Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Polymer Composites From Nano to Macro-Scale السبت 15 مايو 2021, 2:29 am | |
|
أخوانى فى الله أحضرت لكم كتاب Polymer Composites From Nano to Macro-Scale Klaus Friedrich Stoyko Fakirov Zhong Zhang
و المحتوى كما يلي :
Contents Preface Editors Biographies xv xix Part I Nanocomposites: Structure and Properties 1 Chapter 1 Carbon Nanotube-Reinforced Polymers: a State of the Art Review 3 1 Introduction 3 2 General Problems in Nanocomposite Technology 4 3 Experimental 6 3.1 Manufacturingof Multiple-Wall Carbon Nanotubes 6 3.2 Treatment of Carbon Nanotubes 7 3.3 Matrix Polymers 7 3.4 Electron Microscopy 7 3.5 Dynamic-Mechanical Thermal Analysis 8 4 Results 8 4.1 Comparison of the Multiple-Wall Carbon Nanotubes Studied 8 4.2 Purification 10 4.3 CNWEpoxy Composites: Dispersion, Matrix Bonding,and Functionalization 11 4.3.1 Dispersion 11 4.3.2 Nanotube-Matrix Interaction 13 4.3.3 Functionalization 13 4.4 Microscopy 15 4.4.1 Matrix Bonding to the Nanotubes 15 4.4.2 Crack Bridgingand Telescopic Pull-Outs 16 4.5 Thermal and Mechanical Properties 17 4.6 Electrical Properties 18 5 Conclusions 21 6 Acknowledgements 2 1 7 References 22vi Contents Chapter 2 Application of Non-Layered Nanoparticles in Polymer Modification 1 Introduction 2 Surface Treatment and Compounding 2.1 Raw Materials 2.2 Pregraftingof the Nanoparticlesby Irradiation 2.3 Characterizationof the Irradiation Products 2.4 Preparation of PP-Based Nanocomposites and Their Characterization 2.5 Preparation of Epoxy-Based Nanocomposites and Their Characterization 3 Thermoplastic Systems 3.1 Effect of Irradiation Grafting Polymerization on the Nanoparticles 3.2 Tensile Properties 3.3 Fractography 4 Thermosetting Systems 4.1 Interfacial Interactions in the Composites 4.2 Curing Behavior 4.3 Friction and Wear Performance 5 Conclusions 6 Acknowledgements 7 References Chapter3 Reinforcement of Thermosetting Polymers by the Incorporationof Micro- and Nanoparticles 1 Introduction 2 Manufacturingof ThermosettingNanocomposites 3 Propertiesof Nanocomposites 3.1 Stress-Strain Behavior 3.2 Impact Behavior 3.3 Stiffness-ImpactEnergy Relationship 3.4 Dynamic Mechanical Properties 3.5 Wear Performance 4 Acknowledgements 5 References Chapter 4 Polyimides Reinforced by a Sol-Gel Derived OrganosiliconNanophase: Synthesis and Structure-Property Relationships 1 Nanocomposites Based on Flexible-Chain Polymers 2 Nanocomposites Based on Semi-Rigid Chain Polymers (Polyimides)Contents 2.1 In Situ Generation of an Organosilicon Nanophase 2.2 Structural Characterization 2.3 Water Uptake 2.4 ThermomechanicalPerformance 2.5 Dielectric Properties 3 Conclusions 4 Acknowledgements 5 References Chapter 5 Layered SilicateIRubberNanocomposites via Latex and Solution Intercalations 1 Concept of Nanoreinforcement 2 Production of RubberIClay Nanocomposites 2.1 Latex Intercalation 2.1.1 Nanocomposites from Rubber Latex 2.1.2 Nanocomposites from Latex Blends 2.1.3 Radiation-Vulcanized NR Latex 2.2 Solvent-Assisted Intercalation 3 Future Issues 4 Acknowledgements 5 References Chapter 6 Property Improvements of an Epoxy Resin by Nanosilica Particle Reinforcement 1 