Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Applied Numerical Methods Using Matlab الأربعاء 21 يونيو 2023, 10:07 am | |
|
أخواني في الله أحضرت لكم كتاب Applied Numerical Methods Using Matlab R. V. DukkipAti, PhD
و المحتوى كما يلي :
Preface xiii CHAPTER 1: NUMERICAL COMPUTATIONS 1 1.1 Taylor’s Theorem 1 1.2 Number Representation 4 1.3 Error Considerations 11 1.3.1 Absolute and Relative Errors 12 1.3.2 Inherent Errors 14 1.3.3 Round-off Errors 14 1.3.4 Truncation Errors 19 1.3.5 Machine Epsilon 21 1.3.6 Error Propagation 22 1.4 Error Estimation 22 1.5 General Error Formula 24 1.5.1 Function Approximation 24 1.5.2 Stability and Condition 25 1.5.3 Uncertainty in Data or Noise 27 1.6 Sequences 28 1.6.1 Linear Convergence 28 1.6.2 Quadratic Convergence 29 1.6.3 Aitken’s Acceleration Formula 30 1.7 Summary 32 Exercises 33 Contentsvi • Contents CHAPTER 2: LINEAR SYSTEM OF EQUATIONS 39 2.1 Introduction 39 2.2 Methods of Solution 40 2.3 The Inverse of a Matrix 41 2.4 Matrix Inversion Method 44 2.4.1 Augmented Matrix 50 2.5 Gauss Elimination Method 50 2.5.1 MATLAB Program for the Gauss Elimination Method 52 2.6 Gauss-Jordan Method 58 2.6.1 MATLAB Program for the Gauss Jordan Method 59 2.7 Cholesky’s Triangularization Method 68 2.8 Crout’s Method 79 2.8.1 MATLAB Program for Crout’s Method 81 2.9 Thomas Algorithm for Tridiagonal System 88 2.9.1 MATLAB Program for the Thomas Method for Tridiagonal Systems 89 2.10 Jacobi’s Iteration Method 94 2.10.1 MATLAB Program for the Jacobi Iteration Method 95 2.11 Gauss-Seidel Iteration Method 104 2.11.1 MATLAB Program for the Gauss Seidel Method 106 2.12 Symmetric Matrix Eigenvalue Problems 113 2.12.1 The Jacobi Method 114 2.12.2 MATLAB Function for the Jacobi Method 120 2.12.3 Householder Reduction to Tridiagonal Form 133 2.12.4 Gerschgorin’s Circle Theorem 137 2.12.5 Sturm Sequence 139 2.12.6 QR Method 140 2.12.7 Power Method 157 2.12.8 Inverse Power Method 161 2.12 Summary 163 Exercises 164Contents • vii CHAPTER 3: SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS 177 3.1 Introduction 177 3.2 Bisection Method 178 3.2.1 Error Bounds 180 3.3 Method of False Position 186 3.3.1 MATLAB Program for the False Position Method 188 3.4 Newton-Raphson Method 194 3.4.1 Convergence of the Newton-Raphson Method 196 3.4.2 Rate of Convergence of the Newton-Raphson Method 197 3.4.3 MATLAB Program for the Newton Raphson Method 198 3.4.4 Modified Newton-Raphson Method 203 3.4.5 Rate of Convergence of Modified Newton-Raphson Method 204 3.5 Successive Approximation Method 206 3.5.1 Error Estimate in the Successive Approximation Method 207 3.6 Secant Method 211 3.6.1 Convergence of the Secant Method 212 3.6.2 MATLAB Program to Search for a Root of the Function f(x) in the Interval (a,b) 214 3.6.3 MATLAB Program for Secant Method 214 3.7 Muller’s Method 219 3.7.1 MATLAB Program for Muller’s Method 222 3.8 Chebyshev Method 225 3.9 Aitken’s Δ2 Method 226 3.10 Brent’s Method 229 3.10.1 MATLAB Program for Brent’s Method 231 3.11 Newton Method for a System of Nonlinear Equations 236 3.12 Comparison of Iterative Methods 238 3.13 MATLAB Built-in Function: fzero 239 3.14 Summary 243 Exercises 244viii • Contents CHAPTER 4: NUMERICAL DIFFERENTIATION 251 4.1 Introduction 251 4.2 Derivatives Based on Newton’s Forward Integration Formula 252 4.2.1 MATLAB Program for Derivatives Based on Newton’s Forward Integration Formula—Equally Spaced Points 253 4.3 Derivatives Based on Newton’s Backward Interpolation Formula 260 4.4 Derivatives Based on Stirling’s Interpolation Formula 263 4.5 Maxima and Minima of a Tabulated Function 268 4.6 Cubic Spline Method 270 4.7 Richardson Extrapolation 271 4.8 Differentiation of Unequally Spaced Data 273 4.9 MATLAB Built-in Functions: diff and gradient 274 4.10 Summary 278 Exercises 278 CHAPTER 5: FINITE DIFFERENCES AND INTERPOLATION 285 5.1 Introduction 285 5.2 Finite Difference Operators 286 5.2.1 Forward Differences 287 5.2.2 Backward Differences 288 5.2.3 Central Differences 289 5.2.4 Error Propagation in a Difference Table 293 5.2.5 Properties of the Operator Δ 296 5.2.6 