Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Linear Feedback Control - Analysis and Design with MATLAB الجمعة 08 أكتوبر 2021, 11:33 pm | |
|
أخواني في الله أحضرت لكم كتاب Linear Feedback Control - Analysis and Design with MATLAB Dingyü Xue Northeastern University Shenyang, People’s Republic of China YangQuan Chen Utah State University Logan, Utah, USA Derek P. Atherton University of Sussex Brighton, United Kingdom
و المحتوى كما يلي :
Contents Preface xi 1 Introduction to Feedback Control 1 1.1 Introduction 1 1.2 Historical Background 3 1.3 Structure of the Book . 4 1.4 A Survival Guide to MATLAB 6 1.4.1 A Brief Overview of MATLAB 6 1.4.2 Standard MATLAB Statements and Functions 6 1.4.3 Graphics Facilities in MATLAB . 7 1.4.4 On-Line Help Facilities in MATLAB . 7 1.4.5 MATLAB Toolboxes . 8 Problems 9 2 Mathematical Models of Feedback Control Systems 11 2.1 A Physical Modeling Example 11 2.2 The Laplace Transformation . 12 2.3 Transfer Function Models . 14 2.3.1 Transfer Functions of Control Systems 14 2.3.2 MATLAB Representations of Transfer Functions . 14 2.3.3 Transfer Function Matrices for Multivariable Systems 16 2.3.4 Transfer Functions of Discrete-Time Systems 16 2.4 Other Mathematical Model Representations . 17 2.4.1 State Space Modeling . 17 2.4.2 Zero-Pole-Gain Description 19 2.5 Modeling of Interconnected Block Diagrams . 20 2.5.1 Series Connection . 20 2.5.2 Parallel Connection 20 2.5.3 Feedback Connection . 21 2.5.4 More Complicated Connections 22 2.6 Conversion Between Different Model Objects 24 2.6.1 Conversion to Transfer Functions . 25 2.6.2 Conversion to Zero-Pole-Gain Models 26 2.6.3 State Space Realizations 27 v2007/1 page v vi Contents 2.6.4 Conversion Between Continuous and Discrete-Time Models . 34 2.7 An Introduction to System Identification . 35 2.7.1 Identification of Discrete-Time Systems . 35 2.7.2 Order Selection 40 2.7.3 Generation of Identification Signals 41 2.7.4 Identification of Multivariable Systems 44 Problems 45 3 Analysis of Linear Control Systems 51 3.1 Properties of Linear Control Systems . 52 3.1.1 Stability Analysis . 52 3.1.2 Controllability and Observability Analysis 55 3.1.3 Kalman Decomposition of Linear Systems 59 3.1.4 Time Moments and Markov Parameters 62 3.1.5 Norm Measures of Signals and Systems . 64 3.2 Time Domain Analysis of Linear Systems 66 3.2.1 Analytical Solutions to Continuous Time Responses . 66 3.2.2 Analytical Solutions to Discrete-Time Responses . 69 3.3 Numerical Simulation of Linear Systems . 70 3.3.1 Step Responses of Linear Systems 70 3.3.2 Impulse Responses of Linear Systems 75 3.3.3 Time Responses to Arbitrary Inputs 76 3.4 Root Locus of Linear Systems 78 3.5 Frequency Domain Analysis of Linear Systems . 84 3.5.1 Frequency Domain Graphs with MATLAB 84 3.5.2 Stability Analysis Using Frequency Domain Methods 87 3.5.3 Gain and Phase Margins of a System . 88 3.5.4 Variations of Conventional Nyquist Plots . 90 3.6 Introduction to Model Reduction Techniques . 92 3.6.1 Padé Approximations and Routh Approximations 92 3.6.2 Padé Approximations to Delay Terms . 