Introductionand State of the Art 2 Preparation and Characterization Techniques 2.1 Basic Material Components 2.2 Preparation of Nanosilica-Filled Epoxy Composites 2.3 Structuraland Mechanical Analysis 2.3.1 Microstructure 2.3.2 Viscosity Studiesof the Unfilled and Filled Resin 2.3.3 Mechanical Properties 2.3.4 Tribological Properties 2.3.5 Failure Analysis 3 Microstructuraland Rheological Details 3.1 Particle Distribution 3.2 Viscosity 4 Mechanical Properties 4.1 Three-Point Bending 4.2 Microhardness 4.3 FractureToughness 4.4 Tribological Properties vii 67 68 69 70 72 73 74 74 77 77 78 79 79 8 1 84 87 8 8 88 89 91 9 1 94 94 94 95 95 95 95 96 96 96 96 98 99 99 99 101 101 5 Conclusions 103viii 6 Acknowledgements 7 References Contents Part I1 Special CharacterizationMethods and Modeling 107 Chapter 7 Micro-ScratchTesting and Finite Element Simulation of Wear Mechanisms of Polymer Composites 109 1 Introduction 109 2 Micro-Scratch Testing 110 3 The RepresentativeWear Mechanisms 113 4 Wear Considerationsby Finite Element Contact Analysis 114 4.1 Finite Element Macromicro-Contact Models 115 4.2 Normal Fiber Orientation 116 4.3 Parallel Fiber Orientation 118 4.4 Anti-Parallel Fiber Orientation 120 5 Finite Element Simulationof the FiberMatrix Debonding 121 5.1 DebondingModel and Interface Elements 122 5.1.1 Interface Elements 122 5.1.2 Conditions of Debonding 123 5.1.3 Unloading Considerations 125 5.1.4 The Debonding Algorithm 125 5.2 Calculations for N-Oriented Carbon Fibers in a PEEK Matrix 126 6 Conclusions 129 7 Acknowledgements 130 8 References 130 Chapter 8 Determinationof the Interface Strength of Polymer-Polymer Joints by a Curved Interface Tensile Test 1 Introduction 2 Curved Interface TensileTest 3 Stress Calculationby Finite-Element Analysis 3.1 Flat Interface 3.2 Curved Interface 4 Experimental Observations 4.1 Materials and Specimen Preparation 4.2 Tensile Tests and Strain Estimation 4.3 Determinationof the Adhesion Strength 5 Conclusionsand Outlook 6 ReferencesContents ix Chapter 9 Manufacturing and Characterization of Microfibrillar Reinforced Composites from Polymer Blends 1 Introduction 2 Materials, Processing,and Characterization Techniques 3 Structure and Propertiesof MFCs 3.1 Structure and Propertiesof MFCs Based on PETPP Blends 3.1.1 Morphology 3.1.2 Mechanical Properties of the Drawn Blends After Processing 3.2 Structure and Propertiesof MFCs Based on LCPIPPE Blends 3.2.1 Morphology 3.2.2 Mechanical Propertiesof Injection Molded LCPPPE Blends with MFC Structure 4 Conclusions 5 Acknowledgements 6 References Chapter 10 Tribological Characteristicsof Micro- and Nanoparticle Filled Polymer Composites 1 Introduction 2 Influenceof Particle Size: from Micro- to Nanometer 3 Influence of the NanoparticleVolume Content 4 Particle-Filled Polytetrafluoroethylene 5 Integrationof Inorganic Particles With Traditional Fillers 5.1 Inorganic Particles and Other Fillers 5.2 Combinative Effect of Nanoparticles and Short Carbon Fibers 6 Conclusion 7 Acknowledgement 8 References Part I11 Macrocomposites: Processing and Application Chapter 11 Productionof ThermoplasticTowpregs and Towpreg-Based Composites 1 Introduction 2 Raw