Difference Operators 298 5.2.7 Relation Among the Operators 299 5.2.8 Representation of a Polynomial using Factorial Notation 304 5.3 Interpolation with Equal Intervals 310 5.3.1 Missing Values 310 5.3.2 Newton’s Binomial Expansion Formula 310 5.3.3 Newton’s Forward Interpolation Formula 313 5.3.4 MATLAB M-file: Newtonint 314Contents • ix 5.3.5 Newton’s Backward Interpolation Formula 322 5.3.6 Error in the Interpolation Formula 328 5.4 Interpolation with Unequal Intervals 331 5.4.1 Lagrange’s Interpolating Polynomial for Equal Intervals 331 5.4.2 function yint = Lagrangeint (x,y,xx) 333 5.4.3 Lagrange’s Formula for Unequal Intervals 334 5.4.4 Hermite’s Interpolation Formula 338 5.4.5 Inverse Interpolation 340 5.4.6 Lagrange’s Formula for Inverse Interpolation 340 5.5 Central Difference Interpolation Formulae 342 5.5.1 Gauss’s Forward Interpolation Formula 343 5.5.2 Gauss Backward Interpolation Formula 346 5.5.3 Bessel’s Formula 348 5.5.4 Stirling’s Formula 351 5.5.5 Laplace-Everett’s Formula 352 5.5.6 Selection of an Interpolation Formula 355 5.6 Divided Differences 355 5.6.1 Newton’s Divided Difference Interpolation Formula 357 5.7 Cubic Spline Interpolation 360 5.8 Generalized Spline Method 366 5.8.1 Splines 366 5.8.2 Linear Splines 367 5.8.3 Quadratic Splines 368 5.8.4 Cubic Splines 371 5.8.5 End Conditions 376 5.8.6 MATLAB Built-in Function: spline 376 5.8.7 Multidimensional Interpolation 378 5.8.8 MATLAB Built-in Function: interpl 381 5.9 Summary 390 Exercises 391x • Contents CHAPTER 6: CURVE FITTING, REGRESSION, AND CORRELATION 405 Approximating Curves 406 Linear Regression 407 6.1 Linear Equation 407 6.2 Curve Fitting With a Linear Equation 408 6.3 Criteria for a Best Fit 410 6.4 Linear Least-Squares Regression 412 6.5 Linear Regression Analysis 414 6.5.1 MATLAB built-in function: polyfit 418 6.5.2 MATLAB built-in function: polyval 419 6.6 Interpretation of a and b 420 Assumptions in the Regression Model 421 6.7 Standard Deviation of Random Errors 421 6.8 Coefficient of Determination 422 6.9 Linear Correlation 425 Properties of the Linear Correlation Coefficient r 427 Explained and Unexplained Variation 428 6.10 Linearization of Nonlinear Relationships 429 6.11 Polynomial Regression 435 6.11.1 Polynomial Fit 436 6.11.2 MATLAB Built-in Functions for Polynomial Fit 438 6.12 Quantification of Error of Linear Regression 443 6.13 Multiple Linear Regression 445 6.14 Weighted Least-Squares Method 448 6.15 Orthogonal Polynomials and Least-Squares Approximation 449 6.16 Least-Squares Method for Continuous Data 449 6.17 Approximation Using Orthogonal Polynomials 451 6.18 Gram-Schmidt Orthogonalization Process 453 6.19 Fitting a Function Having a Specified Power 455 6.20 Fitting a Cubic Spring Model 455 6.21 Additional Example Problems and Solutions 456 6.22 Summary 468 Exercises 468Contents • xi CHAPTER 7: NUMERICAL INTEGRATION 483 7.1 Introduction 483 7.1.1 Relative Error 484 7.2 Newton-Cotes Closed Quadrature Formula 485 7.3 Trapezoidal Rule 486 7.3.1 Error Estimate in Trapezoidal Rule 489 7.3.2 MATLAB Functions: trapz and cumtrapz 490 7.4 Simpson’s 1/3 Rule 493 7.4.1 Error Estimate in Simpson’s 1/3 Rule 495 7.4.2 MATLAB Program for Simpson’s Integration: simpsonint 496 7.4.3 MATLAB Built-in Functions: quad and quad1 497 7.5 Simpson’s 3/8 Rule 502 7.6 Boole’s and Weddle’s Rules 506 7.6.1 Boole’s Rule 506 7.6.2 Weddle’s Rule 507 7.7 Romberg’s Integration 512 7.7.1 Richardson’s Extrapolation 512 7.7.2 Romberg Integration Formula 513 7.7.3 MATLAB Program for Romberg Integration: Romberg 516 7.8 Gaussian Quadrature 523 7.8.1 Gaussian Integration Formulas 523 7.8.2 Orthogonal Polynomials 525 7.8.3 Gauss-Lagendre Quadrature 527 7.8.4 Gauss-Chebyshev Quadrature Method 533 7.8.5 Gauss-Laguerre Quadrature 535 7.8.6 Gauss-Hermite Quadrature 537 7.8.7 MATLAB Programs for Gaussian Quadrature: gaussnodes and gaussquad 539 7.9 Double Integration 544 7.9.1 Trapezoidal Method 544 7.9.2 Simpson’s 1/3 Rule 548 7.9.3 MATLAB Built-in Function for Double Integration: dblquad 549 7.10 Summary 549 Exercises 550xii • Contents CHAPTER 