.6.1 Defining a Poisson process in time . 158 4.6.2 Superimposing Poisson processes 158 4.6.3 Spatial Poisson process . 158 4.6.4 Modifications to Poisson processes . 159 4.6.5 Poisson distribution . 159 4.6.6 Fitting a Poisson distribution 160 4.6.7 Times between events 161 4.7 Summary . 162 4.7.1 Notation 162 4.7.2 Summary of main results 162 4.7.3 MATLAB and R commands . 163 4.8 Exercises . 164 5 Continuous probability distributions 175 5.1 Continuous random variables . 175 5.1.1 Definition of a continuous random variable 175 5.1.2 Definition of a continuous probability distribution 176 5.1.3 Moments of a continuous probability distribution . 177 5.1.4 Median and mode of a continuous probability distribution 181 5.1.5 Parameters of probability distributions . 181 5.2 Uniform distribution 181 5.2.1 Definition of a uniform distribution . 182 5.2.2 Applications of the uniform distribution 183 5.2.3 Random deviates from a uniform distribution . 183 5.2.4 Distribution of F (X) is uniform 183viii Contents 5.2.5 Fitting a uniform distribution 184 5.3 Exponential distribution 184 5.3.1 Definition of an exponential distribution 184 5.3.2 Markov property . 186 5.3.2.1 Poisson process . 186 5.3.2.2 Lifetime distribution 186 5.3.3 Applications of the exponential distribution 187 5.3.4 Random deviates from an exponential distribution 189 5.3.5 Fitting an exponential distribution . 190 5.4 Normal (Gaussian) distribution 194 5.4.1 Definition of a normal distribution . 194 5.4.2 The standard normal distribution Z ∼ N(0; 1) 195 5.4.3 Applications of the normal distribution 199 5.4.4 Random numbers from a normal distribution . 203 5.4.5 Fitting a normal distribution 203 5.5 Probability plots 203 5.5.1 Quantile-quantile plots 204 5.5.2 Probability plot 204 5.6 Lognormal distribution . 205 5.6.1 Definition of a lognormal distribution . 205 5.6.2 Applications of the lognormal distribution . 208 5.6.3 Random numbers from lognormal distribution . 209 5.6.4 Fitting a lognormal distribution . 209 5.7 Gamma distribution 209 5.7.1 Definition of a gamma distribution . 210 5.7.2 Applications of the gamma distribution 212 5.7.3 Random deviates from gamma distribution 212 5.7.4 Fitting a gamma distribution 212 5.8 Gumbel distribution 213 5.8.1 Definition of a Gumbel distribution . 213 5.8.2 Applications of the Gumbel distribution 215 5.8.3 Random deviates from a Gumbel distribution . 215 5.8.4 Fitting a Gumbel distribution 216 5.9 Summary . 218 5.9.1 Notation 218 5.9.2 Summary of main results 218 5.9.3 MATLAB and R commands . 219 5.10 Exercises . 220 6 Correlation and functions of random variables 233 6.1 Introduction . 233 6.2 Sample covariance and correlation coefficient . 236 6.2.1 Defining sample covariance . 236 6.3 Bivariate distributions, population covariance and correlation coefficient . 244 6.3.1 Population covariance and correlation coefficient . 245 6.3.2 Bivariate distributions - Discrete case . 246 6.3.3 Bivariate distributions - Continuous case . 248 6.3.3.1 Marginal distributions . 248 6.3.3.2 Bivariate histogram 249 6.3.3.3 Covariate and correlation . 250 6.3.3.4 Bivariate probability distributions 251Contents ix 6.3.4 Copulas 256 6.4 Linear combination of random variables (propagation of error) . 256 6.4.1 Mean and variance of a linear combination of random variables . 