كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions  Empty
مُساهمةموضوع: كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions    كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions  Emptyالأحد 06 أغسطس 2023, 3:28 am

أخواني في الله
أحضرت لكم كتاب
Multifunctionality of Polymer Composites - Challenges and New Solutions
Klaus Friedrich , Ulf Breuer

كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions  M_f_o_12
و المحتوى كما يلي :


Contents
Front Cover; Multifunctionality of Polymer Composites; Copyright Page;
Contents; Preface; List of Contributors;
I. Introduction to Multifunctional Polymer Composites;
1 Routes for achieving multifunctionality in reinforced polymers and composite structures;
1.1 Introduction; 1.2 Case Studies;
1.2.1 High-Temperature-Resistant Thermoplastics with Electrical Conductivity, Enhanced Modulus, and Good Sliding Wear Resis
1.2.1.1 Objectives; 1.2.1.2 Experimental
1.2.1.3 Results and discussion; 1.2.1.3.1 Tensile properties; 1.2.1.3.2 Morphology
1.2.1.3.3 Electrical properties
1.2.1.3.4 Tribological properties1.2.2 Improved Interlaminar Toughness of Lightweight Glass-Fiber-Reinforced Polymer Structures
1.2.2.1 Objectives; 1.2.2.2 Experimental; 1.2.2.3 Results and discussion
1.2.3 Use of Ceramic Nanoparticles in Thermoplastic Composites for High Wear Resistant and Low Friction Sliding Elements
1.2.3.1 Objectives; 1.2.3.2 Experimental; 1.2.3.3 Results and discussion
1.2.3.3.1 Breaking up of agglomerates; 1.2.3.3.2 Tensile and impact properties
1.2.3.3.3 Use of nanomodified polymers as matrices for composites in various triboapplications
2.3.3.3.1 General effects of nanoparticles in tribocompounds
2.3.3.3.2 Hybrid bushings in diesel fuel injection pumps
1.2.4 Erosion Stability of Lightweight Composite Components
1.2.4.1 Objectives; 1.2.4.2 Experimental; 1.2.4.3 Results and discussion; 1.2.4.3.1 Erosion of CF/PEEK
1.2.4.3.2 Erosion of polymer foils; 1.2.4.3.3 Comparison of the wear data on the basis of wSE
1.2.4.3.4 Suggestion for an erosion-resistant hybrid structure;
1.2.5 High-Temperature Polymer Coatings for Piston Skirts in Combustion Engines;
1.2.5.1 Objectives;
1.2.5.2 Experimental; 1.2.5.2.1 Sample preparation
1.2.5.2.2 Testing methods used1.2.5.3 Results and discussion; 1.2.5.3.1 Solubility and decomposition
1.2.5.3.2 Elastic modulus and adhesion to substrate; 1.2.5.3.3 Tribological performance
1.2.6 Model Material for Laser-Surgical Training of Medical Specialists for Larynx Operations
1.2.6.1 Objectives; 1.2.6.2 Experimental and results; 1.2.6.2.1 Preparation of the model material
1.2.6.2.2 Suitability test; 1.3 Conclusion; Acknowledgments; References
2 A new perspective in multifunctional composite materials; 2.1 Introduction; 2.1.1 Multifunctional Products
2.1.2 Multifunctional Composites2.1.3 Motivation and Outlines of This Chapter
2.2 Innovative Multifunctional Carbon/Carbon Composites; 2.2.1 Introduction of Carbon/Carbon Composites
2.2.2 Innovative Multifunctional Carbon/Carbon Composites via Nanotechnology;
2.2.2.1 Introduction
2.2.2.2 Fabrication of composites;
2.2.2.3 Evaluation of heat-directed property;
2.2.3 Results and Discussion;
2.2.3.1 Determination of VGCF dispersion function;
2.2.3.2 Microscopic observations;
2.2.3.3 Experimental evaluation of heat-directed carbon/carbon composites
Summary
Multi-Functionality of Polymer Composites:
Challenges and New Solutions brings together contributions from experts in the field of multifunctionality,
presenting state-of-the-art discussion of this exciting and rapidly developing field, thus key enabling technologies for future applications.
The text will enable engineers and materials scientists to achieve multifunctionality in their own products using different types of polymer matrices and various nano- and micro-sized fillers and reinforcements, including, but not limited to, carbon nanotubes and graphene. In addition, technologies for the integration of active materials such as shape memory alloys are discussed. The latest developments in a wide range of applications, including automotive/aerospace, electronics, construction, medical engineering, and future trends are discussed, making this book an essential reference for any researcher or engineer hoping to stay ahead of the curve in this high-potential area.
Index
Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.
A
Abaca, 108
Acetaldehyde, 305, 307
Acetylation, 82–83
Active functionalities, 452
Active hybrid structures, 725
carbon-fiber-reinforced plastics, 730–731
design and manufacturing of real structures,
742–747
active hybrid structure and FE simulation
model, 742
requirements, 742
simulation results, 743
finite element (FE) simulation, implementation
into, 741–742
multifunctionality of, 728–730
shape memory alloys (SMA)
characterization and modeling of, 733–738
modeling of, 738
overview and important properties, 731–733
phenomenological material model for, 738–740
Active thermography experimental setup, 716f
Acyclic diene metathesis (ADMET), 931–932
Additive fire retardants, 112
Additive manufacturing, 925
Aerospace application, 367
composite toughness and impact damage
performance, improving, 370–387
BMI matrix composites, 381–385
epoxy matrix composites, 373–380
technology scale-up, 386–387
ES™-fabrics for preform-based toughening
technology, 397–400
functionalized interlayer technology, 400–413
polymer interleaf approach, 401–405
textile veil interleaf approach, 405–413
future perspectives, 484–485
motivation and technological challenge, 367–370
RTMable BMI matrix composites, 390–397
RTMable epoxy matrix composites, 387–390
multifunctional carbon nanotube-based nanocomposites for, 448
damage tolerance of composites, enhancement
of, 459–468
multi-scale reinforcement of composites,
systemic mapping of, 453–459
nano-composite multifunctionality,
demonstration of, 476–483
nano-reinforced composites, electrical
conductivity of, 468–476
multifunctional SMA-based composites for, 709
deicing, 720–722
impact properties, 710–712
in situ NDT, 715–720
structural health monitoring, 713–715
spray-coated samples, phase morphology for,
380f
Aerospace composites, roadmap of development
for, 367–368, 368f
Agave sisalana, 108
Agglomeration, state of, 918
AgNWs, 401–404, 406–407, 410, 412–413
Aircraft ice management, 720
Aliphatic polyester/aliphatic–aromatic copolyesters,
144
Alkylammonium/alkylphosphonium cations,
147–148
Alkyl-bis-caprolactams, 312
Alloys, 670–673
germanium, 673
silicon, 670–672
tin, 672–673
All-solid-state structural batteries, 623–624
Alumina micro and laponite nanoplatelet-shaped
filler particles, 907
Aluminum trihydrate, 175
Aluminum trihydroxide/alumina trihydrate,
112–113, 122–123
Ambari, 107
Amide (lactam) chain extension, 312
Amine-terminated acrylonitrile-butadiene rubbers
(ATBN), 827
N-(2-Aminoethyl)-3-aminopropyl-trimethoxysilane,
36
Ammonium polyphosphate (APP), 73, 80–83,
123–124, 129–131, 133
Amorphous CNTs (ACNTs), 667–669
Amphiphilic BCPs, 929, 932
Anechoic chamber, 427–428, 427f, 430, 431f
Anhydride chain extension, 311–312
Animal fibers, 103, 108–111
-based composites, 131–135946 Index
chemical composition, 110
and flammability, 115–117
structure, 109–110
Antiicing, 720
Aramid (para) fibers/pulp functions, 559
Army Research Laboratories (ARL), 625–626, 626f
Arrhenius temperature dependence, 924
