Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Application of Numerical Methods in Engineering Problems Using MATLAB الأربعاء 15 مارس 2023, 3:15 pm | |
|
أخواني في الله أحضرت لكم كتاب Application of Numerical Methods in Engineering Problems Using MATLAB M.S.H. Al-Furjan, M. Rabani Bidgoli, R. Kolahchi, A. Farrokhian, and M.R. Bayati
و المحتوى كما يلي :
Contents Preface to the First Edition .xi Foreword xiii About the Authors xv Acknowledgments xvii Chapter 1 Basic Theories 1 1.1 Introduction 1 1.2 Strain–Displacement Equations .1 1.3 Beam Theories .4 1.3.1 Introduction 4 1.3.2 Preliminaries 4 1.3.3 Euler–Bernoulli Theory .6 1.3.4 Timoshenko Beam Theory 6 1.3.5 Sinusoidal Shear Deformation Theory 7 1.3.6 Hyperbolic Shear Deformation Beam Theory .7 1.3.7 Exponential Shear Deformation Beam Theory .8 1.4 Plate Theories 8 1.4.1 Classical Theory 8 1.4.2 First-Order Shear Deformation Theory .9 1.4.3 Reddy Theory 10 1.4.4 Sinusoidal Shear Deformation Theory 11 1.5 Shell Theories 12 1.5.1 Classical Shell Theory . 12 1.5.2 FSDT or the Mindlin Theory . 13 1.5.3 Reddy Theory 13 References . 15 Chapter 2 Solution Methods 17 2.1 Analytical Methods 17 2.1.1 Navier Method . 17 2.1.2 Galerkin Method 17 2.2 Numerical Methods for Space Domain . 18 2.2.1 Differential Quadrature Method 18 2.2.2 Harmonic Differential Quadrature Method .20 2.2.3 Discrete Singular Convolution Method .22 2.2.4 Differential Cubature Method .23 2.3 Numerical Methods for Time Domain 24 2.3.1 Newmark Method 24 2.3.2 Poincaré–Lindstedt Method .25 2.3.3 Multiple Scale Method .26 vvi Contents 2.3.4 First-Order Two-Scale Expansion Method 26 2.3.5 Second-Order Three-Time Scale Expansion Method .27 References .28 Chapter 3 Buckling of Nanoparticle-Reinforced Beams Exposed to Fire .29 3.1 Introduction 29 3.2 Mathematical Modeling .30 3.2.1 Energy Method 30 3.2.2 Hamilton’s Principle 33 3.3 Mori–Tanaka Rule . 35 3.4 Numerical Results 36 3.4.1 Accuracy of DQM 36 3.4.2 Validation .36 3.4.3 Effect of Different Parameters .37 References . 41 Chapter 4 Dynamic Response of Nanofber-Reinforced Beams Subjected to Seismic Ground Excitation 43 4.1 Introduction 43 4.2 Mathematical Model 45 4.3 Mori–Tanaka Model .46 4.4 Energy Method 49 4.5 Numerical Results 54 4.5.1 Convergence of HDQM . 55 4.5.2 Validation of Results 55 4.5.3 Effect of an NFRP Layer on the Dynamic Response 55 4.5.4 Effect of Carbon Nanofbers on the Dynamic Response 59 4.5.5 Effect of Geometric Parameters of a Beam on the Dynamic Response 62 4.5.6 Effect of Boundary Conditions on Dynamic Response 65 References . 67 Chapter 5 Buckling Analysis of Plates Reinforced with Graphene Platelets 69 5.1 Introduction 69 5.2 Kinematics of Different Theories 70 5.3 Motion Equation 72 5.4 Numerical Result and Discussion 77 References .82Contents vii Chapter 6 Vibration Analysis of Agglomerated Nanoparticle-Reinforced Plates 6.1 Introduction 6.2 Mathematical Modeling 6.2.1 Stress–Strain Relations 6.2.2 Energy Method 6.3 Numerical Results and Discussion 6.3.1 Validation 6.3.2 Effects of Different Parameters References Chapter 7 Vibration Analysis of Plates with an NFRP Layer 103 7.1 Introduction 103 7.2 Stress–Strain Relations 105 7.3 Energy Method 106 7.4 Numerical Results and Discussion 111 References 115 