96 3.6.3 Suboptimal Reduction Techniques for Systems with Delays . 98 3.6.4 State Space Model Reduction . 101 Problems 104 4 Simulation Analysis of Nonlinear Systems 111 4.1 An Introduction to Simulink . 111 4.1.1 Commonly Used Simulink Blocks 112 4.1.2 Simulink Modeling 115 4.1.3 Simulation Algorithms and Control Parameters 116 4.2 Modeling of Nonlinear Systems by Examples 118 4.3 Nonlinear Elements Modeling 126 4.3.1 Modeling of Piecewise Linear Nonlinearities . 126 4.3.2 Limit Cycles of Nonlinear Systems 129 4.4 Linearization of Nonlinear Models 131 Problems 1352007/1 page v Contents vii 5 Model-Based Controller Design 139 5.1 Cascade Lead-Lag Compensator Design . 140 5.1.1 Introduction to Lead-Lag Synthesis 140 5.1.2 Lead-Lag Synthesis by Phase Margin Assignment 146 5.2 Linear Quadratic Optimal Control 151 5.2.1 Linear Quadratic Optimal Control Strategies . 151 5.2.2 Linear Quadratic Regulator Problems . 152 5.2.3 Linear Quadratic Control for Discrete-Time Systems . 155 5.2.4 Selection of Weighting Matrices . 156 5.2.5 Observers and Observer Design 159 5.2.6 State Feedback and Observer-Based Controllers . 162 5.3 Pole Placement Design 165 5.3.1 The Bass–Gura Algorithm . 166 5.3.2 Ackermann’s Algorithm 166 5.3.3 Numerically Robust Pole Placement Algorithm 167 5.3.4 Observer Design Using the Pole Placement Technique 169 5.3.5 Observer-Based Controller Design Using the Pole Placement Technique . 169 5.4 Decoupling Control of Multivariable Systems 171 5.4.1 Decoupling Control with State Feedback . 171 5.4.2 Pole Placement of Decoupling Systems with State Feedback . 172 5.5 SISOTool: An Interactive Controller Design Tool 175 Problems 177 6 PID Controller Design 181 6.1 Introduction 182 6.1.1 The PID Actions 182 6.1.2 PID Control with Derivative in the Feedback Loop 184 6.2 Ziegler–Nichols Tuning Formula . 185 6.2.1 Empirical Ziegler–Nichols Tuning Formula 185 6.2.2 Derivative Action in the Feedback Path 189 6.2.3 Methods for First-Order Plus Dead Time Model Fitting . 191 6.2.4 A Modified Ziegler–Nichols Formula . 194 6.3 Other PID Controller Tuning Formulae 197 6.3.1 Chien–Hrones–Reswick PID Tuning Algorithm . 197 6.3.2 Cohen–Coon Tuning Algorithm 198 6.3.3 Refined Ziegler–Nichols Tuning . 200 6.3.4 The Wang–Juang–Chan Tuning Formula . 203 6.3.5 Optimum PID Controller Design . 203 6.4 PID Controller Tuning Algorithms for Other Types of Plants 210 6.4.1 PD and PID Parameter Setting for IPDT Models . 210 6.4.2 PD and PID Parameters for FOIPDT Models . 211 6.4.3 PID Parameter Settings for Unstable FOPDT Models 213 6.5 PID_Tuner: A PID Controller Design Program for FOPDT Models . 213 6.6 Optimal Controller Design 216 6.6.1 Solutions to Optimization Problems with MATLAB . 2162007/1 page v viii Contents 6.6.2 Optimal Controller Design 218 6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and Its Applications 221 6.7 More Topics on PID Control . 225 6.7.1 Integral Windup and Anti-Windup PID Controllers 225 6.7.2 Automatic Tuning of PID Controllers . 227 6.7.3 Control Strategy Selection . 