Asbestos, 103, 554
As–received structural carbon fiber fabrics,
634–635
Atom transfer radical polymerization (ATRP),
931–932
Atomic force microscopy (AFM), 341–342, 345,
528
ATREX engine, 45
Automotive/aerospace applications, 491
hierarchical nanocomposites, 503–509
nanoclay–nanoresin, 507–508
nanoparticle–nanoresin, 503–506
nanotube/nanosheet–nanoresin, 508–509
multifunctional hierarchical nanocomposites
(MHNs), 509–517
with fuzzy fibers, 509–511
multiscale, 517–518
with nanobrushes, 511–513
with nanoforests, 513–517
nanoresin nanocomposites, 495–503
challenges, 495–496
nanomaterials for, 496–503
Automotives, role of brakes in, 551–553
B
B-561, 307
B787 Dreamliner, 367, 368f
BAe Systems, 626
Bag cloth industry, 60
Balsa core sandwich beam, 268, 288f
Balsa wood, 279–280
Banana fibers, 108
Benzyl dimethylamine (BDMA) solution, 789
Bergman–Milton’s model, 694–695
Bernoulli–Euler continuum elasticity, 911
Binder, 557–558
Biodegradable polymers, 144
Biodegradation, of PLA/clay nanocomposites,
196–205
Biodiesel trucktanks, 254–256
Biomateriomes, 904–905
Biomimetics, 452
Bis(trifluoromethane)sulfonimide lithium (LiTFSI)
salt, 635–636
Bis-oxazoline, 310, 312
Bisphenol-A-diisocyanate, 312
Blanketing effect, 113
Block copolymers (BCPs), 905, 927–928, 931–932,
937–938
Block shear test, 277–278
BMI matrix composites, 381–385
RTMable, 390–397
BOEING, 448
Bombix mori, 132
Boric acid, 123
Boy 50A injection molding machine,
126, 127f
Brabender® twinscrew extruder LTE 26, 133
Brakes, in automotives, 551–553
Brazovskii mechanism, 928
“Bridging chain”, 924–925, 928–929
Brittleness, 492, 518–519
Bromine, 73, 113
C
C15A, 154–155
C16-Mica, 150t–152t, 165
C16-MMT, 150t–152t, 165
C25A, 149–155, 150t–152t, 160–161, 169–170
C30B, 149–155, 167, 169, 175
Calcium carbonate, 496–497
Car radiators, grids for, 256–257
Carbon, 664–670
carbon nanofiber (CNF), 666–667
carbon nanotube (CNT), 667–670
lithium storage mechanism, 665–666
covalent interaction, 665
heteroatom doping, 666
intercalation in graphite, 665
interfacial storage, 665–666
storage in 3D defects, 665
Carbon aerogel (CAG) reinforcements,
634–635
Carbon and metal-fiber reinforced airframe
structures, 435
airframe weight and cost, 436–437
CFRP–metal fiber composites, 439–445
damage tolerance and structural integrity,
442–445
electrical conductivity, 442
challenges of modern CFRP airframe structures,
438
preparation of, 441–442
results, 445
Carbon black (CB), 248–249, 454–455, 876–877,
879–881
Animal fibers (Continued)Index 947
Carbon fiber (CF), 468, 620
commercial, 628–629
erosion of, 25–26
orientation on erosive wear behaviour, 24–25
recycling of, 652–653
Carbon fiber composite battery, 650, 650f
Carbon nanofiber (CNF), 46, 454–455, 496,
666–667, 833
Carbon nanoparticle-modified matrix, sensing with,
892–900
center wing box demonstrator, characterization
of, 898–899
damage mapping, 895–898
Carbon nanoparticles filled matrix, fiber-reinforced
composites with, 885–892
Carbon nanotube (CNT), 46, 342–345, 349–351,
353–357, 494f, 496, 509–511, 527, 667–670,
876–877, 907
1D carbon nanotubes, 876
2D carbon nanotubes, 876
CNT–GO/epoxy composites
mechanical properties of, 536–542
multifunctionality of, 542–543
CNT–GO/PVA composites, mechanical
properties of, 534–536
CNT/nanoparticle–nanoadhesive
nanocomposites, 500–501
CNTs–nanoresin nanocomposites, 499–500
dispersion of, by GO sheets, 528–531
field-emission scanning electron microscopy
(FESEM) image of, 528–529
fracture mechanisms of, 465f
nanoforest, 517
as structural reinforcements, 495
Carbon nanotube composites, 449, 454–455, 464–
466, 468–476, 752
as multifunctional materials, 752–754
nanotube/fiber multiscale hybrid composites,
processing of, 755–763
direct hybridization processing approaches,
758–762
dispersion/infusion processing approaches,
756–758
for sensing, 763–778
of damage in joints, 770–773
in situ sensing of thermal transitions and
thermochemical changes, 775–778
of localized impact damage, 768–769
of microscale damage, 763–767
nanotube fibers and skins, 773
Carbon nanotube–glass fiber–epoxy composites,
764
Carbon nanotube–polyether ether ketone (PEEK)
composites, 776
Carbonaceous matrix, 680
Carbon-based nanoparticles, 876–877
Carbon–carbon composites, 44–59, 554
heat-directed carbon/carbon composites
experimental evaluation of, 53–56
prospective applications of, 56–59
microscopic observations, 51–52
via nanotechnology, 46–51
evaluation of heat-directed property, 49–51
fabrication of composites, 47–49
VGCF dispersion function, determination of,
51
Carbon–fiber composites, 370, 413
Carbon-fiber-reinforced laminates, 500–501
Carbon-fiber-reinforced plastics, 435, 445, 715,
730–731, 742
CFRP–metal fiber composites, 439–445
damage tolerance and structural integrity,
442–445
electrical conductivity, 442
challenges of, 438
recycling, 645, 652–653, 653f
Carbon-fiber-reinforced polymer, 451–452, 464–
466, 875, 884–885, 890–893
CNTs for, 472–473
Carbonyl difatty amides (CDFA), 169
Carbonyl-bis-1-caprolactam, 312
Carboxyl-terminated acrylonitrile-butadiene rubbers
(CTBN), 827
Cation-exchange capacity, 146–147
Cellulose, 105–106, 107t, 115
decomposition, 74–76
Cellulose fibers functions, 559
Center wing box demonstrator, 898f
characterization via electric sensing, 898–899
Ceramic fibers functions, 558
Ceramic matrix composites (CMCs), 503–504
Ceramic nanoparticles, 14–23
Charge contrast imaging (CCI), 6
Charpy impact energy, 16
Chemical vapor deposition (CVD), 509–511, 666,
759–760
Chlorine, 113
Chopped carbon fibers functions, 559
City driving braking, 553
Clay, 214
and clay-containing polymer nanocomposite
formation, 146–148
“Clustering diagram”, 924
CNFs–nanoresin nanocomposites, 498948 Index
CO2 emissions, 43–44, 47
CO2-laser technology, 34
Cobalt oxides, 678–680
Cocamidopropylbetaine (CAB), 155
“Cold working”, 824–826
Colloidal ZnO nanocomposites, 859–860
characterization of, 859
preparation and purification of, 859
Combustion engines, 27–29
Commanded assembly, 930
Composite toughness and impact damage
performance, improving, 370–387
BMI matrix composites, 381–385
epoxy matrix composites, 373–380
technology scale-up, 386–387
Composite–metal hybrid joints, 770–771
Compression after impact (CAI), 786, 791, 804,
815–816, 889
Compression molding (CM), 252–253
Conductive carbon nanoparticles, 881–884
Conductive composites, 249–250
Conductive filler, 250
Cone calorimeter (CC) test, 120–122, 121f, 124
Cone calorimeter results, for PLA and PLA
composites, 177t
Conetwork formation, 828, 831, 832f
Connectivity, 642, 650
Connectors, recycling of, 654
Continuous fiber-reinforced ceramic composite
(CFCC), 503–506
Conventional supercapacitors, 621–622, 622f
Conversion reaction mechanism, 677–682
cobalt oxides, 678–680
iron oxides, 680
manganese oxides, 680–681
nickel oxide (NiO), 678
ZnB2O4, 681–682
Copolymer polypropylene (cPP), 254
Corchorus, 107
Core shear stress–strain curves, 291–294
Cortical cells, 109–110
Cotton, thermal properties of, 116t
Coulomb repulsion, 918
Coulombic efficiency, 680
Counterface friendliness, 555
Covalent interaction between Li atoms, 665
Crack healing, 785, 801, 804–805, 811
Cracked matrix, healing of, 811–814
Cross-ply laminates, 764
CuBr2 (2-MeIm)4, 815–817
Cyclic iminoesters, chain extension based on,
310–311
Cyclic olefinic copolymers, 854
Cysteine, 115–117
D
Damage area reduction, rate of, 790–791
