Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Linear Programming With MATLAB الجمعة 10 مارس 2023, 11:50 pm | |
|
أخواني في الله أحضرت لكم كتاب Linear Programming With MATLAB Michael C. Ferris, Olvi L. Mangasarian, Stephen J. Wright University of Wisconsin – Madison Madison, Wisconsin
و المحتوى كما يلي :
Contents Preface xi 1 Introduction 1 1.1 An Example: The Professor’s Dairy . 2 1.1.1 The Setup . 2 1.1.2 Formulating the Problem and a Graphical Solution 2 1.1.3 Changing the Problem . 4 1.1.4 Discussion . 6 1.2 Formulations . 7 1.3 Applications . 8 1.3.1 The Diet Problem . 8 1.3.2 Linear Surface Fitting . 9 1.3.3 Load Balancing Problem 10 1.3.4 Resource Allocation 10 1.3.5 Classification 11 1.3.6 Minimum-Cost Network Flow . 12 1.4 Algorithms and Complexity . 14 1.4.1 The Simplex Method 14 1.4.2 Interior-Point Methods . 15 2 Linear Algebra: A Constructive Approach 17 2.1 Jordan Exchange . 17 2.2 Linear Independence . 23 2.3 Matrix Inversion . 27 2.4 Exact Solution of m Equations in n Unknowns . 32 2.5 Solving Linear Equations Efficiently 39 2.6 LU Decomposition . 41 3 The Simplex Method 45 3.1 A Simple Example 46 3.2 Vertices 51 3.3 The Phase II Procedure . 53 3.4 The Phase I Procedure 60 3.5 Finite Termination 65 viiviii Contents 3.5.1 The Nondegenerate Case . 65 3.5.2 Cycling . 66 3.5.3 The General Case . 67 3.6 Linear Programs in Nonstandard Form . 72 3.6.1 Transforming Constraints and Variables 72 3.6.2 Scheme I 76 3.6.3 Scheme II . 80 3.6.4 Summary 86 4 Duality 89 4.1 Duality and Rank in Linear Systems 89 4.2 Duality in Linear Programming . 94 4.3 Interpretation of Linear Programming Duality . 96 4.4 Duality Theory 97 4.5 KKT Optimality Conditions . 100 4.6 Dual Simplex Method 102 4.7 General Linear Programs 107 4.8 Big M Method 110 4.9 Applications of Duality . 112 5 Solving Large Linear Programs 117 5.1 Foundations . 118 5.1.1 Basic Feasible Solutions and Basis Matrices . 118 5.1.2 Geometric Viewpoint . 121 5.2 The Revised Simplex Method 123 5.2.1 Upper and Lower Bounds . 129 5.2.2 Generating Basic Feasible Solutions . 134 5.2.3 Basis Updates . 139 5.2.4 Advanced Pivot Selection Mechanisms 142 5.3 Network Flow Problems . 143 5.3.1 Minimum-Cost Network Flow . 144 5.3.2 Shortest-Path Problem . 145 5.3.3 Max-Flow Problem 146 5.3.4 Transportation Problem 147 5.3.5 Assignment Problem 149 5.3.6 Network Simplex Method . 149 6 Sensitivity and Parametric Linear Programming 151 6.1 Sensitivity Analysis . 151 6.2 Adding New Variables or Constraints 155 6.3 Parametric Optimization of the Objective Function . 158 6.4 Parametric Optimization of the Right-Hand Side 164 7 Quadratic Programming and Complementarity Problems 169 7.1 Nonlinear Programs: Optimality Conditions 169 7.2 Quadratic Programming . 172Contents ix 7.2.1 Basic Existence Result . 172 7.2.2 KKT Conditions 173 7.2.3 Duality . 176 7.3 Linear Complementarity Problems . 177 7.4 Lemke’s Method . 178 7.5 Bimatrix Games . 185 7.5.1 Computing Nash Equilibria 186 7.5.2 Zero-Sum Games As Dual Linear Programs . 192 8 Interior-Point Methods 195 8.1 Motivation and Outline . 195 8.2 Newton’s Method 197 8.3 Primal-Dual Methods 201 8.3.1 An Affine-Scaling Approach 202 8.3.2 Path-Following Methods 204 8.3.3 Solution of the Linear System at Each Interior-Point Iteration 208 8.3.4 Practical Primal-Dual Methods 209 8.4 Interior-Point vs. Simplex 212 8.5 Extension to Quadratic Programming 212 9 Approximation and Classification 217 9.1 Minimax Problems 217 9.2 Approximation 218 9.2.1 Chebyshev Approximation . 219 9.2.2 L1 Approximation . 221 9.2.3 Approximate Solutions to Systems with Inequality Constraints . 223 9.2.4 Least-Squares Problems 224 9.3 Huber Estimation 227 9.4 Classification Problems . 230 A Linear Algebra, Convexity, and Nonlinear Functions 237 A.1 Linear Algebra 237 A.2 Convex Sets . 239 A.3 Smooth Functions 242 A.4 Convex Functions 242 A.5 Quadratic Functions . 244 A.6 Norms and Order Notation . 247 A.7 Taylor’s Theorem 249 B Summary of Available MATLAB Commands 251 B.1 Basic MATLAB Operations . 