230 Problems 231 7 Robust Control Systems Design 235 7.1 Linear Quadratic Gaussian Control 236 7.1.1 LQG Problem . 236 7.1.2 LQG Problem Solutions Using MATLAB 236 7.1.3 LQG Control with Loop Transfer Recovery 241 7.2 General Descriptions of the Robust Control Problems 247 7.2.1 Small Gain Theorem 247 7.2.2 Unstructured Uncertainties 248 7.2.3 Robust Control Problems . 249 7.2.4 Model Representation Under MATLAB . 250 7.2.5 Dealing with Poles on the Imaginary Axis 251 7.3 H∞ Controller Design 253 7.3.1 Augmentations of the Model with Weighting Functions . 253 7.3.2 Model Augmentation with Weighting Function Under MATLAB 255 7.3.3 Weighted Sensitivity Problems: A Simple Case 256 7.3.4 H∞ Controller Design: The General Case 261 7.3.5 Optimal H∞ Controller Design 267 7.4 Optimal H2 Controller Design 271 7.5 The Effects of Weighting Functions in H∞ Control . 273 Problems 281 8 Fractional-Order Controller: An Introduction 283 8.1 Fractional-Order Calculus and Its Computations . 284 8.1.1 Definitions of Fractional-Order Calculus . 285 8.1.2 Properties of Fractional-Order Differentiations 286 8.2 Frequency and Time Domain Analysis of Fractional-Order Linear Systems . 287 8.2.1 Fractional-Order Transfer Function Modeling 287 8.2.2 Interconnections of Fractional-Order Blocks . 288 8.2.3 Frequency Domain Analysis of Linear Fractional-Order Systems 289 8.2.4 Time Domain Analysis of Fractional-Order Systems . 290 8.3 Filter Approximation to Fractional-Order Differentiations 292 8.3.1 Oustaloup’s Recursive Filter . 292 8.3.2 A Refined Oustaloup Filter 294 8.3.3 Simulink-Based Fractional-Order Nonlinear Differential Equation Solutions 296 8.4 Model Reduction Techniques for Fractional-Order Systems . 298 8.5 Controller Design Studies for Fractional-Order Systems . 3002007/1 page ix Contents ix Problems 304 Appendix 307 CtrlLAB: A Feedback Control System Analysis and Design Tool 307 A.1 Introduction 307 A.1.1 What Is CtrlLAB? . 307 A.1.2 Installation and Requirements . 308 A.1.3 Execution of CtrlLAB . 308 A.2 Model Entry and Model Conversion . 309 A.2.1 Transfer Function Entry 309 A.2.2 Entering Other Model Representations 309 A.2.3 A More Complicated Model Entry 310 A.3 Model Transformation and Reduction 311 A.3.1 Model Display . 311 A.3.2 State Space Realizations 314 A.3.3 Model Reduction . 314 A.4 Feedback Control System Analysis 316 A.4.1 Frequency Domain Analysis 316 A.4.2 Time Domain Analysis 318 A.4.3 System Properties Analysis 321 A.5 Controller Design Examples . 322 A.5.1 Model-Based Controller Designs . 322 A.5.2 Design of PID Controllers . 322 A.5.3 Robust Controller Design . 325 A.6 Graphical Interface-Based Tools . 327 A.6.1 A Matrix Processor 327 A.6.2 A Graphical Curve Processor . 