Materials 3 Production of Towpregs 3.1 Process and Equipment DescriptionContents 3.2 RelationshipsBetween Final Properties and Processing Conditions 3.2.1 ParametersAffecting the Polymer Powder Deposition 3.2.2 Influence of the Processing Conditions on the Final Composite Properties 4 Production of Towpreg-Based Composites 4.1 CompressionMolding 4.1.1 ProcessDescription 4.1.2 Molding Conditions 4.2 Process Modeling 4.2.1 IsothermalConsolidation 4.2.2 Non-Isothermal Consolidation 4.2.3 Validation of the Consolidation Model 4.3 Pultrusion 4.3.1 ProcessDescription 4.3.2 Processing Conditions 4.3.3 Process Modeling 4.4 Filament Winding 4.4.1 ProcessDescription 4.4.2 Processing Conditions 4.4.3 RelationshipsBetween Final Properties and Processing Conditions 4.5 Long Fiber-Reinforced Composite Stamping 4.5.1 Process Description 4.5.2 Processing Conditions 5 Composite Properties 5.1 Mechanical Propertiesof Continuous Fiber-Reinforced Composites 5.2 Mechanical Propertiesof Discontinuous Fiber-Reinforced Composites 6 Conclusions 7 Acknowledgements 8 References Chapter 12 Manufacturingof Tailored Reinforcement for Liquid Composite Molding Processes 1 Introduction 2 Pre-selection of Sewing Thread 2.1 Selection Criteria 2.2 Polyester Thread in Global Preform Sewing 3 TailoredReinforcements 4 Stitching Parameters and Their Influence on the Fiber-Reinforced Polymer CompositesContents xi 4.1 Machine Parameters 4.1.1 Thread Tension 4.1.2 Presser Foot Pressure 4.2 StitchingPattern 5 Quality Secured Preforming 5.1 Macro Preform Quality 5.2 Micro Preform Quality 5.3 Fiber Disturbance at Seams 6 Liquid CompositeMolding Process for Net-Shape Preforms 6.1 Preform LCM Process Chain 6.2 Thermal Behavior of Seam in FRPC 7 Quality Management 8 Conclusions 9 Acknowledgements 10 References Chapter 13 Deconsolidationand Reconsolidationof ThermoplasticComposites During Processing 233 1 Introduction 2 Experimental Observations 2.1 Void Growth 2.2 Migration of Voids 2.3 SqueezedFlow of Resin During Reconsolidation 3 MechanisticModel of the Void Growth 3.1 Discussion of the Mechanism 3.2 Void-Growth Model 3.3 Theoretical Predictions 4 Thermalh4echanistic Models of Migration of Voids 4.1 Discussion of Mechanisms 4.2 Thermal Analysis 4.3 Void Closure 4.4 Squeezed Creep Flow of Resin 5 Conclusions 6 Acknowledgement 7 References Chapter 14 Long Fiber-Reinforced Thermoplastic Composites in Automotive Applications 1 Introduction 2 Long Glass Fiber-Reinforced Polypropylene with Mineral Fillers 3 Long Fiber-Reinforced Polyamide 66 with Minimized Water Absorption 259xii Contents 4 Long Fiber-Reinforced Thermoplastic Styrene Resins for Car Interior Applications 5 Conclusions 6 References Part IV Mechanical Performance of Macrocomposites Chapter 15 Deformation Mechanisms in Knitted Fabric Composites 1 Introduction 2 Knitted Fabrics 3 Material Characterization and Deformation Behavior 3.1 Raw Materials 3.2 Material Characterization 3.2.1 TensileTesting 3.2.2 V-Bending 3.2.3 Dome Forming 3.2.4 Cup Forming 4 Experimental Results and Grid Strain Analysis 4.1 TensileTesting 4.2 V-bending 4.3 Dome Forming 4.4 Cup Forming 5 Textile CompositeDeformation Mechanisms 5.1 