257 6.4.1.1 Bounds for correlation coefficient 259 6.4.2 Linear combination of normal random variables 260 6.4.3 Central Limit Theorem and distribution of the sample mean 262 6.5 Non-linear functions of random variables (propagation of error) 265 6.6 Summary . 267 6.6.1 Notation 267 6.6.2 Summary of main results 267 6.6.3 MATLAB and R commands . 268 6.7 Exercises . 268 7 Estimation and inference 279 7.1 Introduction . 279 7.2 Statistics as estimators . 279 7.2.1 Population parameters . 280 7.2.2 Sample statistics and sampling distributions 280 7.2.3 Bias and MSE 282 7.3 Accuracy and precision . 285 7.4 Precision of estimate of population mean . 285 7.4.1 Confidence interval for population mean when σ known . 285 7.4.2 Confidence interval for mean when σ unknown 288 7.4.2.1 Construction of confidence interval and rationale for the t-distribution 288 7.4.2.2 The t-distribution . 289 7.4.3 Robustness 291 7.4.4 Bootstrap methods 292 7.4.4.1 Bootstrap resampling . 292 7.4.4.2 Basic bootstrap confidence intervals . 293 7.4.4.3 Percentile bootstrap confidence intervals 293 7.4.5 Parametric bootstrap 296 7.5 Hypothesis testing . 299 7.5.1 Hypothesis test for population mean when σ known . 300 7.5.2 Hypothesis test for population mean when σ unknown 302 7.5.3 Relation between a hypothesis test and the confidence interval . 303 7.5.4 p-value . 304 7.5.5 One-sided confidence intervals and one-sided tests 304 7.6 Sample size . 305 7.7 Confidence interval for a population variance and standard deviation . 307 7.8 Comparison of means 309 7.8.1 Independent samples 309 7.8.1.1 Population standard deviations differ 309 7.8.1.2 Population standard deviations assumed equal . 312 7.8.2 Matched pairs 315 7.9 Comparing variances 317 7.10 Inference about proportions 318 7.10.1 Single sample 318 7.10.2 Comparing two proportions . 320 7.10.3 McNemar’s test 323 7.11 Prediction intervals and statistical tolerance intervals 325x Contents 7.11.1 Prediction interval 325 7.11.2 Statistical tolerance interval . 326 7.12 Goodness of fit tests 327 7.12.1 Chi-square test 328 7.12.2 Empirical distribution function tests 330 7.13 Summary . 332 7.13.1 Notation 332 7.13.2 Summary of main results 333 7.13.3 MATLAB and R commands . 335 7.14 Exercises . 335 8 Linear regression and linear relationships 357 8.1 Linear regression 357 8.1.1 Introduction . 357 8.1.2 The model 359 8.1.3 Fitting the model . 361 8.1.3.1 Fitting the regression line . 361 8.1.3.2 Identical forms for the least squares estimate of the slope . 363 8.1.3.3 Relation to correlation 363 8.1.3.4 Alternative form for the fitted regression line 364 8.1.3.5 Residuals 365 8.1.3.6 Identities satisfied by the residuals 366 8.1.3.7 Estimating the standard deviation of the errors . 367 8.1.3.8 Checking assumptions A3, A4 and A5 368 8.1.4 Properties of the estimators . 368 8.1.4.1 Estimator of the slope . 369 8.1.4.2 Estimator of the intercept . 371 8.1.5 Predictions 371 8.1.5.1 Confidence interval for mean value of Y given x 371 8.1.5.2 Limits of prediction 373 8.1.5.3 Plotting confidence intervals and prediction limits . 374 8.1.6 Summarizing the algebra 375 8.1.7 Coefficient of determination R2 . 376 8.2 Regression for a bivariate normal distribution 376 8.2.1 The bivariate normal distribution 377 8.3 Regression towards the mean . 378 8.4 Relationship between correlation and regression . 380 8.4.1 Values of x are assumed to be measured without error and can be preselected 381 8.4.2 The data pairs are assumed to be a random sample from a bivariate normal distribution 381 8.5 Fitting a linear relationship when both variables are measured with error . 