Chapter 8 Vibration Analysis of Plates Reinforced with Nanoparticles and a Piezoelectric Layer 119 8.1 Introduction 119 8.2 Constitutive Equations of Piezoelectric Material 121 8.3 Energy Method 123 8.4 Numerical Results and Discussion 127 References 132 Chapter 9 Forced Vibration Analysis of Plates Reinforced with Nanoparticles 135 9.1 Introduction 135 9.2 Mathematical Modeling 137 9.3 Numerical Results and Discussion 146 9.3.1 Convergence of Numerical Method 146 9.3.2 Validation 146 9.3.3 Effects of Different Parameters 147 References 153 Chapter 10 Seismic Analysis of Plates Reinforced by Nanoparticles 157 10.1 Introduction 157 10.2 Stress–Strain Relations 159 10.3 Numerical Results and Discussion 10.3.1 Convergence of DQM 164 10.3.2 Validation of Results 165viii Contents 10.3.3 Effect of the Magnetic Field 166 10.3.4 Effect of AL2O3 Nanoparticles 166 10.3.5 Effect of Concrete Plate Length 168 10.3.6 Effect of Boundary Conditions on the Dynamic Response 168 References . 169 Chapter 11 Stress Analysis of Shells Reinforced with Nanoparticles 171 11.1 Introduction 171 11.2 Governing Equations . 172 11.3 Numerical Results and Discussion . 175 References . 180 Chapter 12 Earthquake Response of Submerged Nanocomposite Shells Conveying Fluid . 181 12.1 Introduction 181 12.2 Mathematical Modeling . 183 12.3 Numerical Results and Discussion . 187 12.3.1 Validation 188 12.3.2 Convergence of the Present Method 188 12.3.3 Effects of Various Parameters . 188 References . 193 Chapter 13 Vibration and Instability Analysis of Shells Reinforced by Nanoparticles . 197 13.1 Introduction 197 13.2 Formulation 198 13.3 Numerical Results and Discussion .203 13.3.1 DQM Convergence 203 13.3.2 Effects of Different Parameters .204 References .209 Chapter 14 Dynamic Response of Nanocomposite Shells Covered with a Piezoelectric Layer 213 14.1 Introduction 213 14.2 Geometry of the Problem . 214 14.3 Constitutive Equations . 215 14.3.1 Piezoelectric Layer 215 14.3.2 Nanocomposite Pipe 216 14.4 Energy Method 217 14.5 Hamilton’s Principle 220 14.6 Numerical Results 224Contents ix 14.6.1 Verifcation 224 14.6.2 Convergence of the Numerical Method .226 14.6.3 Effects of Various Parameters .226 References .230 Appendix A: The MATLAB Code for Chapter 4 . 233 Appendix B: The MATLAB Code for Chapter 6 237 Appendix C: The MATLAB Code for Chapter 7 .247 Appendix D: The MATLAB Code for Chapter 8 . 253 Appendix E: The MATLAB Code for Chapter 11 259 Appendix F: The MATLAB Code for Chapter 12 263 Index 277 Index A AL 2O3 nanoparticles, 141, 145, 147, 148, 152, 153, 154, 156, 157, 158 analytical methods, 15, 52, 146 B beam theory, 4, 6, 7, 29, 32, 43 boundary conditions, 16, 17, 22, 23, 24, 31, 32, 41, 51, 57, 62, 76, 92, 109, 120, 135, 136, 139, 141, 144, 149, 153, 154, 155, 156, 157, 158, 162, 163, 164, 168, 171, 177, 179, 186, 193, 194, 201, 205, 244 buckling, 27, 28, 34, 35, 36, 37, 38, 42, 43, 61, 62, 63, 67, 68, 69, 70, 71, 72, 76, 77, 91, 92, 93, 106, 107, 121, 122, 140, 141, 164, 178, 185, 193 classical shell theory, 11 classical theory, 164, 195 constitutive equations, 44, 107, 142, 195 convergence of, 51, 130, 145, 170, 183, 203 D DCM, 15, 21, 193 DQM, 17, 19, 27, 28, 34, 42, 92, 139, 140, 145, 153, 162, 164, 168, 169, 170, 177, 178, 183 