8: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 557 8.1 Introduction 557 8.2 One-Step Methods or Single-Step Methods 560 8.2.1 Picard’s Method of Successive Approximation 561 8.2.2 The Taylor’s Series Method 564 8.3 Step-by-Step Methods or Marching Methods 569 8.3.1 Euler’s Method 569 8.3.2 MATLAB Program for Euler’s Method: euler 571 8.3.3 Modified Euler’s Method 579 8.3.4 MATLAB Program for the Modified Euler’s Method: modeuler 581 8.3.5 Runge-Kutta Methods 586 8.3.4 Predictor-Corrector Methods 604 8.4 MATLAB Functions for Ordinary Differential Equations: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb 614 8.5 System of First-order Ordinary Differential Equations 626 8.6 Initial Value Problems 627 8.6.1 The Taylor Series Method 628 8.6.2 Picard’s Method 630 8.6.3 Second-Order Runge-Kutta Method 631 8.6.4 Fourth-Order Runge-Kutta Method 632 8.6.5 Euler’s Formula 634 8.6.6 Modified Euler’s Formula 635 8.6.7 Burlirsch-Stoer Method (Mid-Point Method) 635 8.6.8 The Runge-Kutta-Fehlberg Method 636 8.6.9 The Runge-Kutta-Butcher Method 637 8.7 Two-Point Boundary Value Problems 637 8.7.1 Finite Difference Method 638 8.7.2 Second-Order Differential Equations 639 8.7.3 The Shooting Method 641 8.8 Second-Order Initial Value Problem (IVP) 646Contents • xiii 8.9 Second-Order Boundary Value Problem (BVP) 648 8.10 MATLAB Built-in Functions 649 8.11 Summary 650 Exercises 650 CHAPTER 9: DIRECT NUMERICAL INTEGRATION METHODS 661 9.1 Introduction 661 9.2 Single Degree of Freedom System 661 9.2.1 Finite Difference Method 662 9.2.2 Central Difference Method 663 9.2.3 The Runge-Kutta Method 664 9.3 Multi-degree of Freedom Systems 666 9.4 Explicit Schemes 667 9.4.1 Central Difference Method 667 9.4.2 Two-Cycle Iteration with Trapezoidal Rule 670 9.4.3 Fourth-Order Runge-Kutta Method 671 9.5 Implicit Schemes 673 9.5.1 The Houbolt Method 673 9.5.2 Wilson Theta Method 676 9.5.3 The Newmark Beta Method 679 9.5.4 Park Stiffly Stable Method 682 9.6 Example Problems and Solutions Using MATLAB 684 9.7 Summary 747 Exercises 748 Additional Exercises 753 CHAPTER 10: MATLAB BASICS 757 10.1 Introduction 757 10.1.1 Starting and Quitting MATLAB 758 10.1.2 Display Windows 758 10.1.3 Entering Commands 758 10.1.4 MATLAB Expo 759 10.1.5 Abort 759 10.1.6 The Semicolon (;) 759xiv • Contents 10.1.7 Typing % 759 10.1.8 The clc Command 759 10.1.9 Help 759 10.1.10 Statements and Variables 759 10.2 Arithmetic Operations 760 10.3 Display Formats 760 10.4 Elementary Math Built-In Functions 761 10.5 Variable Names 764 10.6 Predefined Variables 764 10.7 Commands For Managing Variables 764 10.8 General Commands 765 10.9 Arrays 766 10.9.1 Row Vector 766 10.9.2 Column Vector 767 10.9.3 Matrix 767 10.9.4 Addressing Arrays 767 10.9.5 Adding Elements to a Vector or a Matrix 768 10.9.6 Deleting Elements 768 10.9.7 Built-in Functions 768 10.10 Operations with Arrays 770 10.10.1 Addition and Subtraction of Matrices 770 10.10.2 Dot Product 770 10.10.3 Array Multiplication 770 10.10.4 Array Division 771 10.10.5 Identity Matrix 771 10.10.6 Inverse of a Matrix 771 10.10.7 Transpose 771 10.10.8 Determinant 771 10.10.9 Array Division 771 10.10.10 Left Division 772 10.10.11 Right Division 772 10.11 Element-By-Element Operations 772 10.11.1 Built-In Functions For Arrays 773Contents • xv 10.12 Random Numbers Generation 774 10.12.1 The Random Command 775 10.13 Polynomials 775 10.14 System of Linear Equations 778 10.14.1 Matrix Division 778 10.14.2 Matrix Inverse 778 10.15 Script Files 784 10.15.1 Creating and Saving a Script File 784 10.15.2 Running a Script File 785 10.15.3 Input to a Script File 785 10.15.4 Output Commands 786 10.16 Programming in Matlab 787 10.16.1 Relational and Logical Operators 787 10.16.2 Order of Precedence 788 10.16.3 Built-in Logical Functions 788 10.16.4 Conditional Statements 789 10.16.5 Nested if Statements 790 10.16.6 else AND elseif Clauses 790 10.16.7 MATLAB while Structures 790 10.17 Graphics 792 10.17.1 Basic 2-D Plots 792 10.17.2 Specialized 2-D Plots 793 10.17.3 3-D Plots 795 10.17.4 Saving and Printing Graphs 802 10.18 Input/Output In