Damage in joints, sensing of, 770–773
Damage mapping, 895–898
Damage tolerance, 442–445, 459–468, 485
Damage zones, examination of, 790–791
Debye relaxation process, 694
Dehydrocellulose decomposition, 74–76
Deicing, 720–722
Delamination issues, 492
Derivative thermogravimetric (DTG) curves,
117
Design methodology, 640–642, 649–650
Di- or polyepoxide compounds, 311
4, 4′-Diaminodiphenylmethane (MDA), 29f
Diaminodiphenylsulfone (DDS), 373–374
Dielectrophoresis, 844
Diesel fuel injection pumps, hybrid bushings in,
21–22
Diethylenetriamine (DETA), 789
Differential scanning calorimetry (DSC) analysis,
805–806, 851–852
Digital image correlation (DIC), 284
Diglycidylether of bisphenol-A (DGEBA),
373–374, 635–636, 864
Dimethylformamide (DMF), 673, 756–757
Direct digital manufacturing (DDM), 925
Direct hybridization processing approaches,
758–762
Direct solution mixing method, 860–864
characterization of ZnO nanoparticle dispersion
directly mixed in PMMA, 861–862
optical property, 862–863
solution mixing of ZnO nanoparticles with
PMMA, 860–861
thermal stability, 863
Directional entropic forces (DEFs), 926
Dispersant, inorganic, 860
Dispersion/infusion processing approaches,
756–758
Double-capsule self-healing system, 787
characterization of self-healing capability,
789–804
epoxy, microencapsulation of, 788–789
mercaptan, microencapsulation of, 787–788
Ductile erosion mode, 25
Durability, 655
Dynamic mechanical analysis (DMA), 30,
162–164, 321–322Index 949
Dynamic packing injection molding (DPIM), 217,
222–224, 236
E
Ebecryl 1290, 574
Electric force microscopy (EFM), 351
Electric vehicles (EV), 663
Electrical conductivity, 438, 760, 763, 879–881
of carbon nanoparticle-filled polymers, 880f
carbon-fiber-reinforced plastics, 442
of fiber-reinforced polymers, 468–469, 485
of nano-reinforced composites, 468–476
versus percolation for MWCNT and CB, 879f
Electrical resistance tomography (ERT), 479, 480f
Electrically conductive fiber, 875
Electrically conductive matrix, 893, 898–899
Electrically conductive nanocomposites, 879, 885
CNT–CNT electrical tunneling in, 755f
Electrically conductive pathway, 879–881
Electrodes/reinforcements, 647
Electro-electronic devices
biodegradable packaging for, 257–258
wafer transport trays and packaging for, 257
Electrolytes/matrices, 647–648
Electrophoretic deposition (EPD), 343, 760–761
Electrospinning, 662–663, 663f
Electrospun composite fiber anodes, 682–683
Emergency/panicky braking, 553
Energy apply system, 553
Energy conversion, 728, 729t
Energy dispersive spectroscopy (EDS), 798–800
Energy states, hierarchy of, 693
Energy transmission system, 553
EP200K, 254
EPON 828, 789–790, 806–807
Epoxide chain extensions, 311
Epoxy, microencapsulation of, 788–789, 806–807
Epoxy adhesive (EA), 500–501
Epoxy adhesive with alumina nanopowder (EANP),
500–501
Epoxy adhesive with CNTs (EANT), 500–501
Epoxy composites
hardness and Young’s modulus of, 602–604, 603f
with one-part self-healing functionality,
tribological properties of, 590–598
hardness and Young’s modulus of, 593–594
Rq value, 592–593
self-healing mechanism of, 607–608
during wear test, 607f
with two-part self-healing functionality,
tribological properties of, 598–608
Epoxy EP/poly(ε-caprolactone) (PCL) system, 828
Epoxy materials, 786–787, 789–790, 804–805,
876–877
Epoxy matrix composites, 373–380
RTMable, 387–390
Epoxy resins (EP), 9, 528, 588–589, 879–881
nano- and microfillers in, 11f
Epoxy/CuBr2 (2-MeIm) 4 system, 807–808
Epoxy-isocyanate reaction, 831
Epoxy-isocyanurate reaction, 831
Equivalent series resistance (ESR), 637
Erosion stability, of lightweight composite
components, 23–27
Erosion-resistant hybrid structure, 27
Erosive wear resistance of nanocomposite coatings,
581–584
Erosive wear tests, 24
Ester–ester exchange reaction, 314
Esterolysis, 314
ES™-fabrics for preform-based toughening
technology, 397–400
2-Ethyl-4-methylimidazole (2E4MIm), 807–808
Ethylene and vinylacetate (EVA), copolymer of,
326
Ethylene oxide (EO) groups, 630–631
Ethylene-vinyl acetate (EVA) matrix, 854
Ex situ toughening approach, 373, 374f, 413–414
Exfoliated nanocomposite, 148
Expanded graphite (EG), 245
electrical properties, 249–254
conductive filler, 250
polymer matrix, 250–254
mechanical properties, 247–248
nEG multifunctionality, applications exploring,
254–259
biodiesel trucktanks, 254–256
car radiators, grids for, 256–257
electro-electronic devices, biodegradable
packaging for, 257–258
onshore pipe coatings, 254
wafer transport trays and packaging for
electroelectronic devices, 257
morphology, 245–246
thermal properties, 248–249
Expanded polypropylene (EPP) foams, 263
Expanded polystyrene material (EPS), 265–266
F
Fabrication, 642–643, 650–652
and characterization, 636–640
of heat-directed composite materials, 47–49
of sandwich composites, 61–62
Faraday’s effect, 852950 Index
Fatigue life, influence on, 886–889
Fatty acids (FA), 169
Fatty hydroxamic acids (FHA), 169
Feather fibers, 110, 117
Fiber hybridization, 135–136
Fiber/matrix interface and interphase, 648–649
Fibermax 14R, 49–50
Fiber-reinforced composites (FRCs), 884–900, 907
with carbon nanoparticles filled matrix, 885–892
compression after impact, influence on,
889–892
fatigue life, influence on, 886–889
interfiber fracture strength, influence on, 886
sensing with carbon nanoparticle-modified
matrix, 892–900
characterization of center wing box
demonstrator via electric sensing, 898–899
damage mapping, 895–898
Fiber-reinforced plastics (FRPs), 448, 467–469,
709, 875
Fibroin fibers, 103, 108
Fillers, 559
fire-retardant, 112–113
Finite element (FE) simulation, implementation
into, 741–742
Fire, smoke, and toxicity (FST) characteristic of
foam cores, 267–268
Fire retardants, 112–115
fire-retardant fillers, 112–113
halogen-based, 113
intumescent, 113–114
phosphorus-containing, 113
Fireproof systems, 699–700
Flammability
animal fibers and, 115–117
of kenaf, 125–131
plant fibers and, 115
test methods for, 117–122
cone calorimeter test, 120–122
limiting oxygen index analysis, 118–119
thermogravimetric analysis, 117–118
underwriters laboratories standard UL-94 test,
119–120
thermal stability and, 171–179
of wool, 133–135
Flax, 106
Flocculated nanocomposite, 148
Flory–Huggins equation, 936–937
Fluorescent gold clusters, 853, 853f
Fluorescent gold-based nanocomposite film, 854,
855f
Fluorohectorite (FH), 172
Foam core materials, 262
case study, 294–295
foam core sandwich structures in wind turbine
blades (case study), 279–294
core shear stress–strain curves, 291–294
full-field shear strains, 284–289
multifunctionality of polymer foam cores,
264–276, 264f
fire, smoke, and toxicity (FST), 294–295
lightweight nature, 264–265
low resin uptake, 268
mechanical properties, 269–276
tuned thermal, acoustic, and dielectric
properties, 265–267
shear properties of, 276–279
block shear test, 277–278
sandwich bending tests, 278–279
Foamed plastics, 266–267
Formaldehyde, 788
Fracture surface morphology, of PLA/KF
composites, 95–97
Fracture toughness, 228, 484, 608–611, 877–878,
878f, 885–886
Friction assessment and screening test (FAST), 562
Friction coefficient, 22f, 594–595, 914
Friction dust, 560
Friction materials (FMs)
classifications of, 554f
complexity involved in performance evaluation
of, 562
complexity of composition of, 560–561
evolution in, 554