251 B.2 MATLAB Functions Defined in This Book . 252x Contents Bibliography 257 Index 26 Index affine-scaling method, 202–204, 206, 210 poor performance of, 203 steplength choice, 203 approximation problems, 218–227 1-norm, 221–224 2-norm. See least-squares problems ∞-norm. See Chebyshev approximation for linear equalities, 218–223 with hard constraints, 223–224, 227 arc, 12–14, 144 back substitution. See triangular substitution basic feasible solution, 118 as iterates ofrevised simplexmethod, 123 associationwith basismatrix, 120–121 association with vertex, 121–123 degenerate, 120 existence, 119–120 initial, 129, 134–139 basic solution, 118 basis, 117, 126, 152 for problemswith bound constraints, 130 initial, 125, 134–137 optimal, 129, 152–156 basis matrix, 52, 118, 120, 123, 139, 140, 154 for network linear program, 149 LU factorization of, 139–142 big M method, 110–112 behavior on infeasible problems, 112 motivation, 110–111 proof of effectiveness, 111 specification, 111–112 bimatrix game, 185 Bland’s rule. See smallest-subscript rule blocking variable, 48 breakpoint, 163 canonical form, 8, 16, 45, 117, 120, 123, 129, 130, 134, 138, 139, 150, 151, 156, 195, 197 dual of, 109 for problemswith bound constraints, 130 centering parameter, 206, 214 central path, 205 Chebyshev approximation, 219–221, 223 Cholesky factorization, 209, 212 classification, 11–12, 230–235 labeled points, 230 testing set, 235 training set, 235 tuning set, 235 classifier, 230 linear, 230 nonlinear, 233, 234 complementarity, 101–102, 178, 237 almost-, 178, 179 existence of strictly complementary primal-dual solution, 114–115 strict, 101 complementary slackness. See complementarity concave function, 161, 244 constraints, 1 active, 14 bounds, 74–75 equality, 72–87 inactive, 14 inequality, 72–87 convex combination, 239, 241 convex function, 170, 242–244, 248 261262 Index linear underestimation, 170, 250 strict, 173 convex hull, 56, 113, 241 convex set, 170, 173, 239–241 cost vector, 7, 151, 154 parametrized, 159 cross-validation, 235 cycling, 66–72, 104 Dantzig, George B., 7, 16 degenerate linear program, 66, 67 diet problem, 8, 96 divergence, 144 domain, 242 dual linear program of canonical form, 196 of standard form, 94, 102 tableau representation, 94 dual linear system, 89 dual pair of linear programs. See primaldual pair of linear programs dual simplex method, 89, 102–106, 164, 220–223 motivation for, 102 relationship to simplex method applied to the dual, 105–106 specification of, 103–104 duality, 89–115 for quadratic programs, 176–177 practical example, 96–98 strong, 98–99 applications of, 112–115, 167 for quadratic programming, 176–177 weak, 97–98, 101, 111, 176 duality gap, 197 duality measure, 197, 205, 213 ellipsoid method, 15 entering variable, 47 epigraph, 217, 242–243 equilibrium pair. See Nash equilibrium expected loss, 185 Farkas lemma, 112–113 feasible point, 3 dual, 98, 103 feasible region, 3, 46, 51, 53, 169, 171, 182 feasible set. See feasible region feature space, 233 fickle variable, 69 finite termination of simplex method, 65–72 floating-point number, 127 floating-point operations, 39 forward substitution. See triangular substitution Frank–Wolfe theorem, 172–173 fundamental theorem of algebra, 113, 225 Gaussian elimination, 39 general form of linear program, 75 dual of, 107–109 global solution, 170, 171, 173, 182 Gordan theorem, 113 gradient, 172, 242, 244, 247 graphical solution of linear programs, 2–6 Hessian, 171, 172, 214, 224, 242, 244, 245 Huber estimation formulation as quadratic program, 229–230 motivation and definition, 227–228 optimality conditions, 228–229 infeasible linear program, 14, 62, 98, 225 infeasible point, 3 integer programming, 7, 16 interior-point methods basic properties of primal-dual methods, 196–197 comparison with simplex method, 212 introduction, 15, 195–197 path-following. See path-following methods relationship to Newton’s method, 202 Jacobian, 199, 202, 249 Jordan exchange, 