331 Problems 334 Bibliography 337 Index of MATLAB Functions 345 Index Index Ackermann’s algorithm, 166 actuator saturation, 220, 226, 302 additive uncertainty, 248 AIC, 40, 41 Akaike’s information criterion, 337 algebraic Riccati equation (ARE), 152, 158, 237, 238, 262 analytical solution, 66–70, 135, 160, 291, 321 anti-windup, 5, 226 ARE (algebraic Riccati equation), 152, 158, 237, 238, 262 automatic tuning, 207, 208, 227–228 relay, 5, 128, 207, 228, 229 Tsypkin’s method, 228–229 autonomous system, 67 balanced realization, 31–32, 58, 59, 101–103, 314 Schur’s, 102 Bass–Gura algorithm, 166 Bezout equation, 259, 260 bilinear transform, 251, 252, 266 block diagram, 1, 4, 20–24, 60, 111, 163, 201, 248, 309 Bode diagram, 7, 85–88, 317, 322 magnitude, 259, 262, 275, 279, 282, 300 bounded input–bounded output, 52 canonical form, 56, 57, 59, 62 controllable, 29 Jordanian, 29–31, 314 observable, 29 Caputo’s definition, 284, 286 cascade PI controller, 223 Cauchy’s definition, 284, 285 Chien–Hrones–Reswick formula, 181, 197–198 class, 287, 288 Cohen–Coon formula, 181, 198–200 complementary sensitivity function, 108, 243, 255 complex plane, 194, 251 connection feedback, 21–22, 288 parallel, 20–21, 32, 288 series, 11, 20, 22, 288 constrained optimization, 131, 216, 217 control strategy, 2, 3, 157, 158, 162, 182–184, 230 Control Systems Toolbox, 2, 6, 8 controllability, 51, 55–60, 168 Gramian, 51, 58, 59, 179 staircase form, 56, 57 controllable canonical form, 29 controller H∞, 236, 249, 262, 263, 266, 270, 325 H2, 272, 273, 325 fractional-order, 283, 284, 300 PD, 200, 210–212, 223, 300 PI, 123, 183, 186, 188, 189, 194–196, 198, 200, 203, 205–207, 222, 226, 300, 324 PID, 181–233 coprime factorization, 259–261 crossover frequency, 142, 146–149, 186, 189, 192, 207, 228, 297, 322 CtrlLAB, 5–7, 9, 307 damping ratio, 78, 81 iso-, 78, 81, 82 DC (direct-current) gain, 42, 192, 193 3492007/1 page 3 350 Index decoupling, 5, 139, 171–174, 270 dynamic, 172, 174 with state feedback, 171–174 default discretization, 34 delayed system, 79, 120 describing function, 126, 228–229 descriptor system, 250 difference equation, 44 differential equation, 12, 14, 17, 283 fractional-order, 283, 290, 291 differential Riccati equation, 152, 158 differentiation, 14, 284 fractional-order, 285, 286, 292 direct-current (DC) gain, 42, 192, 193 discrete-time Riccati equation, 156 discretization, 34 disturbance, 53, 198, 203, 205, 235, 241, 248 rejection, 197, 198, 205–207 dominant poles, 81 dual, 29, 58, 169 dynamic decoupling, 172, 174 feedback connection, 21–22, 288 filter Kalman, 236–239, 241–243, 245, 272 low-pass, 184, 254, 297 Oustaloup’s, 292–293, 298, 299 refined Oustaloup’s, 294–299 first-order lag and integrator plus dead time (FOIPDT), 211, 212, 222 first-order plus dead time (FOPDT), 181, 186, 188, 193, 198, 209, 324 fixed step, 117 FOIPDT(first-order lag and integrator plus dead time), 211, 212, 222 FOPDT (first-order plus dead time), 181, 186, 188, 193, 198, 209, 324 Fourier series expansion, 41, 229 fractional transformation representation, 249, 254 fractional-order, 283–305 calculus, 284, 286 controller, 283, 284, 300 differential equation, 283, 290, 291 differentiation, 285, 286, 292 Caputo’s definition, 284, 286 Cauchy’s definition, 284, 285 Grünwald–Letnikov definition, 284–286, 290, 292 Riemann–Liouville definition, 284–286 transfer function, 287–289, 298, 299 frequencyresponses, 5, 43, 64, 65, 84–92, 186, 191–192, 