formulation of FMs as a multicriteria
optimization problem, 555–557
functions of, 553
Friction modifiers, 559
Full-field shear strains, 284–289
Functional/multifunctional nanostructured
materials, 842–843
Functionalization of properties, 47
Functionalized interlayer technology (FIT),
400–413
polymer interleaf approach, 401–405
textile veil interleaf approach, 405–413
Functionalized macromonomers (FMMs), 931–932,
937–938
Fused deposition modeling (FDM), 925
G
G827/BMI laminated samples, 396t
Gage factor (GF), 357–359
Gallery, 146–147Index 951
Gamma micropolish II, 52
Gas barrier properties, of nanocomposites, 181
Gaussian chain network, 916–917
Gelatin, 35–36, 37f
General Motors, 727
Germanium, 673
Gibbs free energy, 926
Glass beads (GBs), in the epoxy matrices,
598–600
Glass fiber-reinforced epoxies, 893
Glass fiber-reinforced polymer (GFRP), 43, 467,
471, 875, 884–885, 890–893
Glass fibers (GF), 319
characterization of, 343–345
multifunctional composite interphases with
nanoreinforcements, 350–359
multifunctional surface coatings with
nanoreinforcements on, 345–350
surface nanostructuring of, 342–343
Glass-fiber-reinforced composites (GFRCs), 9–14,
28f, 893–895
Glass-mat-reinforced thermoplastic (GMT)
composites, 507–508
Glassy carbon, 876
Glutardialdehyde, 36
Glycerol, 35–36
Glycerol monooleate, 504–506
(Glycodoxypropyl)trimethoxysilane (GPS), 169
GNSs–nanoresin nanocomposites, 501–502
GO–CNT/PVA, 534, 536
Gold clusters, molecular, 853, 853f
Gold-based nanocomposites, 850–851
Gold–polystyrene nanocomposite film, 850–851,
850f, 851f
Gold–silver cluster, 853, 854f
Graphene, 842–843, 843f
Graphene nanoplatelets (GNP), 215, 245, 342–343,
346–348
Graphene oxide (GO), 528
dispersion of CNTs by, 528–531
Graphene-based devices, 624
Graphene-based electrical sensors, 342
Graphite, 5, 14, 44–45, 245–246
intercalation in, 665
multimodal filler combination of, 8
volume conductivity of, 7f
Graphite intercalated compounds (GIC), 245–246
Graphite nanoplatelets (GNPs), 876–877, 879–881
Graphite structure, 628, 629f
Grinded wood (GW), 700
Gross takeoff weight (GTOW), 56–57
Group transfer polymerization (GTP), 931–932
H
Halogen-based fire retardants, 113
Halpin–Tsai equation, 6
Hansen’s total solubility parameter, 920
HB 7042-96, 376–377
Healing efficiency, 610, 791, 816–817
Health monitoring technologies, 885, 895
Heat deflection temperatures (HDT), 256–257
Heat exchanger, 45, 47
Heat release rate (HRR), 112, 119–123, 130f, 134f,
135
Heat-directed carbon/carbon composites, 46, 49–50
applications, 56–59
semi-passive and active TPS challenges, 57–58
thermal-structural challenges, 58–59
weight, cost, and heat-transfer efficiency
challenges of hot structures, 56–57
evaluation, 49–51
experimental evaluation, 53–56
Hemicellulose, 105, 107t, 115
Hemp, 107–108
Hencky strain, 195
Heteroatom doping, 666
n-Hexadecyl trimethyl-ammonium bromide cations
(CTAB), 155
Hexamethylene diisocyanate (HDI)-filled
microcapsules, 590–592, 594
Hibiscus, 107
Hierarchical approach in investigation of polymer
composite materials, 694
Hierarchical nanocomposites, 503–509
multifunctional, 509–517
nanoclay–nanoresin, 507–508
nanoparticle–nanoresin, 503–506
nanotube/nanosheet–nanoresin, 508–509
High-density polyethylene (HDPE), 24, 83–84,
776–777
High-resolution transmission electron microscopy
(HR-TEM), 859
High-temperature polymer coatings, 27–34
High-temperature-resistant thermoplastics, 3–9
Hitachi UV–vis–NIR spectrophotometer, 864–865,
871–872
Hope-X, 45
Horizontal burn test, 119–120
Hot- and cold-state-line model, 739, 739f, 740f
HP 83630B, 425–426
HP 8593E, 425–426
Hummer method, 876
Hybrid block copolymers (HBCPs), 937–938
Hybrid bushings, in diesel fuel injection pumps,
21–22952 Index
Hybrid electric vehicles (HEV), 663
Hybrid nanoparticle amphiphiles (HNPAs), 937–938
Hybrid PPS/SMA /Kevlar fabric, 713f
Hybrid structure. See Active hybrid structures
Hybrids, 620–623
Hydrofluoric acid (HF), 670–672
Hydrophilization, 419–420
Hydrophobic fibers, 36
Hydroxyapatite (HA), 909–910
Hygrothermal conditioning, 421, 425
I
Ice management, in aircraft, 720, 722
IL (1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide), 635–636
Imidazole latent hardener, preparation of, 805–806
Impact damage resistance, 367, 371, 379, 413–414
Impact damage zones, 791, 792f, 794–796, 794f,
809–810, 809f
Impact energy, 790–791, 793, 801, 808–811, 812f,
814, 818
Impact modifier (IM), 93
Impact strength modifier (ISM), 315, 324
for poly(ethylene terephthalate), 316–317
Impact toughness, 226
Impingement angle, 24–25
IMS65 carbon fiber, 626, 630–631, 632f
In situ intercalation method, for PLA/clay
nanocomposites preparation, 149–153
In situ nondestructive testing, 715–720
In situ sensing of thermal transitions and
thermochemical changes, 775–778
In situ toughening, 373, 374f
Incineration, 653–654
Inert purge gases, 117
Infrared (IR) camera, 49–50
with local heating source, 50–51
Injection molding (IM), 108, 252–253
of polymer nanocomposites, 214–216
polyolefin/clay nanocomposites, 216–219
Injection-molding compounding (IMC), 236–237
In-mold shear manipulation, 235–236
Innovation, definition of, 43–44
Innovative multifunctional carbon/carbon
composites, 44–59
carbon/carbon composites, 44–46
fabrication of composites, 47–49
heat-directed carbon/carbon composites, 46
applications of, 56–59
evaluation of, 49–51
experimental evaluation of, 53–56
results and discussion, 51–56
VGCF dispersion function determination, 51
via nanotechnology, 46–51
Innovative multifunctional sandwich composite
structure
application, 62–64
fabrication and mechanical testing, 61–62
motivations and aims, 59–60
as roofs in snowfall regions, 59–65
Inorganic dispersant, preparation of, 860
Inorganic fibers functions, 558
Insertion reaction mechanism, 676–677
Inspection and repair methods, 652
Instron Dynatup MiniTower, 790
“Intellectual” material, 697
“Intellectual” structures, 690
multifunctional electromagnetic wave absorbing
and fire-retardant materials, 697–700
problems in development of, 696–697
results and discussion, 700–705
strategy of synthesis of multifunctional materials,
691–696
Intercalated polymer nanocomposites, 148
Interface/interphase at nano- and micro length
scale, 911–914
Interfacial storage, 665–666
Interfiber fracture (IFF), 886, 888–889
Interfiber fracture strength, influence on, 886
Interlaminar fracture toughness, 370, 373, 377f,
393t, 397, 404
Interlayer, 146–147
Interleaf toughening concept, 387–400
Internal lubricants, 14
Interpenetrating network (IPN), 822–823, 932
Interpenetrating polymer networks (IPNs), 931–932
“Interphase”, 912
Intumescent fire retardants, 113–114
Intumescent flame retardant (IFR) systems, 73, 80–81
Intumescent flame-retardant APP, into natural fiberbased composites, 133
Ion conductivity vs. stiffness for SPE, 648f
Ionic conductivity vs. storage modulus, 631f
IPP/MMT nanocomposite granulates, 507–508
Irgamod 295, 307
Irganox B-1171, 307
Iron oxides, 680
Isocyanate chain extension, 312–313
Isophorone diisocyanate (IPDI), 589–590
J
Janus particles (JPs), 938
Japan Aerospace Exploration Agency (JAXA), 45
Java jute, 107Index 953
Joule effect, 422–423
Jute, 60–61, 107
Jute–poly(butylene succinate) (PBS) composites,
71–72
K
Kenaf, 107, 118f, 125–131
Kenaf fiber (KF)/polylactic acid (PLA) composites
fracture surface morphology, 95–97
mechanical properties of, 94–95