17–23, 26, 27, 46–48, 53, 83, 179, 221. See also pivot block, 31Index 263 blocking of, 25, 33, 36, 38 interpretation on dual tableaus, 89–91 Karmarkar, Narendra, 15, 214 Karush–Kuhn–Tucker (KKT) conditions, 100–101, 129, 192, 195 as constrained nonlinear equations, 201–202 for canonical form, 195, 196 for linear programs in general form, 108 for quadratic programs, 173–175, 181, 184–185, 212, 229, 233 statement of, 100–101 kernel, 234 Gaussian, 234–235 linear, 234 polynomial, 234 KKT (Karush–Kuhn–Tucker) conditions. See Karush–Kuhn–Tucker conditions knapsack problem, 130 Lagrange multipliers, 173, 176, 195, 229, 232 Lagrangian, 176 LCP. See linear complementarity problem (LCP) least-squares problems, 211, 224–229 normal equations, 225 leaving variable, 48, 156 Lemke’s method, 178–185 application to quadratic programs, 182–185 outline of, 178 Phase I, 178–179, 188 Phase II, 179, 188 termination of, 182 Lemke–Howson method, 187 level set, 243 linear combination, 240 linear complementarity problem (LCP), 169, 177–178 definition, 177 infeasible, 182 relationship to quadratic programming, 174, 177, 180, 182 linear dependence, 23, 24, 138, 221 of functions, 24 linear equations, 32–39 inconsistent, 218, 227 overdetermined, 220, 221, 223, 224, 226, 227, 230 solution using Gaussian elimination, 39–41 solution using Jordan exchanges, 32–39 flop count, 39, 44 with infinitely many solutions, 37 linear independence, 17, 23–27, 51, 52, 118, 119 of functions, 24 of rows/columns in a matrix, 92 local solution, 169, 170, 173, 184 LU decomposition. See LU factorization LU factorization, 17, 39–44, 127, 138, 197 complete pivoting, 43 flop count, 44 partial pivoting, 42–44 updating, 139–142 matching pennies game, 188–191, 193 matrix addition, 239 basis. See basis matrix diagonal, 196, 208, 238 eigenvalues, 246 identity, 238 indefinite, 208, 214, 245 inverse, 27–31, 238 invertible, 51, 152, 225 loss, 185–188, 191 lower triangular, 39, 209, 239 unit, 40 multiplication, 239 nonsingular, 27 permutation, 39–41, 139, 209, 238 poorly conditioned, 226 positive definite, 245, 246 positive semidefinite, 172, 174, 176, 224, 245, 246264 Index representation in MATLAB, 251–252 singular, 27, 31 skew-symmetric, 178 sparse, 208, 209, 238 symmetric, 172, 244 totally unimodular, 150 transpose, 238 upper triangular, 39 Mehrotra predictor-corrector method. See path-following methods minimax problems, 217–218 discrete, 218 minimum principle, 170, 173, 184 mixed strategy, 185 mixed-integer linear programming, 150 monotone, 247 Nash equilibrium, 186, 192 computation of, 186–187 Nash, John, 169, 186 network linear program, 143–150 assignment problem, 149 circulation problem, 147 general properties, 143–144 max-flow, 146–147 minimum-cost, 12–14, 144–146, 149 node-arc incidence matrix, 145 shortest-path, 145–146 transportation problem, 147–149 network simplex method, 149–150 Newton’s method, 197–201 for scalar nonlinear equations, 197–198 for systems of nonlinear equations, 197–201 quadratic convergence of, 199 with line search, 201 node, 12, 144 demand, 13, 145 sink, 145 supply, 13 nondegenerate linear program, 65, 66 nonlinear programming, 169–172 nonnegative orthant, 171, 251 norm, 218, 247–248 1, 221, 247 2, 231, 247
p, 219, 247 ∞, 219, 247 dual, 231, 248 equivalence of, 248 objective function, 1, 154, 241 contours, 4, 46, 159 optimal face, 58. See also solution set order notation O(·), 248 o(·), 248–250 parametric programming, 151, 158–168 path-following methods MATLAB implementation of, 209 choice of centering parameter, 207, 210 choice of starting point, 211 choice of steplength, 207, 211 corrector direction, 210, 211 for quadratic programming, 212–214 linear algebra issues, 208–209, 211, 214 normal-equations form, 208 long-step, 206–207 specification of algorithm, 206–207 motivation, 204–205 practical enhancements, 209–211 relationship to Newton’s method, 205–206 permutation, 29 Phase I of simplex method, 60–65, 179, 223 after addition of constraints, 157 description