Prepreg Flow Mechanisms 5.2 Macro-Level Fabric Deformation Modes 5.3 Micro-Level Fabric Deformation Modes 5.4 Textile Fabric Force-Displacement Curve 5.5 Experimental Force-Displacement Curves 6 Modeling the Manufactureof the Reinforcement Architecture 6.1 Model Set-Up 6.2 Model Input: Knitting Machine Parameters 6.3 Model Input: Material Property Parameters 6.4 Model Input: Non-Physical Parameters 6.5 Simulatingthe Mechanics of the Knitting Process 7 ConcludingRemarks 8 Acknowledgements 9 References Chapter 16 Impact Damage in Composite Laminates 1 Introduction 2 Deformation and Energy Release Rate of Axisymmetric Plates with Multiple Delaminations 29 1Contents xiii 2.1 Axisymmetric Plate with Multiple Delaminations of the Same Size 29 1 2.2 A Delamination is Larger or Smallerthan the Rest 293 2.3 Effect of geometrical nonlinearity 2.4 Finite Element Analysis 2.5 Some Derived Relationships Effect of the Stacking Sequence Simulationof Delamination Growth in Composite Laminates Conclusion References Chapter 17 Discontinuous Basalt Fiber-Reinforced Hybrid Composites 1 Introduction 2 Basalt Fibers 2.1 Characteristics, Applications 2.2 Production and Propertiesof Melt-Blown Basalt Fibers 3 Hybrid Composites 3.1 Concept and Realization 3.2 Property Prediction 3.3 Applications 4 ThermoplasticHybrid Composites 4.1 Polypropylenewith Hybrid Reinforcement Containing Basalt Fibers 4.2 Basalt Fiber-Reinforced Polymer Blends 5 Thermoset Hybrid Composites 5.1 Basalt Fiber Mat-Reinforced Hybrid Thermosets 5.2 Hybrid Fiber Mat-Reinforced Hybrid Thermosets 6 Conclusionsand Outlook 7 Acknowledgement 8 References Chapter 18 Accelerated Testing Methodology for Polymer Composite Durability 1 Introduction 2 Prediction Procedureof Fatigue Strength 3 Some Experimental Details and RelationshipsObtained 330 3.1 Experimental Procedure 330 3.2 Failure Mechanism 331 3.3 Master Curve for the CSR Strength 333 3.4 Master Curve for Creep Strength 334xiv Contents 3.5 Master Curve for the Fatigue Strength at Zero Stress Ratio 3.6 Prediction of Fatigue Strength for Arbitrary Stress Ratios 4 Applicabilityof the Prediction Method 5 Conclusion 6 References ContributingAuthors List of Acknowledgements Author Index Subject Index Subject Index Absoption energy 256,265,317 water (moisture uptake)69,259,260, 316 Adhesion47,57,161,170,173,175,191 filler (fiber)-matrix 26, 38, 77, 101, 207,210,260,309-312,316 interfacial 17, 18,26,32 strength 133,136-138,140,144-146 Aging (Weathering)84,94 Analysis acoustic emission 140 debonding 121, 122 dynamic-mechanical thermal (DMTA) 8,20,56,94,260,261 finite element 125,126,137,296-298, 305 grid strain (GSA) 266,269-272 seam 226 stress 133, 136, 137 thermogravimetric (TGA) 28,70 Aspect ratio 3-5, 11,54,63-66,77, 80, 81.86, 156, 157, 160 Biodegradability 91,310 Bond chemical 173 covalent 14-17,36 hydrogen 36,259 ionic 14 Carbon nanotube (CNT) arc-grown 4,8-11 catalyticallygrown 4,8-11,21 dispersion of 7 functionalization of 7, 13, 14, 17 multiple-wall 4,6, 8,9, 13, 16 purification of 7, 10 single-wall 5-7, 16 Catalyst 7,9, 11,94,99-103 Clay 77-79, 88,91,92 organo- 87 smectite93 Coalescence 156, 157 of voids 240,241 Coefficient