194, 317 gain margin, 88–89, 141, 144, 189, 244 general mixed sensitivity problem, 254 genetic algorithm (GA), 224 GeneticAlgorithm Optimization Toolbox (GAOT), 9, 224 Grünwald–Letnikov definition, 284–286, 290, 292 H-norm, 65 H2-norm, 65–66, 98, 99, 236, 249 H∞-norm, 236, 249, 259, 261 H2 controller, 272, 273, 325 H∞ controller, 236, 249, 262, 263, 266, 270, 325 optimal, 267, 270, 274, 276, 280, 302, 325 standard, 249 Hankel matrix, 166 Hankel norm, 103 Hardy space, 3, 5, 65 identification system, 4, 11, 35–45, 139, 194 impulse response, 51, 62, 63, 70, 75–77, 125, 250, 315, 319 impulse signal, 65, 76, 77, 98, 125, 320, 321 integral of absolute error (IAE), 98, 173, 203, 218, 223, 278, 301 integral of squared error (ISE), 98–100, 203–206 integrator plus dead time(IPDT), 181, 210 internal stability, 51–55 internal structure, 4, 17, 35, 57, 226 inverse system, 83 inverse Z transform, 692007/1 page 3 Index 351 IPDT(integrator plus dead time), 181, 210 ISE (integral of squared error) criterion, 98–100, 203–206 iso-damping, 78, 81, 82 iso-frequency, 78 ITAE (integral of absolute error) criterion, 98, 173, 203, 218, 223, 278, 301 Jordanian canonical form, 29–31, 314 Kalman decomposition, 51, 59–61 Kalman filter, 236–239, 241–243, 245, 272 L-norm, 65 L1-norm, 65 L2-norm, 65 L∞-norm, 65 L p-norm, 64 Laplace transform, 11–14, 25, 62, 64, 68–69, 77, 98, 99, 286, 287, 290 inverse, 13, 69 lead-lag compensator, 139–151, 218, 308, 322 Lebesgue space, 65 limit cycle, 111, 126, 129, 131, 228, 229 linear quadratic Gaussian control (LQG), 3, 235–247 linear quadratic regulator (LQR), 3, 152, 156, 180, 216 linear system fractional-order, 283–305 state space, 3, 4, 11, 17–19, 24–33, 51, 55–57, 59, 62, 64, 101–103, 281 transfer function, 4, 7, 11, 14–17, 19–22, 24–28, 44, 288, 295 linear time invariant (LTI), 14, 18, 131, 133, 134, 138, 151 logarithmicNyquist plot, see Nyquist plot, logarithmic loop transfer recovery (LTR), 3, 236, 243, 245, 247 low-pass filter, 184, 254, 297 LQG (linear quadratic Gaussian control), 3, 235–247 LQR (linear quadratic regulator), 3, 152, 156, 180, 216 LTI (linear time invariant), 14, 18, 131, 133, 134, 138, 151 LTR (loop transfer recovery), 3, 236, 243, 245, 247 Lyapunov equation, 10, 58 Maclaurin series, 62, 96, 97 magnitude Bode diagram, 259, 262, 275, 279, 282, 300 Markov parameters, 51, 63–64 MATLAB toolbox CtrlLAB, 5–7, 9, 307 Genetic Algorithm Optimization Toolbox (GAOT), 9, 224 Optimal Controller Designer (OCD), 216, 221–225, 303 PID_ Tuner, 213–216 Robust Control, 9, 235, 250–252, 255 Simulink, 111–135, 296–298 Symbolic, 9, 13, 14, 68–70 System Identification, 9, 36, 39 measurement noise, 53, 239 minimum phase, 164, 257–259, 261 realization, 21, 32–33, 44, 61, 62 sensitivity problem, 257, 258 Mittag–Leffler function, 291, 292 mixed stability, 262 model conversion, 4, 11, 25, 26, 38, 43, 44, 67 model mismatch, 235 model reduction, 4, 51, 58, 59, 92–103, 194, 271, 293, 314–316 optimal Hankel norm approximation, 103, 314 Padé approximation, 92, 94, 96, 97, 99, 120, 133, 298, 314 Routh approximation, 94, 95, 