of, 60–65 dual simplex as possible alternative, 102, 104 for canonical form, 134–138 for problems with parametrized constraints, 167 for solution of linear inequalities, 64 purpose of, 53 Phase II of simplex method, 53–60, 62, 71, 103, 135–137 piecewise-linear function, 161, 163, 217Index 265 pivot, 18, 20, 46, 47. See also Jordan exchange block, 31 degenerate, 62, 64, 69 nondegenerate, 67 submatrix, 31 pivot selection, 15. See also pricing Devex, 142, 143 for dual simplex, 103 for Lemke’s algorithm, 179 steepest-edge, 142 polynomial complexity, 207 predictor-corrector method. See path-following methods preprocessing, 212 pricing, 47, 49, 53, 68, 117 partial, 142 primal-dual methods. See interior-point methods primal-dual pair of linear programs, 89 definition, 94 for general linear programs, 108 interior-point methods and, 195 optimality conditions for, 100 weak duality for, 97 zero-sum games and, 192 prisoners’ dilemma, 186, 191 projection, 173, 205, 244 pure strategies, 185 QR factorization, 226 quadratic function, 244–247 convex, 244–247 quadratic programming, 7, 172–177, 212–215, 227, 231 convex, 172, 173, 175, 212 general form, 175 infeasible, 182, 183 nonconvex, 182, 184 unbounded, 182, 183 rank, 91, 225 determination via Jordan exchanges, 91–92 full, 225 ratio test, 48, 126, 203 after addition of constraints, 157 definition, 49 for dual simplex method, 103, 104, 157, 165 in Lemke’s method, 179, 180, 188 robust implementation of, 143 ties in, 66, 68 reduced costs, 49, 68, 124, 132, 142, 152, 153, 160 regression problems. See approximation problems residual vector, 219, 221, 227 outliers, 227 resource allocation, 10–11 revised simplex method, 52, 117, 123–143, 156 choice of initial basis, 125 for problems with bound constraints, 129, 134 fundamental idea, 123–124 initial basic feasible solution, 134–139 linear algebra in, 124–126 pivot selection, 142–143 roundoff error issues, 127–129 specification, 124 roundoff error, 28, 127, 143 saddle point, 184 scalar product, 252 Scheme II for linear programs in nonstandard form, 72, 80–86, 157, 220, 221, 223 Schur complement, 31 sensitivity analysis, 4, 151 separating hyperplane, 11, 230, 231, 233 separation lemma, 113 shadow prices, 97, 154, 155. See also Lagrange multipliers Sherman–Morrison–Woodbury formula, 140 shifting, 74 simplex method, 6, 7, 45–87 introduction, 14–15 network, 149–150 slack variables, 8, 45, 117, 152, 196 definition, 45 dual, 101, 103266 Index smallest-subscript rule, 67–72, 78, 104 solution set, 58–60 source, 145 standard form, 7, 16, 45, 117, 151 standard form, transformation to, 72–76 free variable method, 75 Scheme I, 72, 76–80 Scheme II, 80–86 substitution method, 74 Steinitz theorem, 26–27, 38, 92 support vector machines linear, 230–233 linear programming (1)formulation, 233 nonlinear, 233–234 nonseparable, 231–233 separable, 230–231 support vectors, 231, 232 tableau, 18–20 augmented, 62 condensed, 45, 47, 123 degenerate, 65, 66, 120 dual, 89 feasible, 46, 187 initial, 47, 119 labels, 21 MATLAB representation, 21–22 nondegenerate, 65 optimal, 49, 53, 58, 71, 152–154, 156 primal, 89 unbounded, 54 Taylor’s theorem, 170, 198, 199, 249 theorem of the alternative, 113 tolerance pivot, 127 slack, 127 triangular substitution, 40, 139, 141, 209 unbounded linear program, 14, 46, 54–56, 66, 98 unbounded ray, 54, 182, 183 uncertainty in formulation, 151 variables, 2 artificial, 61, 62, 135, 167, 179, 218 for equality constraints, 80–82, 193 basic, 45, 152 blocking, 133 dependent, 18, 21, 23 dual, 89. See also Lagrange multipliers free, 75, 80, 107, 134, 136–139, 167, 184, 222 independent, 18, 21, 23, 26 nonbasic, 45, 51, 130 nonnegative, 107 slack. See slack variables vector norm. See norm notation, 237 representation in MATLAB, 251 vertex, 14–15, 46, 51–53, 120, 163 adjacent, 15 degenerate, 52 zero-sum game, 185, 192–193 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Linear Programming With MATLAB رابط مباشر لتنزيل كتاب Linear Programming With MATLAB
|
|