Matlab 802 10.18.1 The fopen Statement 802 10.19 Symbolic Mathematics 803 10.19.1 Symbolic Expressions 804 10.19.2 Solution to Differential Equations 806 10.19.3 Calculus 807 10.23 Summary 843 References 844 Exercises 845xvi • Contents CHAPTER 11: OPTIMIZATION 857 11.1 Introduction 857 11.2 Unconstrained Minimization of Functions 859 11.3 Minimization with Constraints Using Lagrange Multipliers 860 11.4 Numerical Optimization 864 11.4.1 Optimization Involving Single Variables 865 11.4.2 Local and Global Optima 873 11.4.3 Bracketing 875 11.4.4 Golden-Section Search 875 11.4.5 MATLAB Program for Bracketing Method 878 11.4.6 MATLAB Program for Golden-Section Search Method 879 11.5 Multidimensional Optimization 882 11.6 Gradient Methods 885 11.7 Newton’s Method 887 11.7.1 MATLAB Program for Newton’s Method 889 11.8 Methods Based on the Concept of Quadratic Convergence 893 11.8.1 Conjugate Directions for a Quadratic Function 893 11.9 Powell’s Method 901 11.9.1 MATLAB Program for Powell’s Optimization Method 901 11.10 Fletcher-Reeves Method 906 11.10.1 MATLAB Program for Fletcher-Reeves Optimization Method 909 11.11 The Hooks and Jeeves Method 917 11.12 Method of Successive Linear Approximation 924 11.13 Interior Penalty Function Method 925 11.14 MATLAB Built-in Functions 931 11.14.1 MATLAB Function: fminbnd 931 11.14.2 MATLAB Function: fminsearch 935 11.15 Additional Example Problems and Solutions 940 11.16 Summary 949 References 950 Exercises 950Contents • xvii CHAPTER 12: PARTIAL DIFFERENTIAL EQUATIONS 959 12.1 Introduction 960 12.2 Classification of Linear Second-Order Partial Differential Equation 961 12.3 Types of Problems 965 12.4 Finite-Difference Approximation to Partial Derivatives 967 12.5 Physical Phenomena 968 12.5.1 Laplace’s Equation 968 12.5.2 Heat Equation 969 12.5.3 Wave Equation 970 12.5.4 Equation Classification 971 12.6 Elliptic Equations 972 12.6.1 Central Difference Method 972 12.6.2 Boundary Conditions 975 12.6.3 Iterative Solution Methods 977 12.6.4 The Jacobi Method 985 12.6.5 Gauss-Seidel Method 986 12.6.6 Successive Over-Relaxation or S.O.R. Method 986 12.7 One-Dimensional Parabolic Equations 988 12.7.1 Explicit Forward Euler Method 989 12.7.2 Implicit Backward Euler Method 992 12.7.3 The Crank-Nicolson Implicit Method 993 12.7.4 function [t,x,U] =Heatone(T,a,m,n,beta,c,f,g) 996 12.7.5 function [x,y,U] = Heattwo(T,a,b,m,n,p,beta,f,g) 999 12.7.6 function [t,x,U] = Waveone(T,a,m,n,beta,f,g) 1005 12.7.7 function [x,y,U] = Wavetwo (T,a,b,m,n,p,beta,f,g) 1008 12.7.8 function [alpha,r,x,y,U] = Poisson (a,b,m,n,q,tol,f,g) 1013 12.8 Two-Dimensional Parabolic Equations 1030 12.9 One-Dimensional Hyperbolic Equations 1037 12.9.1 D’Alembert’s Solution 1038 12.9.2 Explicit Central Difference Method 1043 12.10 Two-Dimensional Hyperbolic Equations 1050 12.10.1 Explicit Central Difference Method 1051xviii • Contents 12.11 MATLAB Built-in Function: pdepe 1060 12.12 Summary 1079 Exercises 1081 APPENDIX A: PARTIAL FRACTION EXPANSIONS 1093 Case-I 1094 Partial Fraction Expansion when Q(s) has Distinct Roots 1094 Case-II 1096 Partial Fraction Expansion when Q(s) has Complex Conjugate Roots 1096 Case-III 1097 Partial Fraction Expansion when Q(s) has Repeated Roots 1097 Exercises 1098 APPENDIX B: BASIC ENGINEERING MATHEMATICS 1101 B.1 Algebra 1101 B.1.1 Basic Laws 1101 B.1.2 Sums of Numbers 1101 B.1.3 Progressions 1102 B.1.4 Powers and Roots 1103 B.1.5 Binomial Theorem 1103 B.1.6 Absolute Values 1104 B.1.7 Logarithms 1104 B.2 Trigonometry 1105 B.2.1 Trigonometric Identities 1105 B.2.2 Cosine Law (Law of Cosines) 1107 B.2.3 Sine Law (Law of Sines) 1108 B.3 Differential Calculus 1108 B.3.1 List of Derivatives 1108 B.3.2 Expansion in Series 1111 B.4 Integral Calculus 1114 B.4.1 List of Most Common Integrals 1114Contents • xix APPENDIX C: CRAMER’S RULE 1119 Exercises 1123 APPENDIX D: MATLAB BUILT-IN M-FILE FUNCTIONS 1125 APPENDIX E: MATLAB PROGRAMS 1129 APPENDIX F: ANSWERS TO ODD NUMBERED EXERCISES 1135 BIBLIOGRAPHY 1175 INDEX 1187A Absolute and relative errors, 12–14 Adams-Bashforth formula, 606 Adams-Moulton corrector