383 8.6 Calibration lines . 386 8.7 Intrinsically linear models 389 8.8 Summary . 393 8.8.1 Notation 393 8.8.2 Summary of main results 393 8.8.3 MATLAB and R commands . 394 8.9 Exercises . 395Contents xi 9 Multiple regression 403 9.1 Introduction . 403 9.2 Multivariate data 404 9.3 Multiple regression model . 405 9.3.1 The linear model . 405 9.3.2 Random vectors . 406 9.3.2.1 Linear transformations of a random vector . 406 9.3.2.2 Multivariate normal distribution . 407 9.3.3 Matrix formulation of the linear model . 407 9.3.4 Geometrical interpretation 407 9.4 Fitting the model 408 9.4.1 Principle of least squares 408 9.4.2 Multivariate calculus - Three basic results 409 9.4.3 The least squares estimator of the coefficients . 410 9.4.4 Estimating the coefficients 411 9.4.5 Estimating the standard deviation of the errors 416 9.4.6 Standard errors of the estimators of the coefficients 417 9.5 Assessing the fit . 418 9.5.1 The residuals . 419 9.5.2 R-squared . 420 9.5.3 F-statistic . 421 9.5.4 Cross validation . 422 9.6 Predictions . 422 9.7 Building multiple regression models 424 9.7.1 Interactions . 424 9.7.2 Categorical variables . 428 9.7.3 F-test for an added set of variables . 433 9.7.4 Quadratic terms . 440 9.7.5 Guidelines for fitting regression models . 447 9.8 Time series . 450 9.8.1 Introduction . 450 9.8.2 Aliasing and sampling intervals 450 9.8.3 Fitting a trend and seasonal variation with regression 451 9.8.4 Auto-covariance and auto-correlation 456 9.8.4.1 Defining auto-covariance for a stationary times series model 457 9.8.4.2 Defining sample auto-covariance and the correlogram . 458 9.8.5 Auto-regressive models 459 9.8.5.1 AR(1) and AR(2) models . 460 9.9 Non-linear least squares 465 9.10 Generalized linear model 468 9.10.1 Logistic regression 468 9.10.2 Poisson regression 470 9.11 Summary . 474 9.11.1 Notation 474 9.11.2 Summary of main results 474 9.11.3 MATLAB and R commands . 475 9.12 Exercises . 476xii Contents 10 Statistical quality control 491 10.1 Continuous improvement 491 10.1.1 Defining quality . 491 10.1.2 Taking measurements 492 10.1.3 Avoiding rework . 493 10.1.4 Strategies for quality improvement . 494 10.1.5 Quality management systems 494 10.1.6 Implementing continuous improvement . 495 10.2 Process stability . 496 10.2.1 Runs chart 496 10.2.2 Histograms and box plots 499 10.2.3 Components of variance . 501 10.3 Capability 510 10.3.1 Process capability index . 510 10.3.2 Process performance index . 511 10.3.3 One-sided process capability indices 512 10.4 Reliability 514 10.4.1 Introduction . 514 10.4.1.1 Reliability of components . 514 10.4.1.2 Reliability function and the failure rate . 515 10.4.2 Weibull analysis . 517 10.4.2.1 Definition of the Weibull distribution 517 10.4.2.2 Weibull quantile plot . 518 10.4.2.3 Censored data . 522 10.4.3 Maximum likelihood . 524 10.4.4 Kaplan-Meier estimator of reliability 529 10.5 Acceptance sampling 530 10.6 Statistical quality control charts 533 10.6.1 Shewhart mean and range chart for continuous variables . 533 10.6.1.1 Mean chart . 533 10.6.1.2 Range chart 535 10.6.2 p-charts for proportions . 538 10.6.3 c-charts for counts 539 10.6.4 Cumulative sum charts . 542 10.6.5 Multivariate control charts . 544 10.7 Summary . 548 10.7.1 Notation 548 10.7.2 Summary of main results 548 10.7.3 MATLAB and R commands . 550 10.8 Exercises . 