314 Schur’s balanced realization, 102 suboptimal reduction, 191, 215, 298, 299, 314 multiple input–multiple output, 7, 16 multiplicative uncertainty, 248 multivariable system, 16, 44–45, 120, 171–1742007/1 page 3 352 Index natural frequency, 174, 180, 282, 325 Nichols chart, 85, 148–151, 289 nominal value, 262, 301 nonminimum phase model, 246, 259, 261–267 nonlinear system, 5, 17, 111, 112, 116, 126, 129, 131–134, 136, 313, 319, 321 nonlinearity, 111, 112, 127, 128, 228, 310 double-valued, 111, 126–128 piecewise linear, 111, 126 relay, 128, 228, 229 saturation, 112, 123, 224 single-valued, 111, 126–128 static, 126, 128, 228 Nyquist plot, 42, 51, 84, 85, 87–90 atan, 90 logarithmic, 90–92 Nyquist Theorem, 87, 88 observability, 51, 57–60 Gramian, 58, 59 staircase form, 58 observable canonical form, 29 observer, 3, 139, 159–162, 164, 165, 169, 236, 262 observer-based controller, 139, 322 regulator, 165, 169 OCD(Optimal ControllerDesigner), 216, 221–225, 303 operating point, 131, 132 optimal control, 181, 216, 218–225 Optimal ControllerDesigner(OCD), 216, 221–225, 303 optimalHankel norm approximation, 103, 314 optimization, 99, 181, 216–219, 221, 223, 224, 239 constrained, 131, 216, 217 Genetic Algorithm Toolbox, 9, 224 unconstrained, 216–217 optimum PID controller, 181, 209, 324 ordinary differential equations(ODE), 12, 14, 17, 283 Oustaloup recursive approximation, 292–293, 298, 299 refined, 294–299 overshoot, 71, 72, 74, 196–198 Padé approximation, 92, 94, 96, 97, 99, 120, 133, 298, 314 parallel connection, 20–21, 32, 288 PD controller, 200, 210–212, 223, 300 phase margin, 88–89, 141, 144, 146–151, 175, 240, 243, 244, 281, 321, 322 assignment, 207 PI controller, 183, 186, 188, 189, 194–196 PIλDµ controller, 300 PID controller, 181–233 anti-windup, 5, 226 Chien–Hrones–Reswick, 181, 197–198 Cohen–Coon, 181, 198–200 for FOIPDT plant, 211, 212, 222 for IPDT plant, 181, 210 fractional-order, 300 modified Ziegler–Nichols, 181, 202 optimum setting, 181, 209, 324 phase margin assignment, 207 refinedZiegler–Nichols, 181, 200–202, 323 Wang–Juang–Chan, 181, 203, 300 Ziegler–Nichols, 181, 185–198, 200–202, 209, 323 PID_ Tuner, 213–216 plant augmentation, 247, 249, 255 plant model, 2, 53, 82 FOIPDT, 211, 212, 222 FOPDT, 181, 186, 188, 193, 198, 209, 324 IPDT, 181, 210 minimum phase, 164, 257–259, 261 nonminimum phase, 246, 259, 261–267 unstable FOPDT, 213 pole placement, 139, 165–170, 173, 260 Ackermann’s algorithm, 166 Bass–Gura’s algorithm, 166 robust algorithm, 167–169 prefilter, 2 pseudorandom binary sequence (PRBS), 42–442007/1 page 3 Index 353 ramp response, 77 realization, 58, 59, 61, 62, 101, 102, 163, 307, 314 balanced, 31–32, 58, 59, 101–103, 314 minimum, 21, 32–33, 44, 61, 62 reduced-order model, 59, 92–95, 98, 298, 299, 315 refined Oustaloup recursive approximation, 294–299 refinedZiegler–Nichols tuning, 181, 200–202, 323 relay, 128, 228, 229 autotuning, 5, 207, 228 Riccati equation, 155, 156, 237, 241, 262 algebraic, 152, 158, 237, 238, 262 differential, 152, 158 discrete-time, 156 Riemann–Liouville definition, 284–286 