formula, 607 Adams-Moulton method, 605–611 Aitken’s acceleration formula, 30–32 Algebraic and transcendental equations Aitken’s Δ2 method, 226–229 Brent’s method, 229–236 Chebyshev’s method, 225–226 direct methods, 177 indirect or iterative methods bracketing methods, 177–178 comparison, 238–239 open methods, 178 MATLAB built-in function, 239–243 Muller’s method, 219–225 secant method, 212–219 Alternating direction implicit (ADI) method, 1032 Approximating curve, 405 Arithmetic errors, 11 B Backward error analysis, 23 Bisection method advantages, 181 algorithm, 179–180 error bounds, 180–181 MATLAB program, 182–186 method of finding solution, 179 Blunders and mistakes, 11 Boole’s rule, 506–507 Bracketing method algebraic and transcendental equations, 177–178 numerical optimization methods, 875 Brent’s method, 229–236 Burlirsch-Stoer method, 635–636 C Central difference method, 974 Chebyshev’s formula, 226 Cholesky’s triangularization method, 68–78 Coefficient of determination computational formula, 422 error sum of squares, 425 regression sum of squares, 423, 425 standard deviation of errors, 424 total sum of squares, 422, 425 value of, 423 Index1188 • Index Compound quadratures, 523 Crank-Nicolson implicit method, 993–996 Crout’s triangularization method. see Cholesky’s triangularization method Curve fitting, 405 approximating curves, 406 cubic spring function, 455 power function with a specified power, 455 D Direct numerical integration methods MATLAB program, 684–747 multi degree of freedom system (see Explicit and Implicit direct integration schemes) single degree of freedom system central difference method, 663–664 finite difference method, 662–663 Runge-Kutta method, 664–666 Double precision method, 22 E Error propagation, 22 Expansion method, 5 Explicit central difference method, 1044 Explicit direct integration schemes central difference method, 667–669 fourth-order Runge-Kutta method, 671–673 two-cycle iteration with trapezoidal rule, 670–671 Explicit forward Euler method, 989–992 Extrapolation, 285 F Finite difference operators Δ operator properties, 296–297 average operator μ, 298 backward differences, 288–289 central differences, 289–291 differential operator, D, 299 error propagation in difference table, 293–296 factorial notation, 304–310 forward differences, 287–288 relation among operators, 299–304 shift operator, E, 298 Fletcher-Reeves method, 906–917 Formula truncation error, 19 Forward error analysis, 23 Forward Euler method, 569 Fundamental theorem of calculus, 483 G Gauss elimination method, 50–58 Gaussian quadrature methods, 524 Gauss-Chebyshev quadrature method, 533–535 Gauss-Hermite quadrature, 537–538 Gaussian integration formula, 523–525 Gauss-Lagendre quadrature, 527–533 Gauss-Laguerre quadrature, 535–536 MATLAB programs, 539–543 orthogonal polynomials, 525–527 Gram-Schmidt orthogonalization process, 453–455 H Heun’s method, 579 Hexadecimal (base-16) system, 9–10Index • 1189 Hooke and Jeeves method, 917–924 Houbolt method, 673–676 I Implicit direct integration schemes Houbolt method, 673–676 Newmark beta integration method, 679–682 Park Stiffly stable method, 682–684 Wilson theta method, 676–679 Inherent errors, 14 Initial-value problems, ODE, 558 Burlirsch-Stoer method, 635–636 Euler’s formula, 634 fourth-order Runge-Kutta method, 632–634 modified Euler’s formula, 635 Picard’s method, 630–631 Runge-Kutta-Butcher method, 637 Runge-Kutta-Fehlberg method, 636–637 second-order Runge-Kutta method, 631–632 Taylor series method, 628–630 Interior penalty function method, 925–931 Interpolating quadratures, 523 Interpolation central difference formulae Bessel’s formula, 348–351 difference table, 342 Gauss’s backward interpolation formula, 346–348 Gauss’s forward interpolation formula, 343–345 Laplace-Everett’s formula, 352–355 selection of interpolation formula, 355 Sheppard’s operator δ, 343 Stirling’s formula, 351–352 cubic spline interpolation method advantages, 360 clamped boundary condition, 363 Lagrange’s two-point interpolation, 361 natural boundary condition, 363 piecewise polynomial