550 11 Design of experiments with regression analysis 559 11.1 Introduction . 559 11.2 Factorial designs with factors at two levels 562 11.2.1 Full factorial designs . 562 11.2.1.1 Setting up a 2k design . 562 11.2.1.2 Analysis of 2k design . 565 11.3 Fractional factorial designs . 580 11.4 Central composite designs . 585 11.5 Evolutionary operation (EVOP) 593 11.6 Summary . 597Contents xiii 11.6.1 Notation 597 11.6.2 Summary of main results 597 11.6.3 MATLAB and R commands . 598 11.7 Exercises . 598 12 Design of experiments and analysis of variance 605 12.1 Introduction . 605 12.2 Comparison of several means with one-way ANOVA 605 12.2.1 Defining the model 606 12.2.2 Limitation of multiple t-tests 606 12.2.3 One-way ANOVA 607 12.2.4 Testing H0O 610 12.2.5 Follow up procedure . 610 12.3 Two factors at multiple levels . 613 12.3.1 Two factors without replication (two-way ANOVA) 614 12.3.2 Two factors with replication (three-way ANOVA) . 618 12.4 Randomized block design . 621 12.5 Split plot design . 626 12.6 Summary . 636 12.6.1 Notation 636 12.6.2 Summary of main results 637 12.6.3 MATLAB and R commands . 637 12.7 Exercises . 638 13 Probability models 649 13.1 System reliability 649 13.1.1 Series system . 649 13.1.2 Parallel system 650 13.1.3 k-out-of-n system . 651 13.1.4 Modules 652 13.1.5 Duality 653 13.1.6 Paths and cut sets 655 13.1.7 Reliability function 656 13.1.8 Redundancy 658 13.1.9 Non-repairable systems . 658 13.1.10 Standby systems . 659 13.1.11 Common cause failures 661 13.1.12 Reliability bounds 661 13.2 Markov chains 662 13.2.1 Discrete Markov chain 663 13.2.2 Equilibrium behavior of irreducible Markov chains 667 13.2.3 Methods for solving equilibrium equations . 670 13.2.4 Absorbing Markov chains 675 13.2.5 Markov chains in continuous time . 681 13.3 Simulation of systems . 684 13.3.1 The simulation procedure 685 13.3.2 Drawing inference from simulation outputs 689 13.3.3 Variance reduction 692 13.4 Summary . 694 13.4.1 Notation 694 13.4.2 Summary of main results 694xiv Contents 13.5 Exercises . 696 14 Sampling strategies 699 14.1 Introduction . 699 14.2 Simple random sampling from a finite population 702 14.2.1 Finite population correction . 702 14.2.2 Randomization theory 703 14.2.2.1 Defining the simple random sample . 703 14.2.2.2 Mean and variance of sample mean . 704 14.2.2.3 Mean and variance of estimator of population total 705 14.2.3 Model based analysis . 707 14.2.4 Sample size 708 14.3 Stratified sampling . 708 14.3.1 Principle of stratified sampling . 709 14.3.2 Estimating the population mean and total . 709 14.3.3 Optimal allocation of the sample over strata 711 14.4 Multi-stage sampling 713 14.5 Quota sampling . 716 14.6 Ratio estimators and regression estimators 716 14.6.1 Introduction . 716 14.6.2 Regression estimators 716 14.6.3 Ratio estimator 716 14.7 Calibration of the unit cost data base . 718 14.7.1 Sources of error in an AMP . 718 14.7.2 Calibration factor 719 14.8 Summary . 721 14.8.1 Notation 721 14.8.2 Summary of main results 721 14.9 Exercises . 722 Appendix A - Notation 727 A.1 General 727 A.2 Probability 727 A.3 Statistics . 728 A.4 Probability distributions 729 Appendix B - Glossary 731 Appendix C - Getting started in R 745 C.1 Installing R 745 C.2 Using R as a calculator . 745 C.3 Setting the path . 747 C.4 R scripts . 747 C.5 Data entry 747 C.5.1 From keyboard 747 C.5.2 From a file 748 C.5.2.1 Single variable . 748 C.5.2.2 Several variables 748 C.6 R vectors . 