diffusion 69 friction 38-41,57,96,102,103, 115, 122,124,126,130,172,174,175, 179-181,284 heat transfer 247 surfacetension 243,250 thermal expansion 64,92,93, 161 viscosity 252 Compatibility (Compatibilizer)15 1- 158, 161,162,319 Compliance 136,142,209 Compounding latex 79,80, 81, 88 melt 87,88 Conductivity electrical, 3,21 thermal, 21364 Polymer Composites:from Nano- to Macroscale Consolidationof towpregs 203 isothermal 195 non-isothermal 195 pressure 199 Continuous (long) fibers 189, 194,206, 207,211,255,260,266,268 aramid 256 carbon 190,218,219,226,256 glass 190,218,219,256-260 natural 256 polyester 219,220,228 Delamination 289-292,297,299,332 growth of, simulation 304 multiple289,291,293-295,297,300 Depth wear rate 176, 177 Dielectricpermittivity, 67,72-74 Differential scanning calorimetry (DSC) 29,94,228 Dispersion extent of 88 in polymer melt 79 in rubber 87 in solvent 79 in water 79 nanometer-scale 77 uniform 96 End-groups, 67 Energy activation 333,334 Charpy impact 315 elastic 239,240 Gibbs' free, of mixing 78 impact 152,293 release rateof 294,296-299,301-306 strain 124 Entanglement 26,32 Entropy 78 Equation Arrhenius 333,334 Carman-Kozeni 196 Darcy 196 energy 197 Kelvin-Voigt 242 Kissinger 38 rule of mixture type 109, 117 Exfoliation (Delamination) 63, 66, 77, 78,82, 83, 85,88,92 Fibrillization 150,313 Filler (Reinforcement) 172,257 "active" 78 aramid fibers 310,315,317 bentonite 80,85,86 carbon black 78,87 ceramic 171,3lO-314,319,324 glass sphere 171 graphite 103, 176, 177, 181 fluorohectorite80-83,85 "inactive", inert 78,80 inorganic, mineral 170-175,257,258, 261 network 85, 170 shortbasalt fibers 309,311,319-324 short carbon fibers 103, 174-182, 215,309,311 short glass fibers 175,215,255,256, 309,311,313-317,324 silica particle 171 Fullerene 3,6 Gas-barrier properties 63,67,87,91,92Subject Index Hybrid composite 257,309,314-317 thermoplastic 317,318,320 thermoset 321-324 Hybrid fiber mat 323 Hydrophilicity 78 Hydrophobicity 78 Impregnation 192 Intercalation 25,63,78-80,83,92 degree of 82 latex 78,79,88 melt 79, 87,88 solution 78,79, 87.88 Isotropization 150, 157 Knitted fabric reinforcement 265, 266, 284 warp knit 267,270 weft knit 267,269,270,279 Latex 85 blend 81-83 coagulation of 82 polyurethane 82 rubber 79,80 Loss chain flexibility57 dielectric72 height 177 material 42 matrix 238,252 toughness 56 wear 41 weight 70 Mechanical loss factor (tan 6), 17, 18, 57,70,71 Mechanical rolling effect 179, 182 Mechanism abrasivewear 58, 172 cavitational craze-like55 crack propagation 53 deformation 274,276,279,284 energy-consuming 54 failure (damage) 53, 111, 114, 118, 121,130,331 fatiguewear 58, 172 wear 109-114, 119, 129, 172, 178 Melting index 27 Method fatigue prediction 330,339 film-casting 82 Rayleigh-Ritz approximation 295, 305 sol-gel25,78,93,94, 103 Microhardness 95,99, 100, 103 Microscopy atomic force ( A m ) 52, 87, 95, 98, 127, 177-179 light (LM) 11, 12, 151,235 scanning electron (SEM) 7,9,28,29, 35,42,52,96,102,109-112,151, 153-156,159-162,175,178,180, 181,191,192,313,314,319,321, 323 transmission electron (TEM)4,8-13, 15-17,52,81-87,95-97, 151 Miscibility filler-matrix, 26 polymer, 32 Model (Modeling)278,279,301 