approximation, 360 divided differences, 355–360 with equal intervals error in the interpolation formula, 328–331 missing values, 310 Newton’s backward interpolation formula, 322–328 Newton’s binomial expansion formula, 310–312 Newton’s forward interpolation formula, 313–322 formulae, 286 generalized spline method cubic splines, 371–375 end conditions, 376 linear splines, 367–368 MATLAB interp1 function, 381–390 MATLAB spline function, 376–378 multidimensional interpolation, 378–381 quadratic splines, 368–371 spline functions, 366 Harper’s definition, 285 Hiral’s definition, 285 Theile’s definition, 2851190 • Index with unequal intervals Hermite’s interpolation formula, 338–340 inverse interpolation, 340 Lagrange’s formula for inverse interpolation, 340–342 Lagrange’s formula for unequal intervals, 334–338 linear Lagrange interpolating polynomial for equal intervals, 331–332 Interval arithmetic method, 22–23 Interval halving method, 178. see also Bisection method L Lagrange’s interpolation formula, 336 Least significant digit (LSD), 5 Least-squares approximation, 449 Least-squares method for continuous data, 449–451 Linear convergence theorem, 29 Linear correlation coefficient, 425 explained and unexplained variation, 428–429 perfect positive and negative, 425 properties, 427–428 strong and weak positive/negative, 426 Linear equation criteria for best fit, 410–412 curve fitting, 408–410 with one independent variable, 407 Linear least-squares regression, 412–414 Linear regression, 407 quantification of error, 443–445 Linear regression analysis assumptions, 421 estimated regression model, 416 MATLAB built-in function polyfit, 418–419 polyval, 419–420 population regression line, 416 random error term, 415 relationship between two variables, 414–415 scatter diagram, 416 Linear regression model, 414 Linear systems of equations algebraic equations, 39–40 Cholesky’s triangularization method, 68–78 Crout’s method, 79–88 direct and iterative methods, 40–41 Gauss elimination method, 50–58 Gauss-Jordan method LU decomposition, 67–68 MATLAB program, 59–67 Gauss-Seidel method, 104–113 inverse of a matrix, 41–44 Jacobi iteration method, 94–104 matrix eigenvalue problems accumulated transformation matrix, 136–137 Gerschgorin’s circle theorem, 137–139 Householder’s method, 133–136 inverse power method, 161–163 Jacobi method, 114–133 power method, 157–161 QR method, 146–157 Sturm sequence, 139–140 matrix inversion method, 44–50 Thomas method for tridiagonal systems, 88–94Index • 1191 M Machine epsilon, 21–22 Mathematical approximation errors, 11 MATrix LABoratory (MATLAB) basics abort command, 759 arithmetic operations, 760 with complex numbers, 763 arrays, 766–768 built-in functions, 768–769 operations, 770–772 clc command, 759 commands, 758–759 common math functions, 761 complex number functions, 763 display formats, 760–761 display windows, 758 element-by-element operations, 772–774 Expo, 759 exponential functions, 762 functions, 791–792 general commands directory information, 766 general information, 766 online help, 765 termination, 766 workspace information, 765 graphics 2-D plots, 792–793 3-D plots, 795–796 overlay plots, 794–795 save and print, 802 specialized 2-D plots, 793–794 help, 759 input/output in, 802–803 managing variables, commands for, 765 percent symbol (%), 759 polynomials, 775–778 predefined variables, 764 programming in built-in functions, 788–789 conditional statements, 789–790 else and elseif clauses, 790 nested if statements, 790 order of precedence, 788 relational and logical operators, 787 while loop, 790–791 random numbers, 774–775 round-off functions, 763 script files, 784–786 semicolon (;), 759 start and quit, 758 statements and variables, 759–760 symbolic mathematics, 803–809 system of linear equations, 778–784 trigonometric and hyperbolic functions, 762 variable names, 764 Maximum likelihood principle, 443 Method of factorization. see Cholesky’s triangularization method Method of false position algorithm, 188 description, 186–187 MATLAB program, 188–194 Milne’s predictor-corrector method, 611–614 