749 C.7 User defined functions 750 C.8 Matrices . 750Contents xv C.9 Loops and conditionals . 751 C.10 Basic plotting 752 C.11 Installing packages 753 C.12 Creating time series objects . 753 Appendix D - Getting started in MATLAB 755 D.1 Installing MATLAB . 755 D.2 Using MATLAB as a calculator 755 D.3 Setting the path . 756 D.4 MATLAB scripts (m-files) . 756 D.5 Data entry 757 D.5.1 From keyboard 757 D.5.2 From a file 757 D.5.2.1 Single variable . 757 D.5.2.2 Several variables 758 D.6 MATLAB vectors 758 D.7 User defined functions 761 D.8 Matrices . 761 D.9 Loops and conditionals . 761 D.10 Basic plotting 763 D.11 Creating time series objects . 764 Appendix E - Experiments 765 E.1 How good is your probability assessment? 765 E.1.1 Objectives . 765 E.1.2 Experiment 765 E.1.3 Question sets . 765 E.1.4 Discussion . 767 E.1.5 Follow up questions . 767 E.2 Buffon’s needle . 767 E.2.1 Objectives . 767 E.2.2 Experiment 767 E.2.3 Questions . 768 E.2.4 Computer simulation . 768 E.2.5 Historical note 768 E.3 Robot rabbit 768 E.3.1 Objectives . 768 E.3.2 Experiment 769 E.3.3 Data 770 E.3.4 Discussion . 770 E.3.5 Follow up question 772 E.4 Use your braking brains 772 E.4.1 Objectives . 772 E.4.2 Experiment 772 E.4.3 Discussion . 772 E.5 Predicting descent time from payload . 773 E.5.1 Objectives . 773 E.5.2 Experiment 773 E.5.3 Discussion . 774 E.5.4 Follow up question 774 E.6 Company efficiency, resources and teamwork . 774xvi Contents E.6.1 Objectives . 774 E.6.2 Experiment 774 E.6.3 Discussion . 776 E.7 Factorial experiment { reaction times by distraction, dexterity and distinctness 776 E.7.1 Aim 776 E.7.2 Experiment 776 E.7.3 Analysis 776 E.7.4 Discussion . 777 E.7.5 Follow up questions . 777 E.8 Weibull analysis of cycles to failure 778 E.8.1 Aim 778 E.8.2 Experiment 778 E.8.3 Weibull plot 778 E.8.4 Discussion . 779 E.9 Control or tamper? . 779 E.10 Where is the summit? . 781 References 783 Index Index 2-factor interaction, 565{567, 571, 574, 578, 581, 582, 587, 591, 598{600 3-factor interaction, 565, 580, 582, 585, 601 absorbing states, 675{678 acceptance sampling, 531{533 accuracy, 119, 200, 279, 285, 298, 337, 339, 453, 503 addition rule, 11, 13, 15{17, 36, 40, 41, 645 aliases, 450, 581, 598, 600 AMP, 711, 718{720, 724 analysis of variance, 375, 421, 605, 607, 615, 616, 620 ANOVA, 375, 421, 480, 605, 607, 608, 610, 611, 613, 614, 622, 624, 625, 627, 630, 631, 634, 636, 637, 639{643, 647 AOQL, 531{533, 555 aperiodic, 668, 671 asset management plan, 699, 711 auto-correlation, 419, 457, 463, 499, 691 auto-covariance, 457 auto-regressive, 459 balance, 39, 82, 102, 180, 352, 506, 605, 607, 614, 621, 637, 642, 646, 671, 674, 675, 772, 777 Bayes’ theorem, 25, 27, 28, 45 Bernoulli trial, 137, 140{142, 149, 153, 154, 158, 162, 165, 353, 489 between samples, 607, 609, 610 bias, 5, 282{285, 293, 299, 337{339, 348, 402, 499, 503, 528, 554, 691, 722, 723 bin, 125, 177, 178, 249 binomial distribution, 137, 143{145, 147{ 151, 153, 154, 157, 160, 163, 165, 166, 168, 170, 188, 221, 231, 328, 525, 722, 723 bivariate, 108, 233, 245, 246, 249, 251{253, 255, 256, 267, 271, 337, 357, 376{ 378, 380{382, 394, 399 block, 37, 38, 53, 86, 110, 236, 249{251, 344, 481, 561, 621{627, 629{634, 637, 642, 643, 646, 654 bootstrap, xvii, 292{299, 337{339, 349, 370, 397, 465, 487, 499, 512, 527, 528 box plot, 95, 97, 122, 131, 217, 226, 311, 313, 339, 498{500, 509, 556, 592, 611 categorical