DQM convergence, 183 DSCM, 15, 20, 192, 194 dynamic response, 41, 42, 43, 51, 52, 53, 54, 56, 57, 62, 121, 139, 140, 141, 145, 147, 149, 162, 163, 169, 178, 192, 202, 203 E earthquake, 42, 43, 49, 51, 121, 140, 141, 144, 145, 162, 163, 164, 167, 168, 170, 178, 192, 193, 194, 198, 201, 202, 211 energy method, 28, 29, 47, 90, 164, 177, 194 Euler-Bernoulli beam theory or model, 1, 6, 43, 77, 93, 107, 122, 141, 163, 164 Eulerian description, 2 exponential shear deformation beam theory, 7 F fre, 27, 28, 29, 31, 34, 164 frst order shear deformation theory (FSDT), 6, 43, 105, 107, 121, 141, 153, 178 frst-order two-scale expansion method, 23 formulation, 17, 28, 42, 92, 141, 179 G Galerkin method, 16, 92 geometric parameters, 51, 56 governing equations, 16, 18, 27, 28, 31, 41, 42, 43, 47, 49, 52, 61, 63, 64, 65, 80, 81, 92, 96, 106, 109, 110, 111, 112, 126, 127, 139, 140, 144, 154, 162, 163, 164, 167, 168, 169, 180, 192, 194, 196, 199, 201, 203 H Hamilton’s principle, 31, 41, 49, 105, 144, 167, 199 HDQM, 15, 18, 19, 41, 43, 51, 120, 123, 141 hyperbolic shear deformation beam theory (HSDBT), 7, 41 I instability, 42, 121, 140, 153, 163, 177, 178, 183 L Lagrangian description, 2 Love’s frst approximation theory, 43 M magnetic feld, 42, 62, 107, 139, 140, 141, 142, 144, 145, 146, 147, 153, 155, 156 mathematical modelling, 1, 29, 77, 93 Mindlin theory, 11, 107, 192, 194 Mori-Tanaka rule, 27, 33, 41, 42, 43, 44, 75, 77, 78, 90, 93, 94, 105, 107, 108, 120, 122, 123, 140, 141, 152, 154, 162, 163, 164, 177, 178, 192, 194, 196, 209, 213, 223, 228, 233 motion equation, 16, 18, 49, 64, 75, 77, 90, 93, 107, 120, 122, 144, 168, 177, 178 multiple scale method, 23, 24, 201 N nanocomposite, 42, 43, 62, 63, 91, 106, 107, 140, 141, 162, 164, 168, 177, 178, 183, 192, 193, 194, 196, 197, 204278 Index nanoparticle, 27, 29, 62, 75, 76, 77, 83, 84, 85, 86, 87, 93, 105, 107, 113, 114, 120, 121, 122, 129, 132, 133, 139, 141, 145, 147, 148, 152, 153, 154, 156, 157, 158, 162, 164, 165, 168, 173, 177, 178, 179, 183, 184, 185 Navier method, 16, 61, 63, 67, 77, 83, 90, 93, 97, 107, 113 Newmark method, 22, 41, 43, 120, 122, 129, 141, 162, 164 NFRP, 41, 43, 44, 47, 51, 53, 54, 90, 93, 94, 97, 98, 99, 100, 101 numerical methods for space domain, 15, 17 numerical methods for time domain, 15, 22 P piezoelectric, 62, 105, 106, 107, 108, 109, 113, 116, 122, 153, 164, 192, 193, 194, 195, 196, 197, 202, 206 pipe, 12, 152, 153, 154, 156, 158, 162, 163, 164, 166, 168, 169, 170, 171, 172, 177, 178, 179, 183, 184, 185, 186, 187, 192, 193, 194, 196, 197, 198, 202, 205, 206 plate theory, 8, 42, 76, 106, 107, 140 Poincaré-Lindstedt Method, 22 postbuckling, 42, 140 R Reddy theory, 9, 12, 75, 77, 120, 122 S seismic ground excitation, 41 shell theory, 2, 11, 162, 164 sinusoidal shear deformation theory, 7, 10, 62, 90, 92 strain-displacement equations, 2, 9, 10 stress analysis, 42, 140, 152, 153 stress-strain relations, 44, 77, 93, 94, 95, 141, 167, 179, 199 T Timoshenko beam theory, 6, 29, 141 V validation, 35, 52, 83, 131, 146, 169 vibration #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Application of Numerical Methods in Engineering Problems Using MATLAB رابط مباشر لتنزيل كتاب Application of Numerical Methods in Engineering Problems Using MATLAB
|
|