Modeling errors, 11 Most and least significant bit, 5 Most significant digit (MSD), 5 Muller’s method, 219–225 Multiple linear regression, 445–448 N Neumann boundary conditions, 976 Newmark beta integration method, 679–6821192 • Index Newton-Cotes closed quadrature formula, 484, 486 Newton-Raphson method algorithm, 195 convergence of, 196–197 disadvantages, 211 drawbacks, 194 MATLAB program, 198–203 modified, 203–205 rate of convergence, 197 Newton’s forward interpolation formula, 313–314 Newton’s method, 194 system of nonlinear equations, 236–238 Nonlinear regression model, 414 for curve fitting, 429–435 Numerical computations error considerations absolute and relative errors, 12–14 accuracy and precision, 11–12 error propagation, 22 inherent errors, 14 machine epsilon, 21–22 round-off errors, 14–19 sources of errors, 11 truncation errors, 19–21 error estimates backward error analysis, 23 double precision method, 22 forward error analysis, 23 interval arithmetic method, 22–23 significant digit arithmetic method, 23 statistical approach, 23 error formula function approximation, 24–25 stability and condition, 25–27 uncertainty in data or noise, 27–28 number representation binary, decimal, and hexadecimal conversion, 6–7 in computer languages, 5 in decimal and binary forms, 5 expansion method, 5 hexadecimal (base-16) system, 9–10 octal (base-8) numbering system, 8 sequences Aitken’s acceleration process, 30–32 linear convergence, 28–29 quadratic convergence, 29–30 Taylor’s theorem, 1–4 Numerical differentiation cubic spline method, 270–271 diff and gradient function, 274–277 maxima and minima of tabulated function, 268–269 Newton’s backward interpolation formula, 260–262 Newton’s forward interpolation formula, 252–259 Richardson extrapolation, 271–273 Stirling’s interpolation formula, 263–267 of unequally spaced data, 273–274 Numerical integration Boole’s rule, 506–507 closed and open integration, 483–484 double integral, 544–549 error of approximation, 485 Gaussian quadrature methods Gauss-Chebyshev quadrature method, 533–535 Gauss-Hermite quadrature, 537–538 Gaussian integration formula, 523–525 Gauss-Lagendre quadrature, 527–533Index • 1193 Gauss-Laguerre quadrature, 535–536 MATLAB programs, 539–543 orthogonal polynomials, 525–527 Newton-Cote’s method forward interpolation formula, 485–486 relative error of approximation, 485 Romberg’s integration MATLAB program, 516–523 Richardson extrapolation formula, 512–513 Simpson’s 1/3 rule error estimate in, 495–496 MATLAB built-in functions, 497–502 MATLAB program, 496–497 Simpson’s 3/8 rule, 502–506 trapezoidal rule, 486–488 error estimate in, 489–490 MATLAB built-in function, 490–493 Weddle’s rule, 507–511 O Octal (base-8) numbering system, 8 Optimization conjugate directions quadratic convergence, 893 (i - 1)th search step, 895 in two dimensions, 896–897 Fletcher-Reeves method, 906–917 gradient methods concept of, 885 direction of step in, 886 using line searches, 887 Hooke and Jeeves method, 917–924 interior penalty function method, 925–931 MATLAB built-in functions fminbnd, 931–935 fminsearch, 935–940 maxima and minima of a function, 857 minimization with constraints using Lagrange multipliers, 860–864 multidimensional unconstrained optimization techniques, 882–885 Newton’s method, 887–893 numerical methods bracketing method, 875 golden-section search method, 875–878 local and global optima, 873–874 optimization involving single variables, 865–873 Powell’s method, 901–906 successive linear approximation method, 924–925 unconstrained minimization of functions, 859 Ordinary differential equation (ODE) boundary-value problem, 558 explicit and implicit methods, 559–560 first-order equation, 626–627 general form of, 557 initial-value problems, 558 Burlirsch-Stoer method, 635–636 Euler’s formula, 634 fourth-order Runge-Kutta method, 632–634 modified Euler’s formula, 635 Picard’s method, 630–631 Runge-Kutta-Butcher method, 637 Runge-Kutta-Fehlberg method, 636–637 second-order Runge-Kutta method, 631–632 Taylor series method, 628–6301194 • Index MATLAB built-in functions, 