toughening of, 93–97
α-Keratin fibers, 103, 108–110
Keratins, 109–110
Kevlar, thermal properties of, 116t
Knudsen effect, 265–266
L
L,L-lactide, 149–153
Laminates, reflectivity and transparency of,
428–430
Langevin rubber elasticity, 916–917
Laser scanning system, 52
Laser-surgical training of surgeons
for larynx operations, 34–38
model material preparation for, 35–36
objectives, 34–35
suitability test, 36–38
Lead sulfides (PbS), 852
Leaf fibers, 108
Levoglucosan, 74–76, 115
Li–alloy reaction mechanism, 673–676
LiftMode EFM, 351
Light-emitting diode (LED) powered by Swerea
SICOMP laminated structural battery, 627f
Lightning strike protection materials (LSP), 642
Lightweight structural composites, 419
microwave-absorbing properties, 425–432
insertion between antennas, 427–428
reflectivity and transparency of laminates,
428–430
moisture influence on mechanical properties,
420–425
strength and stiffness properties, 423–425
Lignin, 74–76, 105, 107t, 115, 123
Lignocellulose fibers, 103, 105–106
Limiting oxygen index (LOI) analysis, 78t, 79,
118–119
Liner low-density polyethylene (LLDPE)-
toughened PLA nanocomposites, 171
Linum usitatissimum, 106
Liquid epoxy resins, 588–589
Liquid hydrogen, 45
Liquid molding, 397
Liquid-phase diisocyanates, 589–590
Lithium recycling, 654
Lithium storage mechanism, 665–666, 666f
covalent interaction, 665
heteroatom doping, 666
intercalation in graphite, 665
interfacial storage, 665–666
storage in 3D defects, 665
Lithium–ion batteries (LIBs), 622–623, 662, 664f
alloys, 670–673
germanium, 673
silicon, 670–672
tin, 672–673
carbon, 664–670
carbon nanofiber (CNF), 666–667
carbon nanotube (CNT), 667–670
lithium storage mechanism. See Lithium
storage mechanism
electrospun composite fiber anodes, challenges
of, 682–683
metal oxides, 673–682
conversion reaction mechanism, 677–682
insertion reaction mechanism, 676–677
Li–alloy reaction mechanism, 673–676
Localized impact damage, sensing of, 768–769
M
Macromolecular transformations, 304, 324–325
Macroscopic relaxation processes, 916
Magnesium hydroxide, 80–81, 113
Magnetic nanocomposite film, 853f
Magnetophoresis, 844
Maleated polyethylene (MAPE), 80–81
Maleated polyolefins, 71–72
Maleated polypropylene, 71–72, 74, 77, 79–81, 98
Maleic anhydride grafted polypropylene, 125
Maleic anhydride-grafted PP (MA-g-PP), 221–222
Manganese oxides, 680–681
Mark–Houwink’s equation, 306
Masterbatch, 149–153, 150t–152t
-based nanocomposites processing, 218–219
Materiomics, 903
features of nanocomposites relevant to
hierarchical composites, 908–925
effect of particle dispersion, 918–925
interface/interphase at nano- and micro length
scale, 911–914
reinforcing mechanisms at multiple length
scales, 914–917
hierarchical multifunctional composite structures,
investigating, 904–907954 Index
Materiomics (Continued)
nanoscale building blocks, 931–939
NSBB self-assembly, 937–939
POSS-based NSBBs, 933
POSS in polymers, 936–937
POSS properties, 935–936
POSS synthesis, 933–935
synthetic nanoscale building blocks (NSBBs)
preparation, 931–933
technologies for assembling hierarchical
composite superstructures, 925–931
commanded assembly, 930
self-assembly (SA), 926–930
“Matrix-dominated” composite properties, 624–625
Medulla, 109–110
Melamine (MEL), 73, 788
Melamine borate (MMB), 122–123
Melamine phosphate (MMP), 122–123
Melamine-formaldehyde, 82–83
Melamine–formaldehyde monomers, 788
Melamine–formaldehyde polymer (PMF), 788
Melamine–formaldehyde precondensate and
oligomers, 788
Melt compounding strategies, 218–219
Melt intercalation, 215, 219, 221–222, 226
for PLA/clay nanocomposites preparation,
155–161
Melt-state rheological property, 186–196
Mercaptan, microencapsulation of, 787–788
Mesta, 107
Metal matrix composites, 554
Metal oxides, 673–682
conversion reaction mechanism, 677–682
cobalt oxides, 678–680
iron oxides, 680
manganese oxides, 680–681
nickel oxide (NiO), 678
ZnB2O4, 681–682
insertion reaction mechanism, 676–677
Li–alloy reaction mechanism, 673–676
Metal-like alloys, 843, 844f
Metal–polymer nanocomposite, 843, 847
γ-Methacryloxypropyl trimethoxy silane, 71–72
Methyl ethyl ketone peroxide (PERMEK® N), 62
N-Methyl imidazole group, 854
4, 4′-Methylene-bis-phenylenediisocyanate (MDI),
312–313
1-Methylimidazole, 29
2-Methylimidazole, 804–805
Microcapsules, 598–600, 786–789, 798, 800, 807
Microcracking, 785
Microencapsulation
of epoxy, 788–789, 806–807
of mercaptan, 787–788
Microfibrils, 109–110
Microheterogeneous structures, 693
Microscale damage, sensing of, 763–767
Microwave-absorbing properties, 425–432
insertion between antennas, 427–428
reflectivity and transparency of laminates, 428–430
MMT modified with the octadecylammonium
cation (MMT-C18), 156–160
MMT modified with the trimethyloctadecylammonium cation (MMT-3C18),
157–160
Moisture content, of HDPE/WF composites, 90–91
Moisture influence on mechanical properties,
420–425
strength and stiffness properties, 423–425
Molecular dynamics (MD) simulation, 531–534
Molten saturated polyesters, chemical changes in,
305t
Montmorillonite (MMT), 147, 149–154
CDFA-MMT, 169
characteristics of, 145t
clay types with different organic modifiers,
157–160
crystal structure of, 146f
FA-MMT, 169
FHA-MMT, 169
MMT-3C18, 157–160
MMT-C18, 157–160
organically modified MMT (OMMT), 153–155
MRS extruder, 308
Multifunctional composites, 42–43. See also
Innovative multifunctional carbon/carbon
composites; Innovative multifunctional sandwich
composite structure
adding value to composites, 43f
definition of, 451
development of, 43
examples of innovative, 43–44
Multifunctional hierarchical nanocomposites
(MHNs), 492, 509–517
development flowchart for, 494f
with fuzzy fibers, 509–511
multiscale, 517–518
with nanobrushes, 511–513
with nanoforests, 513–517
Multifunctional interphases, in polymer composites,
338
experimental, 342–345
characterization of glass fibers and
composites, 343–345Index 955
surface nanostructuring of glass fibers,
342–343
results and discussion, 345–360
multifunctional composite interphases with
nanoreinforcements, 350–359
multifunctional surface coatings with
nanoreinforcements on glass fibers, 345–350
Multifunctional matrix, 624–625, 635–636
Multifunctional nanobiocomposites, of
biodegradable polylactide and nanoclay
barrier property, 180–186
biodegradation, 196–205
clays and clay-containing polymer
nanocomposite formation, 146–148
current challenges and future prospects, 205
mechanical properties, 162–171
dynamic mechanical analysis (DMA),
162–164
tensile properties, 165–171
melt-state rheological property, 186–196
processing and characterization, 148–162
in situ intercalation method, 149–153
melt intercalation, 155–161
solution intercalation, 153–155
thermal stability and flammability, 171–179
Multifunctional nanocomposites, applications of,
846–854
Multifunctional nanostructured materials, 842–843
Multifunctional polymer composites
KF/PLA composites toughening, 93–97
using natural fiber reinforcements, 71
WF/PE composites, 89–93
WF/PP composites, 74–89
Multifunctional products, 42
Multifunctional structures, 619
Multifunctionality, 3, 842–843
ceramic nanoparticles in thermoplastic
composites
breaking up of agglomerates, 16–18
experimental, 16
general effects of nanoparticles in
tribocompounds, 19–21
for high wear resistant and low friction sliding
elements, 14–23
hybrid bushings in diesel fuel injection pumps,