debonding 121,124 elastic-plastic,Von Mises type 125 FE macro/micro 109, 115, 116, 121, 122, 129366 Polymer Composites:from Nano- to Macroscale isothermal,of consolidation 195-200 kinematic 266 material 122,266 mechanistic,of void growth 234,241 non-isothermal,of consolidation 195- 200 squeezedcreepflow234,238,251,252 Tandon-Weng 209 void-closure 234 Modulus42,55,59,80,92,93,170,207 acidity 310 bending 95,99, 100, 103 complex 17, 18,56,70,71,80 flexural 50, 51, 55, 152, 157-159, 163,207-211,315,318,320 loss 17, 19 shear 110 tensile 32, 84, 103, 141, 155, 190, 208,209,255,258,269,270,282, 320 Young's (elasticity)28,31-34,46,64, 66, 71, 110, 125, 135, 137, 234, 244,292,296,3 10,312-314 Molding reinforced reactive injection 324 resin transfer (RTM) 217, 218, 223, 321,322 Multi-textileperforming 215 Nucleation crack 41 multiple delamination 306 Optical transparency 91,97 Organophilization 78,87, 88 Polymer blend 150-163, 175,319 liquid crystalline (LCP) 149-153, 160-162 thermoplastic powder 190-194,206, 211 Polymerization 25,26 grafting 27,42,92, 173 in situ 78.93 intercalation 93 irradiation 29 solvent 92 Polymorphic transition 64 Prepreg (pre-consolidated tape) 190- 192,194,203,235,274 Processing window 204,205 Reaggregation 84.88 Resistance abrasion 91,93 corrosion 309,311, 324 crack propagation 54 heat 67 high-temperature 170,310 UV 92 wear39,41,47,56,58,59, 103,118, 120,169-171,174,182,315 Rule of hybrid mixtures 316-318 Scattering small-angle X-ray (SAXS)64,68 wide-angle X-ray (WAXS) 64, 68, 87, 151, 153-155, 160, 161Subject Index Seam 221,224,230 assembly 216,219,230 fixing and positioning 216,219,224 structural216,219,224,230 Simulation 202,266,267,282,283 consolidation 195 debonding 122,126 molecular 14 non-isothermal consolidation 198 Sinergism 175 Spectroscopy infrared (IR) 36 Fourier transform infrared (FTIR) 28-30,39 Steric hindrance 12,38 Stiffness45,51,55,56,63,81,92, 182, 219,257,259,266,271,289,319,322 Strain-induced crystallization 85 Strength 42, 45, 46, 59, 92, 207, 259, 266,289,313,319,322 adhesion 5 1 bending 95,99, 100, 103,311 debonding 144, 145 flexural 50, 51, 152, 157-159, 163, 207-211,234,315,318,320 impact 28,33,34,45,95 shear 133,311,312 tear 84 tensile31-34,84,103,133,155,190, 208,209,255,257.3 l3,314.316, 320 yield 110, 125 Structure 160 interpenetratingnetwork (IPN) 321, 322 silica-siloxane93 skeleton 81,83, 84 three-dimensional interphase 170 Theory Kelly-Qson 209 Tandon-Weng 209 Toughness93,94,313 fracture 3, 16, 21, 93, 95, 96, 101, 103,170,265,266,320 impact 255,257,258,265 Transfer film 170, 171, 174, 175 Tribological properties 27, 39, 42, 46, 57,94,96, 100, 101, 169, 173, 175 Viscosity 94, 95,98,99, 103, 196-198, 202,240,246,247,321 Void 236 content 236,244,245 closure 238,246,249-25 1 growth 234,235,238-240,244,246, 249 Vulcanization (Curing) 85, 87,94,321 kinetics of 38 radiation 84,88 sulfur 80,82,87,88 sulfurless88 Waste 227,228 X-ray diffraction(XRD) 82.83.88 Surfactant78 Yarn 217,218,275,276,278,280,282
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Polymer Composites From Nano to Macro-Scale رابط مباشر لتنزيل كتاب Polymer Composites From Nano to Macro-Scale
|
|