variable, 55{57, 123, 403, 428, 431, 448, 640, 641 censored, 514, 522, 523, 525, 527 central composite design, 559, 585, 586, 594, 595, 597, 598, 603 Central Limit Theorem, 2, 211, 233, 263, 267, 281, 286, 309, 370, 527, 534, 690 Chapman-Kolmogorov equation, 666 Chi-squared distribution, 307, 341, 342 coefficient, 50, 94, 101, 166, 170, 207, 233, 238, 287, 357, 359, 403, 405, 514, 565, 640, 671, 674, 708 coefficient of variation, 166 coefficient of determination, 376, 729 coefficient of variation, 94, 101, 170, 207, 264, 287, 306, 349, 387, 514, 708 cold standby, 659 common cause variation, 491, 495, 496, 499, 509 concomitant variable, 428, 560{562, 564, 571, 590, 591 conditional distribution, 255, 271, 360, 368, 376{378, 381, 407 conditional probability, 18{20, 28, 41, 43, 255, 515, 525 confidence interval, 197, 279, 285, 359, 370, 418, 504, 512, 579, 603, 611, 613, 690, 708 continuity correction, 320{323 continuous, 55, 138, 175, 246, 248, 330, 404, 492, 514, 575, 580, 605, 615, 681, 683, 716 contour plot, 446, 448, 596 correlation coefficient, 236, 238, 239, 245, 246, 259, 268, 393, 397 correlogram, 458, 459 789790 Statistics in Engineering, Second Edition covariance, 233, 456, 457, 545, 559, 587, 598, 689, 704 covariate, 250, 404, 405, 450 cumulative distribution function, 121, 138, 176, 252, 256, 330, 515 cumulative frequency polygon, 73, 76, 77, 82, 121, 124, 132, 176 cumulative frequency polygon, 77, 83 datum, 62, 73, 92, 108, 130, 202, 366, 404, 422, 478, 482 degrees of freedom, 93, 268, 288, 367, 417, 502, 545, 566, 567, 607, 706 deseasonalized, 116, 456, 458, 459, 462, 463 design generator, 581, 582, 600 design matrix, 565 detrended, 456, 458, 459, 462, 463 deviance, 470, 473, 489 deviate, 149, 152, 175, 182{184, 189, 190, 203, 212, 215, 216, 242, 243, 342, 518, 692 discrete event simulation, 685, 688, 692 empirical (cdf), 330, 332 endogenous, 685 ensemble, 456, 457 equilibrium, 667, 668, 670{672, 674, 675, 683, 694, 695, 697 equilibrium equations, 667, 668, 670, 671, 674, 675 error, 1, 27, 34, 71, 78, 82, 130, 194, 239, 256, 280, 357, 405, 499, 560, 566, 605, 606, 691, 703 estimator, 126, 172, 191, 259, 279, 280, 360, 367, 405, 408, 497, 566, 587, 607, 689, 690, 701, 703 evolutionary operation, 559, 593, 594, 603 exogenous, 685 expected value, 32, 54, 124, 139, 177, 178, 234, 245, 284, 328, 375, 391, 447, 452, 551, 579, 607, 609, 657, 658, 704 explanatory variable, 118, 716 exponential distribution, 162, 184, 242, 263, 280, 292, 402, 486, 514, 515, 658 F-distribution, 317, 332, 421 factor, 114, 143, 208, 214, 242, 255, 282, 363, 391, 503, 560, 605, 702, 703 factorial experiment, 559, 571, 580, 586, 594, 642 fixed effect, 622, 627, 633, 643 frequency, 12, 61, 70, 176, 177, 245, 249, 328, 396, 450, 503, 534, 564, 674, 686 gamma distribution, 209{214, 228, 307, 683 gamma function, 52, 154 generalized linear regression, 468 generalized variance, 545 geometric distribution, 153, 154, 169 goodness of fit test, 327, 328, 330, 347 Gumbel distribution, 213{219, 226, 228, 229, 296, 297, 336, 338, 339, 351 hidden states, 683, 697 histogram, 73, 175, 176, 246, 249, 297, 298, 368, 382, 453 hot standby, 659 hypothesis (null and alternative), 279, 371, 376, 418, 434, 502, 606, 691 ill-conditioned, 442 imaginary infinite population, 58 independent, 16, 20, 143, 184, 186, 242, 281, 282, 357, 359, 405, 419, 495, 499, 559, 606, 607, 656, 657, 707 indicator variable, 164, 428{431, 434, 435, 