21–22
objectives, 14–15
results and discussion, 16–23
tensile and impact properties, 18–19
erosion stability of lightweight composite
components, 23–27
CF/PEEK erosion, 25–26
erosion-resistant hybrid structure, 27
experimental, 24–25
objectives, 23
polymer foils erosion, 26
results and discussion, 25–27
wear data, comparison of, 26–27
glass-fiber-reinforced composites (GFRCs), 9–14
experimental, 9–10
objectives, 9
results and discussion, 10–12
high-temperature polymer coatings
elastic modulus and adhesion to substrate, 32
objectives, 27–29
for piston skirts in combustion engines, 27–34
results and discussion, 31–34
sample preparation, 29–30
solubility and decomposition, 31–32
testing methods used, 30–31
tribological performance, 33–34
high-temperature-resistant thermoplastics
with electrical conductivity, 3–9
electrical properties, 6–7
experimental, 5
morphology, 6
objectives, 3–5
results and discussion, 6–9
tensile properties, 6
tribological properties, 8
laser-surgical training of surgeons
for larynx operations, 34–38
model material preparation for, 35–36
objectives, 34–35
suitability test, 36–38
microstructure of polymer composite with, 4f
properties, 4f
in reinforced polymers and composite structures, 3
Multiphoton photopolymerization, 930
Multiple length scales, reinforcing mechanisms at,
914–917
Multi-scale reinforcement of composites, systemic
mapping of, 453–459
bulk resin modification, 454–455
fiber–matrix interface modification, 456–457,
457f, 458f
interlaminar region modification, 457–459, 458f
Multi-state smart bias systems, 836
Multiwall carbon nanotubes (MWNTs), 3–6
on modulus, 6f
multimodal filler combination of, 8
volume conductivity of, 7f
Multiwalled carbon nanotubes (MWCNTs), 499,
511, 513–515, 514f, 886, 888–889956 Index
N
Nano-augmentation, 449
Nanobrush nanocomposites, 511
Nanoclay/polymer composites, 216
Nanoclay–nanoresin nanocomposites, 497–498,
507–508
Nanocoating, 573–574
optical properties of, 575–577
Nanocomposite coatings
erosive wear resistance of, 581–584
fretting wear resistance of, 579–581
optical properties of, 575–577
surface mechanical properties of, 577–579
Nanocomposite multifunctionality, demonstration
of, 476–483
Nanocomposites preparation, 877f
Nanocomposites with tailored optical properties,
842
functional and multifunctional nanostructured
materials, 842–843
multifunctional nanocomposites, applications of,
846–854
nanostructures in polymer-embedded form,
843–846
Nanocor, 217
Nano-design, 450
Nanodielectrics, 692
Nano-enabling, 477–479
Nano-engineering, 450
Nano-expanded graphite (nEG), 245
multifunctionality, applications exploring, 254–259
Nanofil SE 3000, 219
Nanofiller, 145–146, 338, 348–349, 359–360
Nanoforest, 492
multifunctional hierarchical nanocomposites
with, 513–517
NanofriKS®, 29–30
Nanoindentation, 577
Nanomer 1.28E, 175
Nanomer 1.34TCN, 175
Nano-modification, 451, 453f
Nanomodified polymers use
general effects of nanoparticles in
tribocompounds, 19–21
hybrid bushings in diesel fuel injection pumps,
21–22
Nanoparticle/polymer coatings, 573
Nanoparticle–nanoresin, 503–506
Nanoparticle–nanoresin nanocomposites, 496–497
Nanoparticles (NPs), 905, 921–922
Nanoparticles-reinforced CERASET preceramic
polymer matrix, 506f
Nanoplatelet applications, 232
Nanoplatelet-assisted mixing method, 864–873
characterization of ZrP-assisted ZnO
nanoparticle dispersion in epoxy, 864
incorporation of ZnO nanoparticles and ZrP
nanoplatelets in epoxy matrix, 864
multifunctional PMMA/ZnO nanocomposites
dispersed by ZrP nanoplatelets, 870–873
optical absorption, with controlled nanoparticle
dispersion, 864–868
photoluminescence property, with controlled
nanoparticle dispersion, 868–870
Nano-reinforced composites, electrical conductivity
of, 468–476
Nanoresin, definition of, 492
Nanoresin nanocomposites, 495–503
challenges, 495–496
nanomaterials for, 496–503
CNFs–nanoresin nanocomposites, 498
CNT/nanoparticle–nanoadhesive
nanocomposites, 500–501
CNTs–nanoresin nanocomposites, 499–500
GNSs–nanoresin nanocomposites, 501–502
nanoclay–nanoresin nanocomposites, 497–498
nanoparticle–nanoresin nanocomposites,
496–497
processing and manufacturing, 502–503
Nanoscale building blocks (NSBBs), 903, 905,
921–922, 926–927, 931–939
NSBB self-assembly, 937–939
POSS-based NSBBs, 933
POSS in polymers, 936–937
POSS properties, 935–936
POSS synthesis, 933–935
synthetic NSBBs preparation, 931–933
Nanostructures, in polymer-embedded form,
843–846
Nano-TA, 341–342, 345
Nanotechnology, definition of, 492–493
Nanotube fibers and skins for sensing, 773
Nanotube/fiber multiscale hybrid composites,
processing of, 755–763
direct hybridization processing approaches,
758–762
dispersion/infusion processing approaches,
756–758
Nanotube/nanosheet–nanoresin, 508–509
Natural ferromagnetic resonance (NFMR), 694
Natural fibers, 103–111
animal fibers, 108–111
classification of, 104f
fiber hybridization, 135–136Index 957
fire-retardant performance of, 122–136
fire retardants, 112–115
flammability. See Flammability
life cycle of biocomposites, 105f
plant fibers, 105–108
thermal decomposition mechanisms, 111–112
Natural weathering, on PP and PP/WF composites,
85–89
Neat EP resins, 823–827
NET-NDE technique, 483f
Ni/CE composite, 504–505
Nickel oxide (NiO), 678
Nickel titanium (NiTi), 728
Nitrile butadiene (NBR), 560
N-methyl-2-pyrrolidone (NMP), 29f
Nonasbestos low metallic fiber-reinforced phenolicbased composites (NALMFRP), 557–560
Nonasbestos organic brake materials,
multifunctionality of, 549
complexity involved in performance evaluation
of FMs, 562
complexity of composition of FMs, 560–561
friction materials (FMs), evolution in, 554
formulation of FMs as a multicriteria
optimization problem, 555–557
NAO FMs, classes of ingredients used in,
557–560
NAO FMS, complex influence of ingredients in,
562–570
amount and type of fibers, influence of,
568–569
amount and type of resins, influence of, 568
influence of newly developed resins, 569
size, shape, and amount of metallic contents,
influence of, 563–568
role in automotives, 551–553
tribological situations and role of friction and
wear, 551
Nonasbestos organic friction materials (NAO FMs)
classes of ingredients used in, 557–560
complex influence of ingredients in, 562–570
amount and type of fibers, influence of, 568–569
amount and type of resins, influence of, 568
influence of newly developed resins, 569
size, shape, and amount of metallic contents,
influence of, 563–568
Nondestructive inspection (NDI), 476, 885
Nondestructive testing (NDT), in situ, 715–720
Nonflammable polymeric materials, 697–699
Novel nanosized precipitated calcium carbonate
(NPCC) filler, 496–497
Nylon-6, 116t, 692–693
On
-Octadecylamine modified MMT (ODA-M), 167
Octadecylammonium cation (Nanocor), 156–157
Oligo-PCL (o-PCL), 156–157, 164
One-way shape memory effect, 731–732, 732f
OOF modeling, 225–226
Open cell potential (OCP), 625–626
Optical filters, 852
Optical sensors, 849
Optical strain measurements, 284
Order–disorder transition (ODT), 928
OREC (organically modified rectorite), 150t–152t, 170
Organic fibers functions, 559
Organically modified MMT (OMMT), 153–155,
169, 182
Organoclay, 150t–152t, 165–167, 226
Organo-montmorillonite (MMT) clay, 507–508
Organophilic clays, 833
Ownership issues, 652–655
durability, 655
inspection and repair methods, 652
recycling