rise time, 72, 73 Robust Control Toolbox, 235, 250–252, 255, 278 robust pole placement algorithm, 167–169 root locus, 3, 51, 78–83, 316, 317 Routh approximation, 94, 95, 314 sampling interval, 15, 17, 19, 39, 74, 87, 122, 123 saturation, 112, 123, 224 actuator, 220, 226, 302 Schur decomposition, 329 Schur’s balanced realization, 102 sensitivity function, 243, 255, 256, 259, 275, 278 sensitivity problem, 254, 256, 265, 325 general mixed, 262 minimum, 257, 258 series connection, 11, 20, 22, 288 settling time, 72, 74 similarity transformation, 28, 59–62 Simulink, 111–135, 296–298 single input–single output, 7, 16 SISOTool, 175–177 small gain theorem, 247–248 stability, 3, 51–55, 84, 86–88, 90, 94, 95 assessment, 51–53 internal, 51–55 stability margins, 3, 241 stabilizing controller, 249, 257, 260, 271 standard transfer function, 11, 173, 174, 278 state augmentation, 67, 68, 254 state feedback, 152, 153, 155, 156, 163–167, 171–174, 236, 239, 243, 272 decoupling with, 171–174 state space, 3, 4, 11, 17–19, 24–33, 51, 55–57, 59, 62, 64, 101–103 steady-state, 42 error, 183, 189, 210, 211, 322 response, 62, 64, 231 value, 71, 72, 152, 192, 266 step response, 70, 73–75, 121, 291, 299, 301–303 suboptimal reduction, 191, 215, 298, 299, 314 Symbolic Toolbox, 9, 13, 14, 68–70 System Identification Toolbox, 4, 9, 11, 35–45, 139, 194 Taylor series expansion, 62–64, 92, 294 time domain response, 77, 87, 290 impulseresponse, 51, 62, 63, 70, 75–77, 125, 250, 315, 319 ramp response, 77 step response, 70, 73–75, 121, 291, 299, 301–303 time moment, 62–63, 96 time varying system, 111, 118, 123–125, 152 transfer function, 4, 7, 11, 14–17, 19–22, 24–28, 44, 288, 295 discrete-time, 16, 35, 39, 42, 43, 69, 79, 134 fractional-order, 287–289, 298, 299 matrix, 16, 24, 25, 28, 38, 44, 45, 120, 172 standard, 11, 173, 174, 278 transmission zero, 27, 243 tree variable, 250–252, 255, 262, 268 Tsypkin’s method, 228–229 Tustin transform, 252 bilinear, 251, 252, 266 two degrees-of-freedom control, 22007/1 page 3 354 Index two-port state-space, 250, 253, 255, 256, 261–263, 268, 270, 272 uncertainty, 64, 159, 235, 247, 248, 262, 269 additive, 248 multiplicative, 248 unstructured uncertainty, 248–249 unconstrained optimization, 216–217 undershoot, 266 unity negative feedback, 53, 78, 87, 88, 163, 289 unstable FOPDT(first-order plus dead time), 213 variable step, 117 Wang–Juang–Chanformula, 181, 203, 300 weightingfunction, 99, 236, 243, 253–256, 258, 262, 273–281, 302, 325 weighting matrix, 152, 154, 157, 158, 164, 180 well-posedness, 53–54, 248 Youla parameterization, 256, 257 Z transform, 16 inverse, 69 zero initial conditions, 13, 14, 25, 106 zero-order-hold (ZOH), 34, 121, 123 zero-pole-gain model, 19, 25–27, 32, 94, 112 Ziegler–Nichols formula, 181, 185–198, 200–202, 209, 323 modified algorithm, 181, 202 refined, 181, 200–202, 323 ZOH (zero-order-hold), 34, 121, 123 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Linear Feedback Control - Analysis and Design with MATLAB رابط مباشر لتنزيل كتاب Linear Feedback Control - Analysis and Design with MATLAB
|
|