439, 448, 452, 456, 484, 488, 560, 605, 643, 646, 647 inherent variability, 358 inter-quartile range (IQR), 90{92, 96, 99, 124, 125, 132, 226, 231, 311, 314, 556 interaction, 403, 424, 562, 613, 684, 685 interval estimate, 280, 333 intrinsically linear model, 389, 390, 394 kurtosis, 104{107, 121, 122, 126, 134, 164, 180, 181, 186, 194, 210, 221, 222, 289, 342, 348, 463, 510 lag, 456, 457, 461, 496, 499, 548, 689, 691 Laplace distribution, 181, 230, 231, 283, 352, 360, 397 least significant difference, 605, 610, 637 least squares estimate, 363, 366, 367, 409 level of significance, 300, 303, 332, 340, 341, 345, 353{355, 614, 625, 632 linear model, 357, 359, 365, 389, 390, 394, 403, 411, 444, 465, 468, 469, 482, 487, 566, 595, 597, 606, 614Index 791 linear regression, 357, 361, 371, 377, 381, 386, 395, 400, 401, 468, 475, 646 linear transformation, 298, 406, 427 linear trend, 117, 451, 452, 454, 455 logit, 468, 469, 488, 489 lower confidence bound, 308 m-step transition matrix, 664 main effect, 565{567, 571, 574{576, 578, 581, 582, 584, 585, 587, 590, 591, 598, 599, 613, 618, 620, 636, 637 main-plot factor, 626, 628, 629 marginal distribution, 245, 246, 248, 249, 251, 252, 256, 271, 377, 382, 452 Markov chain, 662{664, 666{668, 671, 675, 676, 679, 681, 694{696 Markov process, 662, 664, 681, 695 matched pairs, 309, 315, 316, 344, 621, 692 maximum likelihood, 384, 468, 519, 524 mean, 81, 139, 177, 233, 279, 359, 403, 405, 492, 559, 560, 605, 685, 688, 699, 700 mean-adjusted/corrected, 237, 363, 375, 393, 425, 483, 609 mean-square error (MSE), 284, 717 measurement error, 358, 385, 394, 399 median, 82, 181, 283, 284, 389, 391, 413, 496, 497, 579, 580 method of moments, 149, 157, 160, 181, 191, 204, 402, 525, 526 minimal cut set, 655, 656, 661 minimal cut vector, 655 minimal path set, 655, 656 minimal path vector, 655 mode, 22, 56, 85{87, 132, 181, 186, 188, 193, 194, 214 Monte-Carlo simulation, 296, 545 multiple regression, xvii, 2, 403{405, 407, 413, 419, 424, 428, 438, 443, 450, 459, 475, 476, 481{483, 559, 560, 605, 643 multiplicative rule, 18, 19, 23, 26, 36 multivariate normal distribution, 407 mutually exclusive, 8, 12{17, 20, 23, 24, 26, 28, 36, 68, 142, 143, 172 non-linear least squares, 465, 487 normal distribution, 181, 194, 260, 279, 280, 407, 492, 497, 613, 639, 707 normal distribution, 233, 357, 361, 683, 720 normalizing factor, 255 null recurrent, 667, 668 orthogonal, 485, 566, 574, 584, 586, 589, 591, 601 over-dispersed, 470 p-value, 304, 371, 418, 421, 599, 607, 610, 694 Paasche price index, 120, 135 parameter, 6, 7, 79, 81, 141, 181, 256, 260, 279, 280, 359, 361, 416, 461, 515, 517, 566, 568, 606, 609, 660, 700 parametric bootstrap, 296, 297 parent distribution, 287, 288, 291, 292, 295{ 297 partial balance, 671, 674, 675 periodic, 360, 668, 671 point estimate, 280, 339, 690 Poisson distribution, 137, 158{161, 171, 172, 185, 189, 328, 330, 470, 471, 539, 540, 549 Poisson process, 158, 159, 169{171, 184, 186, 187, 189, 210, 213, 224, 330, 472, 660 positive recurrent, 667, 668 power, 1, 20, 56, 104, 118, 119, 330, 341, 389, 419, 471, 513, 523, 529, 643, 651, 661 precision, 105, 132, 161, 202, 279, 285, 359, 423, 426, 495, 503, 564, 630, 690, 699 prediction interval, 279, 325, 360, 423, 706, 707 predictor variable, 357, 403, 559, 604, 699, 716 probability, xvii, 1{3, 58, 59, 137, 138, 175, 176, 246, 279, 280, 370, 371, 470, 488, 492, 498, 607, 649, 658, 701 probability density function, 121, 175, 176, 246, 251, 554 probability mass function, 121, 138, 162, 246, 270, 666, 667 process capability index, 510 process performance index, 511 pseudo-3D plot, 413 pseudo-random numbers, xvii, 203, 256, 486, 551 quantile, 83, 90, 181, 182, 402, 438, 443, 518, 519, 571, 578, 610, 640 quantile-quantile plot, 190, 203, 204, 297, 298, 402, 443, 518, 571, 574, 616, 621792 Statistics in Engineering, Second Edition quartile, 90, 231, 556 quota sample, 716, 723 random digits, 3, 5, 6 random effect, 621, 622, 627 random numbers, xvii, 6, 34, 149, 163, 203, 209, 212, 242, 256, 486, 551, 691, 692 random variable, 126, 137, 175, 233, 245, 280, 281, 359, 368, 406, 525, 606, 656, 657, 703, 704 range, xviii, 1, 2, 4, 5, 73, 78, 175, 201, 236, 239, 280, 300, 357, 364, 403, 415, 496, 510, 564, 585, 611, 617, 649, 665, 706, 716 rate matrix, 682, 683 realization, 419, 452, 662, 691 regression, xvii, 2, 361, 403, 404, 559, 560, 605, 610, 699, 715 regression line, 361, 363, 724 regression sum of squares, 375 regression towards the mean, 378 relative frequency, 74 relative frequency density, 74 reliability function, 185, 515, 657, 661 repeatability, 503, 504 replication, 562, 570, 614, 618, 691, 692 residual sum of squares, 375, 376, 639 response surface, 594 response variable, 357, 359, 421, 443, 561, 570, 716 robust, 97, 98 run, 37, 58, 183, 202, 261, 378, 446, 484, 492, 504, 562, 563, 613, 614, 619, 652, 670, 711 sample, 3, 4, 55, 58, 137, 142, 175, 176, 233, 234, 357, 370, 404, 497, 559, 605, 606, 662, 663, 699 sample path, 662 sample space, 7, 9, 137, 142, 175, 662 sampling distribution, xvii, 397, 458, 545, 551, 639, 706, 720 scatterplot, 244, 365, 368, 413 seasonal term/effect/component, 55, 114, 116, 452, 454, 455 simple random sample, 33, 34, 151, 213, 233, 263, 703, 721 simulation, xvii, xviii, 4, 5, 105, 157, 170, 175, 191, 276, 397, 447, 450, 452, 453, 492, 684, 685, 723 skewness, 102, 103, 165, 180, 181, 265, 517, 518 spurious correlation, 240, 242 standard error, 263, 360, 371, 417, 418, 521, 574, 575, 629, 705, 706 standard deviation, 93, 140, 194, 234, 359, 360, 416, 492, 496, 566, 567, 610, 625, 700, 706 standard error, 521 standard normal distribution, 195, 197 standard order, 563 state space, 663, 665 stationarity, 452, 457 statistic, 205, 420, 471, 545, 549, 639, 691, 692 statistically significant, 433, 439, 499, 561, 575, 606, 610 strata, 709, 710 stratification, 714, 716 stratified sampling, 35, 708, 710, 721, 723 Student’s t-distribution, 288 sub-plot factor, 626, 628 survey population, 700, 714 systematic sample, 701, 710, 715 t-ratio, 599 target population, 284, 699, 700 test statistic, 300, 301 time homogeneous, 663 tolerance interval, 201, 279, 325, 326 training data, 422 transition matrix, 663, 669 transition probability, 663, 664 trend, 54, 55, 63, 297, 323, 451, 452, 497, 551 unbiased estimator, 282, 283, 367, 376, 433, 497, 507, 607, 610, 689, 690, 701, 716 uniform distribution, 139, 140, 181{183, 280, 351, 550 variance, 92{94, 140, 141, 179, 181, 183, 281, 360, 367, 405, 406, 502, 578, 598, 605, 606, 674, 690, 702, 704 variance-covariance matrix, 406, 407, 481, 545, 549, 598 Weibull distribution, 231, 517, 518 weighted mean, 89 within samples estimator, 607
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Statistics in Engineering With Examples in MATLAB and R رابط مباشر لتنزيل كتاب Statistics in Engineering With Examples in MATLAB and R
|
|