of carbon fibers, 652–653
of connectors, 654
of lithium, 654
of polymer electrolytes, 653
safety, 654–655
Oxazines, 310
Oxygen gas permeabilities of the PLA/OMLS
hybrid films, 182t
Oxygen index (OI), 700
P
P-802 nanoMax, 219
Painter–Coleman association model, 936–937
Palladium acetylacetonate, 847
PAN (polyacrylonitrile) fibers functions, 559
Particle dispersion, effect of, 918–925
Peak heat release rate (pk-HRR), 122–124, 129–131
Pectin, 105
PEG stearylamine modified MMT (PGS-M), 167
PEK-C, 373–376, 381, 383, 401
molecular structure of, 374f
photomicrographs of, 375f
SEM images of, 401f
Pencil hardness, 577
Pentaerythritol (PER), 73, 80–81
Percolation threshold (PT), 248–249, 252–253, 469
Performance defining attributes (PDAs), 560
Petroleum source-derived biodegradable polymers,
144958 Index
Phenolic resins, 557–558, 569
Phosphorus-containing fire retardants, 113
Photoluminescence property, with controlled
nanoparticle dispersion, 868–870
Piezoresistive mechanical/electrical coupling
behavior, 754
Piezoresistivity, 754
Piston skirts in combustion engines, hightemperature polymer coatings for, 27–34
Plant fibers, 103, 105–108
-based composites, 122–131
chemical composition, 105–108
and flammability, 115
structure, 105
Plasticity index, 577
Plate-on-ring (POR) sliding wear test rig, 30–31
Platinum acetylacetonate, 847
Poly(alkylene terephthalate) (PAT)-based
composites
chemical reactions in molten PATS, 304–313
blocking of terminal functional groups, 308–309
chain extension, 309–313
controlled degradation, 307–308
degradation and stabilization of polyester
macromolecules, 305–307
future trends, 326–327
interphase reactions and their use in technology
of short fiber-reinforced polyester composites,
319–325
polyester nanocomposites, 325–326
reactive compatibilization in technology of, 302
reactive compounding technology of high impact
strength polyester blends, 314–319
transreactions in polyester blends, 313–314
Poly(butyl methacrylate) (PBMA), 700
Poly(butylene succinate) (PBS) biocomposites,
71–72, 132, 257–258
Poly(dl-lactic-co-glycolic acid) (PLGA), 932
Poly(ethylene glycol) (PEG), 125, 149–153, 164,
167, 932
Poly(ethylene glycol) diglycidyl ether (PEGDGE),
635–638
Poly(ethylene terephthalate) (PET), 268, 303
chemical degradation of, 307, 308f
controlled glycolysis of, 308
factors influencing catastrophic degradation of,
320t
foaming of, 275, 279–280, 296, 307, 316–317
impact strength modifier for, 316–317
reaction of integration between 1, 4-PBO and
carboxyl end groups of, 310f
PET/PP blends, 317
Poly(methyl methacrylate) (PMMA), 666–667,
669–672, 676–677, 862–863
characterization of ZnO nanoparticle dispersion
directly mixed in, 861–862
optical property of, by direct solution mixing,
862–863
solution mixing of ZnO nanoparticles with,
860–861
thermal stability of, by direct solution mixing,
863
thermogravitational analysis (TGA) of, 863
UV–vis spectra of, 862–863
ZnO nanoparticle dispersion directly mixed in,
861–862
ZrP nanoplatelets in, 858–859
Poly(vinyl alcohol) (PVA), 528, 534
tensile properties of, 537f
Poly(vinyl pyrrolidone) (PVP) matrix, 845f
Poly(ε-caprolactone) (PCL), 183, 827–828, 932
Polyacrylonitril (PAN)-based fibers, 559, 628–630
Polyacrylonitrile (PAN) nanofibers, 666–667
Polyamide 6 (PA 6) nanocomposites, 215
Polyamide 66 (PA66), 15–16
Charpy impact toughness of, 19, 20f
SEM of, 17f
sliding process of, 21f
TEM of, 18f
Polyamide-imide (PAI) resin, 27–29, 29f, 31
Polycondensation polymers, 313–314, 327
Polyepoxide-based CEs, 311
Polyester
thermal degradation of, 305
thermal properties of, 116t
unsaturated, 62
Polyester blends
high impact strength, 314–319
transreactions in, 313–314
Polyester melt
macromolecular breakdown in, 307
macromolecular transformations in, 324
Polyester nanocomposites, 325–326
Polyester thermoplastic elastomers (TPEE), 303,
313, 317
Polyester/polyphenylene oxide (PPO) blends, 317
Polyetheretherketone (PEEK), 15–16, 367–368
erosion of, 25–26
SEM of, 17f
tensile modulus of, 19f
Polyethersulfone (PES), 267–268
Polyethylene (PE), 71–72, 267–268, 700
Polyethylene glycol (PEG), 35–36, 125, 149–153,
157, 167, 831–832, 932Index 959
Polyethylene terephtalate (PET) foam, 263, 267–
268, 275
Polyethylene–octane elastomer (POE), 496–497
Polyethylenimine (PEI), 267–268
Polyhydroxybutyrate-co-valerate (PHBV), 183
Polylactic acid, 123
Polylactic acid/kenaf fiber (KF) composites, 93–97
Polylactide (PLA), 144–145, 932
PLA/qC13(OH)-Mica4, 197–198
PLA/qC16SAP4, 197–198
PLA-710, 167
processing techniques and structures of claycontaining nanobicomposites of, 150t–152t
properties, 145t
Poly-l-lactic acid (PLLA), 666–667
Polymer electrolytes, 623–624, 647
recycling of, 653
Polymer foam cores, multifunctionality of, 264–276
fire, smoke, and toxicity (FST), 294–295
lightweight nature, 264–265
low resin uptake, 268
mechanical properties, 269–276
polyethylene terephtalate (PET) foam, 275
polymethacrylimide (PMI) foam, 273–275
polyvinyl chloride (PVC) foam, 270–273
tuned thermal, acoustic, and dielectric properties,
265–267
Polymer foils, erosion of, 26
Polymer infiltration and pyrolysis (PIP) process, 49
Polymer interleaf approach, 401–405
Polymer nanocomposite injection-molding
compounder (PNC-IMC), 236–237, 238f
Polymer nanocomposites (PNCs), 146–147, 213–
214, 219–220, 238f, 495–496, 858, 909–910,
915–916
injection molding of, 214–216
Polymer scaffolds, 918
Polymer-embedded form, nanostructures in,
843–846
Polymer-embedded nanoscopic metal particles, 846
Polymer-embedded semiconductors, 852
Polymer-like formulations, 843, 844f
Polymer-supported graphene, 842–843, 843f
Polymethacrylimide (PMI) foam, 273–275
Polyolefin/clay nanocomposites injection-molding
advances in, 235–238
injection-molding compounding (IMC),
236–237
in-mold shear manipulation, 235–236
characterization of, 219–225
crystallization behavior, 222–224
morphology development, 221–222
nanoparticle exfoliation and dispersion,
219–220
shrinkage and warpage, 224–225
melt compounding strategies, 218–219
performance, 225–233
fracture behavior, 228–229
impact behavior, 226–228
injection-molding processing conditions on,
233–235
surface properties and triboperformance,
229–232
tensile and flexural behavior, 225–226
thermal conductivity performance, 233
thermal stability and flammability
performance, 232–233
triaxial impact tests, 226–227
uniaxial tensile and biaxial flexural impact
tests, 227–228
routes for, 216–219
PolyOne, 217
Polyphenylenesulfide (PPS) composite, 3–6, 6f
mechanical and functional values of, 9f
volume conductivity of, 7f
Polyphenylsulfone (PPSU), 267–268
Polypropylene (PP), 71, 108, 145, 215, 218, 221,
229, 236, 267–268, 700
-based nanocomposites, 496–497
kenaf flammability, 125–131
thermal properties of, 116t
wool flammability, 133–135
Polypropylene grafted maleic anhydride (PP-gMA), 254
Polypyrrole (PPy), 638
Polystyrene (PS), 71, 145, 846f, 847
Polystyrene-embedded silver nanoparticles,
thermochromism of, 849f
Polystyrene–organoclay nanocomposites, 215
Polytetrafluoroethylene (PTFE), 14, 631–633, 716
Polythiol, 787–788
Polyurethane (PU) foams, 132–133, 263, 267–268
Polyvinyl chloride (PVC), 36, 263, 270–273
Polyvinyl chloride, 36, 71
thermal properties of, 116t
Polyvinylpyrrolidone (PVP), 676
Porous ferroelectric and magnetic media, 694–695
POSS (polyhedral silsesquioxane), 905, 932
-based NSBBs, 933
