Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications With Matlab الإثنين 20 مارس 2023, 6:07 am | |
|
أخواني في الله أحضرت لكم كتاب Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications With Matlab Amir Beck
و المحتوى كما يلي :
Contents Preface Xl. 1 Mathematical Preliminaries 1 1.1 The Space Rn 1 1.2 The Space Rmxn 2 1.3 Inner Products and Norms . 2 1.4 Eigenvalues and Eigenvectors 5 1.5 Basic Topological Concepts . 6 Exercises 10 2 Optimality Conditions for Unconstrained Optimization 13 2.1 Global and Local Optima 13 2.2 Classification of Matrices 17 2.3 Second Order Optimality Conditions 23 2.4 Global Optimality Conditions . 30 2.5 Quadratic Functions . 32 Exercises 34 3 Least Squares 37 3.1 "Solution" of Overdetermined Systems . 37 3.2 Data Fitting . 39 3.3 Regularized Least Squares 41 3.4 Deno1smg 42 3.5 Nonlinear Least Squares . 45 3.6 Circle Fitting 45 Exercises 47 4 The Gradient Method 49 4.1 Descent Directions Methods 49 4.2 The Gradient Method 52 4.3 The Condition Number . 58 4.4 Diagonal Scaling 63 4.5 The Gauss-Newton Method 67 4.6 The Fermat-Weber Problem 68 4.7 Convergence Analysis of the Gradient Method 73 Exercises 79 5 Newton's Method 83 5.1 Pure Newton's Method 83 viiviii Contents 5.2 Damped Newton's Method . 5.3 The Cholesky Factorization Exercises . 6 Convex Sets 97 6.1 Definition and Examples . 97 6.2 Algebraic Operations with Convex Sets . 100 6.3 The Convex Hull . 101 6.4 Convex Cones . 104 6.5 Topological Properties of Convex Sets 108 6.6 Extreme Points . 111 Exercises 113 7 Convex Functions 117 7.1 Definition and Examples . 117 7.2 First Order Characterizations of Convex Functions . 119 7.3 Second Order Characterization of Convex Functions 123 7.4 Operations Preserving Convexity . 125 7.5 Level Sets of Convex Functions 130 7.6 Continuity and Differentiability of Convex Functions . 132 7.7 Extended Real-Valued Functions 135 7.8 Maxima of Convex Functions . 137 7.9 Convexity and Inequalities . 139 Exercises 141 8 Convex Optimization 147 8.1 Definition 147 8.2 Examples . 149 8.3 The Orthogonal Projection Operator 156 8.4 cvx 158 Exercises 166 9 Optimization over a Convex Set 169 9.1 Stationarity . 169 9.2 Stationarity in Convex Problems . 173 9.3 The Orthogonal Projection Revisited 173 9.4 The Gradient Projection Method . 175 9.5 Sparsity Constrained Problems 183 Exercises 189 10 Optimality Conditions for Linearly Constrained Problems 191 10.1 Separation and Alternative Theorems 191 10.2 The KKT conditions . 195 10.3 Orthogonal Regression 203 Exercises 205 11 The KK.T Conditions 207 11.1 Inequality Constrained Problems . 207 11.2 Inequality and Equality Constrained Problems 210 11.3 The Convex Case . 213 11.4 Constrained Least Squares 218Contents ix 11.5 Second Order Optimality Conditions 222 11.6 Optimality Conditions for the Trust Region Subproblem . 227 11.7 Total Least Squares 230 Exercises 233 12 Duality 237 12.1 Motivation and Definition 237 12.2 Strong Duality in the Convex Case 241 12.3 Examples . 247 Exercises 270 Bibliographic Notes Bibliography Index Index constraint qualification, 210 continuously differentiable, 9 contour set, 7 convex combination, 101 convex function, 117 convex hull, 102 convex optimization, 147 convex polytope, 100 convex problem, 147 convex set, 97 cvx, 158 damped Gauss-Newton method, 67,68 damped Newton's method, 88 data fitting, 39 denoising, 42 descent direction, 49 descent directions method, 50 descentlemma,74 descent method, 50 diagonally dominant matrix, 22 directional derivative, 8 distance function, 130, 157 dot product, 2 dual cone, 114,205 dual objective function, 238 dual problem, 237 effective domain, 135 eigenvalue, 5 eigenvector, 5 ellipsoid, 99 epigraph, 136 Euclidean norm, 3 exact line search, 51 extended real-valued function, 135 extreme point, 111 facility location, 69 Farkas lemma, 192 281 feasible descent direction, 207 feasible set, 13 feasible solution, 13 Fejer monotonicity, 183 Fermat's theorem, 16 Fermat-Weber problem, 68, 80 finite-valued, 135 first projection theorem, 157 Fritz-John conditions, 208 Frobenius norm, 4 full column rank, 37 function distance, 130, 157 dual objective, 238 Huber, 189 quadratic, 32 Rosenbrock, 60 generalized Slater's condition, 216 geometric programming, 267 global maximum and minimum, 13 global optimum, 13 Gordan's theorem, 194, 205, 208 gradient, 9 gradient inequality, 119 gradient mapping, 177 gradient method, 52 gradient projection method, 175 Hessian, 10 hidden convexity, 155, 165 Holder's inequality, 140 Huber function, 189 hyperplane, 98 identity matrix, 2 ill-conditioned matrices, 60 indefinite matrix, 18 indicator function, 135 induced matrix norm, 4282 inequality Jensen's, 118 Kantorovich, 59 linear matrix, 254 Minkowski's, 140 strongly convex, 117 inner product, 2 interior, 7 interior point, 7 iterative hard-thresholding, 187 Jacobian, 67 Jensen's inequality, 118 Kantorovich inequality, 59 KK.T conditions, 195, 207 KK.T point, 198, 211 Krein-Milman theorem, 113 Lagrange multipliers, 196 Lagrangian function, 198 least squares, 37 linear, 45 regularized, 41, 219, 262 total, 230 level set, 7, 130 line, 97 line search, 50 line segment principle, 108 linear approximation theorem, 10 linear fitting, 39 linear function, 118 linear least squares, 45 linear matrix inequality, 254 lin~ar programming, 107, 149, 247 linear rate, 60 Lipschitz continuity of the gradient, 73 local maximum point, 15 local minimum point, 15 log-sum-exp, 124 Lorenz cone, 105 matrix norm, 3 maximal value, 13 maximizer, 13 minimial value, 13 minimizer, 13 Minkowski functional, 113 Minkowski's inequality, 140 monomial, 267 Motzkin's theorem, 205 negative definite, 18 negative semidefinite, 18 neighborhood, 7 Newton direction, 83 Newton's method, 64, 83 damped,88 pure, 83 nonexpansive, 174 nonlinear Farkas lemma, 242 nonlinear fitting, 40 nonlinear least squares, 45, 67 nonnegative orthant, 1 nonnegative part, 157 norm diagonally dominant, 22 identity, 2 indefinite, 18 induced matrix, 4 square root of, 21 strictly diagonally dominant, 22 normal cone, 114 normal system, 37 open ball, 6 open line segment, 2 open set, 7 optimal set, 148 orthogonal projection, 156 orthogonal regression, 203 overdetermined system, 37 partial derivative, 8 pointed cone, 114 positive definite, 17 positive orthant, 2 positive semidefinite, 17 posynomial, 267 primal problem, 238 principal minors criterion, 21 proper, 135 pure Newton's method, 83 Q-norm, 35 QCQP, 155, 235 quadratic approximation theorem, 10 quadratic function, 32 quadratic problem, 150 quadratic-over-linear, 125, 127 quasi-convex function, 131 Rayleigh quotient, 5, 205, 232 regularity, 211 regularization parameter, 41 regularized least squares, 41, 219, 262 robust regression, 163 Rosenbrock function, 60 saddle point, 24 Index scaled gradient method, 63 second projection theorem, 173 semidefinite programming, 254 separation of two convex sets, 242 separation theorem, 191 set bounded,8 open,7 sgn, 156 singleton, 187 Slater's condition, 214 source localization problem, 80 sparsity constrained problems, 183 spectral decomposition, 5 spectral norm, 4 square root of a matrix, 21 standard basis, 1 stationary point, 17, 169 strict global maximum, 13 strict global minimum, 13 strict local maximum, 15 strict local minimum, 15 strict separation theorem, 191 strictly concave function, 118 strictly convex function, 117 strictly diagonally dominant matrix, 22 strong convexity parameter, 144 strong duality, 241 strongly convex function, 144, 190 sublinear rate, 182 sufficient decrease lemma, 75, 176 support, 184 support function, 136 supporting hyperplane theorem, 241 total least squares, 230 trust region subproblem, 155, 227 unit-simplex, 2, 254 unit-sum set, 171 Vandermonde, 40 weak duality theorem, 239 Weierstrass theorem, 25 well-conditioned matrices, 60 Young's inequality, 140 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications With Matlab رابط مباشر لتنزيل كتاب Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications With Matlab
|
|