649 ODE solvers, 614–626 mesh points, 559 one-step or single-step methods, 558, 559 Picard’s method, 561–564 Taylor’s series method, 564–569 particular solution, 558 second-order boundary value problem, 648–649 second-order linear initial value problem, 646–647 single first-order, 558 step-by-step or marching methods, 558, 559 Euler’s explicit method, 569–579 modified Euler’s method, 579–586 predictor-corrector methods, 604–614 Runge-Kutta methods, 586–604 two-point boundary value problems finite difference method, 638–639 second-order differential equation, 639–641 shooting method, 641–646 Orthogonal polynomials, 449 Gram-Schmidt orthogonalization process, 453–455 least-square approximation using, 451–453 P Park Stiffly stable method, 682–684 Partial differential equations (PDE) Cauchy’s problem, 966 classification, 971–972 Dirichlet’s problem, 965–966 elliptic equations boundary conditions, 975–977 central difference method, 972–975 Gauss-Seidel method, 986 iterative solution methods, 977–985 Jacobi’s method, 985 successive over-relaxation method, 986–988 finite-difference approximation, 967 heat equation, 969–970 Laplace’s equation, 968–969 linear second-order partial differential equation elliptic equation, 963, 964 hyperbolic equation, 963, 965 parabolic equation, 962, 965 MATLAB built-in functions, 1060–1079 one-dimensional hyperbolic equations D’Alembert’s solution, 1038–1043 explicit central difference method, 1043–1050 one-dimensional parabolic equations Crank-Nicolson implicit method, 993–996 explicit forward Euler method, 989–992 function [alpha,r,x,y,U] = Poisson (a,b,m,n,q,tol,f,g), 1013–1019 function [t,x,U] =Heatone(T,a,m, n,beta,c,f,g), 996–999 function [t,x,U] = Waveone(T,a,m,n,beta,f,g), 1005–1008 function [x,y,U] = Heattwo(T,a, b,m,n,p,beta,f,g), 999–1005 function [x,y,U] = Wavetwo (T,a,b, m,n,p,beta,f,g), 1008–1013Index • 1195 implicit backward Euler method, 992–993 two-dimensional hyperbolic equations, 1050–1059 two-dimensional parabolic equations, 1030–1037 wave equation, 970–971 Pearson product moment correlation coefficient, 425 Picard’s method, 561–564 Poisson’s equation, 972 Polynomial regression MATLAB built-in functions, 438–443 normal equations, 437 second-order polynomial, 435 Positional numbering system, 4 Powell’s method, 901–906 Q Quadratic convergence theorem, 30 R Recurrence formula, 664 Regula falsi method, 186. see also Method of false position Round-off errors, 14–19 Runge-Kutta-Butcher method, 637 Runge-Kutta-Fehlberg method, 636–637 Runge-Kutta method, 664–666 fourth-order, 671–673 second-order, 631–632 step-by-step or marching methods, ODE, 586–604 S Scatter diagram, 405 Secant method convergence of, 212–213 formula, 212 MATLAB program, 214–219 rate of convergence, 213 Significant digit arithmetic method, 23 Significant digits, 13 Simply truncation error, 19 Simpson’s 1/3 rule error estimate in, 495–496 MATLAB built-in functions, 497–502 programs, 496–497 Simpson’s 3/8 rule, 502–506 Spline Toolbox, 387 Step-by-step or marching methods, ODE, 558, 559 Euler’s explicit method, 569–579 modified Euler’s method, 579–586 predictor-corrector methods Adams-Moulton method, 605–611 advantages, 604 Milne’s predictor-corrector method, 611–614 Runge-Kutta methods of order four vs. Euler’s method, 600 local truncation error, 592 MATLAB program, 594 Runge-Kutta methods of order two local truncation error, 588 Taylor series expansion, 587 Successive approximation method convergence criteria, 206–207 error estimate, 207–211 Successive linear approximation method, 924–925 T Taylor’s series expansion, 2 Taylor’s series method, 564–569 Taylor’s theorem, 1–4 Total numerical error, 201196 • Index Trapezoidal rule, 486–488 error estimate in, 489–490 MATLAB built-in functions, 490–493 Truncation errors, 19–21. see also Mathematical approximation errors W Weddle’s rule, 507–511 Weighted least-squares method, 448–449 Wilson theta method, 676–679 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Applied Numerical Methods Using Matlab رابط مباشر لتنزيل كتاب Applied Numerical Methods Using Matlab
|
|