in polymers, 936–937
properties, 935–936
synthesis, 933–935
Potassium titanate whiskers functions, 559
Potential of mean force (PMF), 920–921960 Index
Preform-based toughening technology, 397–400,
414
Pressure fade, 555
Printed circuit boards (PCB), 267
Pristine ZrP nanoplatelets, 860, 861f
Properties of nanocomposites, 877–884
electrical properties, 878–881
mechanical properties, 877–878
sensing, 881–884
Protein fibers, 108, 110
Proteins, 108, 905–906
Pseudoelasticity, 732
Pyromelliticdianhydride (PMDA), 311
Q
Quantum yield (QY), 854
R
Radar cross section (RCS), 420, 425
Radio controlled model car demonstrator, 644–645
Ragone plot, 621f
Raman microscopy study, 794–796, 795f
Ramie-fiber-reinforced poly(lactic acid)
biocomposites, 77–78
Raw cocoon silk, 110, 110f
Reactive compounding technology, 314–319
Reactive extrusion (RE), 304
Reactive fire retardants, 112
Recovery stress, 824–826, 833–834
Recycling
of carbon fibers, 652–653
of connectors, 654
of lithium, 654
of polymer electrolytes, 653
Reference state bias, 916–917
Reflectivity and transparency of laminates, 428–430
Reflectivity curves, 428, 429f, 430, 431f
Reichert-Jung Ultracut-E microtome, 860–861
Reinforcement/electrode development, 634–635
Representative volume element (RVE), 915–916
Resin
BMI resins, 381, 390–391, 391t
epoxy resins, 588–589, 598–600, 611–612
influence of, in nonasbestos organic friction
materials, 568–569
in NAO FMs, 568–569
uptake, 268, 269f, 269t
Resin transfer molding (RTM) composites, 9, 10f,
387–400, 756, 758
RTMable BMI matrix composites, 390–397
RTMable epoxy matrix composites, 387–390
Retractive force, 917
Reversible addition-fragmentation chain transfer
polymerization (RAFT), 931–932
Rheometric dynamic analyzer (RDAII) instrument,
179
Riggleman model, 915
Rigorac™, 62
Ring-closing metathesis polymerization (RCM),
931–932
Ring-expansion metathesis polymerization
(REMP), 931–932
Ring-opening metathesis polymerization (ROMP),
931–932
Rouse model, 916
Rubber elasticity, Langevin function-based theory
of, 916–917
Rubbers, 315, 560, 849–850
EP rubber, 827
S
S80 Bootlid demonstrator, 645–646
Sandwich bending tests, 278–279
Sandwich GFRP/jute composites
application, as roofs in snowfall regions, 62–64
fabrication and mechanical testing of, 61–62
motivations and aims, 59–60
specific impact load–displacement curves, 62, 63f
Sandwich structures, 262–263, 263f, 280f
Saponite modified with the
hexadecyltributylphosphonium cation (SAP-O),
157–160
Scanning acoustic microscope (SAM), 790–791
Scanning electron microscopy (SEM), 506, 580,
798, 829f
charge contrast imaging (CCI) in, 6
of MWNT/PPS composite, 7f
of PA66 and PEEK nanocomposites, 17f
Schulamid 6 MV 14 (Polyamide 66), 16
Secondary brakes, 553
Selective laser sintering (SLS), 925
Self-assembly, of NSBB, 903–904, 921, 926–930,
937–939
Self-healing, 589–590, 609–610, 829–830
Self-healing epoxy composites
fracture surfaces of, 610–611, 611f
fracture toughness of, 609–610
Self-healing woven glass/epoxy composites, 785
double-capsule strategy, 787–804
characterization of self-healing capability,
789–804
microencapsulation of epoxy, 788–789
microencapsulation of mercaptan, 787–788
single capsule strategy, 804–818Index 961
characterization of self-healing capability,
807–818
microencapsulation of epoxy, 806–807
preparation of imidazole latent hardener,
805–806
Self-lubricating, 604
Self-sensing, 736–737
Self-sensing carbon nanotube composites. See
Carbon nanotube composites
Semiconductors, polymer-embedded, 852
Semi-ductile erosion mode, 25
Semi-passive functionalities, 452
Sensing
carbon nanotube-based composites for, 763–778
damage in joints, sensing of, 770–773
in situ sensing of thermal transitions and
thermochemical changes, 775–778
localized impact damage, sensing of, 768–769
microscale damage, sensing of, 763–767
nanotube fibers and skins for sensing, 773
with carbon nanoparticle-modified matrix, 892–900
characterization of center wing box
demonstrator via electric sensing, 898–899
damage mapping, 895–898
Sensor, 773
Separator development, 635
Sericin, 110
Service brakes, 553
SFM modified with the N-(cocoalkyl)-N, N-[bis(2-
hydroxyethyl)- N-ethylammonium cation (SFMO), 157–160
Shape fixity ratio, 823–826
Shape memory (SM) properties, 823
Shape memory alloy hybrid composite (SMAHC),
728
Shape memory alloys (SMA), 727, 833–834, 836
-based composites, 709
characterization of, 733–738
modeling of, 733–738
overview and important properties, 731–733
phenomenological material model for, 738–740
Shape memory epoxy (SMEP), 822
applications, 836
composites, 831–836
fiber- and fabric-reinforced, 833–836
particulate-filled, 831–833
formulations, 823–831
EP rubber, 827
EP thermoplastic, 827–830
EP thermoset, 830–831
neat EPs, 823–827
outlook and future trends, 837–838
Shape memory polymers (SMPs), 822–823
Shape programming procedure, 833–834
Shape recovery ratio, 823
Shape-memory research, 692–693
Shear controlled orientation in injection-molding
(SCORIM), 217, 222–224, 235–236, 237f
Shear lag phenomenon, 744
Shear properties of foam core materials, 276–279
block shear test, 277–278
sandwich bending tests, 278–279
Short carbon fibers (SCFs), 5–6, 14
on modulus, 6f
multimodal filler combination of, 8
volume conductivity of, 7f
Short fiber-reinforced polyester composites
interphase reactions and their use in, 319–325
Short-fiber-reinforced electrodes, 625–626
Shrinking, 224–225
Silicate layers dispersion, in PLA matrix, 167
Silicium dioxide (SiO2), 9–10, 11f, 12f
Silicon, 670–672
Silicone rubber (SR), 9–10, 11f, 12f
Silk, 110, 117, 132
thermal properties of, 116t
Silk fiber, 110, 110f
Silkworm cocoon silk, 110
Silsesquioxane, 933–934
Silver acetylacetonate, 847
Silver nanoparticles, 847–848
Silver–polymer alloys, 843
Silver–polystyrene nanocomposites, microstructure
of, 848f
Single-walled carbon nanotubes (SWCNTs), 409,
496, 499–500, 502–503, 532–534
Sliding compound (SC), 30
Small-angle X-ray scattering (SAXS), 149
Smart textiles, 692–693
Società Metropolitana Acque Torino (SMAT),
201
Sodium styrene–maleic anhydride copolymer
(SMANa), 787–789
Soil burial, 89–92
Sol–gel technique, 573–574
Solid particle erosion process, 23
Solid polymer electrolyte (SPE), 625–628, 632f
ion conductivity vs. stiffness for, 648f
Solution-intercalation method, 153–155
Solvent-free shear mixing technique, 757–758
Spar tip displacement, 898–899, 899f
Specific electrical volume resistivity, 442
Spectrum analyzer model, 425–426
State-of-the-art polymer materials, 908–909962 Index
Steady shear rheological parameters, 192
Steel fibers reinforcement, 440, 444–445
Stereolithography, 925
Sternstein’s theory of nanocomposite
reinforcement, 917
Stock root, 107
Stokes–Einstein equation, 920
STORAGE consortium, 633, 638
Storage modulus, 828, 829f
STORAGE project


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions
رابط مباشر لتنزيل كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Multifunctionality of Polymer Composites - Challenges and New Solutions
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب POLYMER MATRIX COMPOSITES VOLUME 3
» كتاب An Introduction to Polymer-Matrix Composites
» كتاب Polymer Composites From Nano to Macro-Scale
» كتاب Manufacturing and Novel - Applications of Multilayer Polymer Films
» كتاب Polymer Tribology

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: