Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Bio-Based Plant Oil Polymers and Composites السبت 02 ديسمبر 2023, 10:28 am | |
|
أخواني في الله أحضرت لكم كتاب Bio-Based Plant Oil Polymers and Composites Samy A. Madbouly, Chaoqun Zhang, Michael R. Kessler
و المحتوى كما يلي :
Contents Contributors ix Preface .xi 1 Introduction to Plant Oils 1 Jiahao Chen, Stephanie Oyola-Reynoso, and Martin Thuo 1.1 Introduction .1 1.2 Chemistry and Biochemistry of Plant Oils .3 1.2.1 Biosynthesis of Terpenoids 3 1.2.2 Biosynthesis of Fatty Acids .6 1.2.3 Chemical Reactivity of Plant Oils 6 1.2.4 Chemical Characterization .10 1.3 Major Sources of Plant Oils 11 1.4 Extraction and Processing of Plant Oils .11 1.4.1 Small-Scale Extraction and Processing .11 1.4.2 Large-Scale Extraction and Processing .12 1.4.2.1 Palm Oil 12 1.4.3 Postextraction Processing of Fatty Acids 13 1.5 Outlook .13 References .14 2 Plant Oil-Based Derivatives . 19 Chaoqun Zhang and Samy A. Madbouly 2.1 Introduction .19 2.2 Plant Oil-Based Derivatives .21 2.2.1 Fatty Acids .21 2.2.2 Fatty Amides/Nitriles/Amines .21 2.2.3 Alcohols .22 2.2.4 Ester Derivatives 25 2.2.5 Epoxy Derivatives 28 2.2.6 Conjugates 30 2.2.7 Other Derivatives .31 2.3 Conclusions .32 References .33 3 Plant Oil-Based Polyurethanes 37 Thomas F. Garrison and Michael R. Kessler 3.1 Polyurethane Chemistry 38 3.2 Plant Oil-Based Polyurethanes .38 3.3 Developing New Sources of Vegetable Oils 40 3.4 Polyol Methods .42 3.4.1 Epoxidation/Ring-Opening 44 3.4.2 Ozonolysis 44 3.4.3 Amidation 44 3.5 Flame Retardant Polyols .45 3.6 Alternative Routes for Making Polyurethanes .45vi Contents 3.7 Applications of Plant Oil-Based Polyurethanes 46 3.8 Foams 46 3.8.1 Flexible Foams .47 3.8.2 Rigid Foams .47 3.9 Coatings .47 3.9.1 Waterborne Dispersions .48 3.9.2 Antimicrobial Coatings 48 3.10 Shape Memory Polymers 48 3.11 Conclusions .49 References .49 4 Plant Oil-Based Polyhydroxyurethanes . 55 Ashley Johns, Luke Gibbons, Madeline Smith, Kyle Edwards, and Rafael L. Quirino 4.1 Introduction .55 4.2 Petroleum-Based Polyurethanes .56 4.3 Polyurethanes from Bio-Based Polyols 57 4.4 Polyhydroxyurethanes (PHUs) .59 4.4.1 Introduction to PHUs .59 4.4.2 Petroleum-Based PHUs .60 4.4.3 Bio-Based PHUs 61 4.4.3.1 Triglycerides .61 4.4.3.2 Glycerol 62 4.4.3.3 Terpenes .65 4.4.3.4 Hybrid PHUs and Composites .66 4.5 Alternative Systems 67 4.6 Conclusions .68 References .69 5 Plant Oil-Based Polyester 73 Larissa R. Fonseca, José L. Silva Sá, and Benedito S. Lima-Neto 5.1 Introduction .73 5.2 Processes and Monomers 74 5.3 Thermoplastic Polyesters 76 5.4 Biodegradable Polyesters 77 5.5 Unsaturated Polyester Resin (UPR) 78 5.6 Other Applications 81 5.7 Applications of Plant Oil-Based Polyester as an Alternative for Petroleum-Based Polyester .82 References .83 6 Plant Oil-Based Polyether 87 Fana Teffera, Michael J. Forrester, and Eric W. Cochran 6.1 Background .87 6.1.1 Introduction 87 6.1.2 Molecular Weight and Networks .88 6.2 Methods 89 6.2.1 Extraction Process from Natural Source 89 6.2.2 Purifications after Extractions 89 6.2.3 Modification from Oil to Polyether Monomers .90 6.2.4 Polymerization from Oil Source to Polyether 90Contents vii 6.3 Properties of Plant Oil-Based Polyethers .91 6.4 Applications 93 6.5 Challenges and Trends 94 References .95 7 Plant Oil-Based Epoxy Intermediates for Polymers . 99 Tolibjon S. Omonov and Jonathan M. Curtis 7.1 Introduction .100 7.2 Epoxidation of Plant Oils 100 7.3 Derivatives of Epoxidized Plant Oils .103 7.3.1 Epoxy Ring Opening by Alcohols .104 7.3.2 Epoxy Ring Opening by Water 106 7.3.3 Amine-to-Epoxide Reactions .106 7.3.4 Epoxy Ring Opening with Halogen Reagents .108 7.3.5 Epoxy Ring Opening by Lactic Acid .108 7.3.6 Hydrogenation of Epoxidized Oils 108 7.3.7 Acrylated Epoxidized Plant Oils 109 7.3.8 Carbonated Plant Oil and its Derivatives .109 7.3.9 Epoxy Ring-Opening Reactions by Anhydrides 110 7.3.10 Epoxy Ring-Opening Polymerization 111 7.3.11 Estolides of Epoxides . 112 7.4 Biobased Epoxy Resins 113 7.4.1 Anhydride-Cured Epoxidized Oils 114 7.4.2 Resins of Acrylated-Epoxidized Plant Oils .114 7.4.3 Direct Polymerization of Epoxidized Plant Oils 116 7.5 Conclusions .117 References .118 Further Reading .125 8 Enzyme-Assisted Synthesis of Plant Oil-Based Polymers . 127 Yi-Shu Tai and Kechun Zhang 8.1 Introduction .127 8.2 Enzyme-Assisted Synthesis of Plant Oil-Based Polyesters 129 8.2.1 Lipase-Catalyzed Synthesis of Functional Polyesters .129 8.2.1.1 Biodegradable and Cross-Linkable Polyesters .129 8.2.1.2 Epoxide-Containing Polyesters 130 8.2.1.3 Oleic Acid-Based Polyesters 131 8.2.2 Lipase-Catalyzed Polycondensation of Unsaturated or Epoxidized a,w-Dicarboxylic Acids and Diols 132 8.2.3 Lipase-Catalyzed Polycondensation of Hydroxy Fatty Acids and Derivatives .135 8.2.3.1 Poly(Ricinoleaic Acid) and its Derivatives 135 8.2.3.2 Poly(Ambrettolide Epoxide) and Poly(Aleuritic Acid) 136 8.2.3.3 Polyesters from the Monomer cis-9,10-Epoxy-18-Hydroxyoctadecanoic Acid 138 8.3 Enzyme-Assisted Plant Oil Transformations 138 8.3.1 Sugar Fatty Acid Esters .138 8.3.2 Transesterification 139 8.3.3 Enzyme-Catalyzed Epoxidation .141 8.3.4 Fatty Acids Hydroxylation .143 8.4 Conclusion 144 References .145viii Contents 9 Plant Oil-Based Nanocomposites 149 Samy A. Madbouly, Chaoqun Zhang, and Jing Zhang 9.1 Introduction .149 9.2 Plant Oil-Based/Natural Filler Composites 152 9.3 Plant Oil-Based/Carbon Nanotubes Composites 154 9.4 Plant Oil-Based PU/Graphene Oxide Composites .155 9.4.1 Surface Modification of Graphene Oxide 156 9.4.2 Synthesis and Characterization of Bio-Based PU/GO Nanocomposites .158 9.5 Plant Oil-Based/Clay and Silica Nanocomposites 159 References .161 10 Fiber Reinforced Plant Oil-Based Composites 167 Kunwei Liu, Chaoqun Zhang, and Samy A. Madbouly 10.1 Introduction .167 10.2 Fiber-Reinforced Plant Oil-Based Vinyl Polymer Composites 168 10.3 Fiber-Reinforced Plant Oil-Based Epoxy Composites .176 10.4 Fiber-Reinforced Plant Oil-Based Polyurethane Composites 179 10.5 Fiber-Reinforced Plant Oil-Based Foam Composites 184 10.6 Conclusion 186 References .187 11 Application of Plant Oil-Based Products in Structural Health Monitoring . 191 Simon Laflamme and Samy A. Madbouly 11.1 Introduction .191 11.2 Background .194 11.2.1 Materials 194 11.2.2 Sensor Fabrication .194 11.2.3 Sensing Principle .196 11.3 Materials Properties 197 11.3.1 Dispersion of Nanofiller .197 11.3.2 Dielectric Properties .198 11.3.3 Thermogravimetric Analysis (TGA) 199 11.4 Laboratory Experiments .199 11.4.1 Experimental Setup 199 11.4.2 Results and Discussion 201 11.5 Conclusion 203 References .205 12 The Future of Essential Oils as a Pest Biocontrol Method . 207 Olivier Sparagano, James Pritchard, and David George 12.1 Introduction .207 12.2 Range of Use .208 12.3 Mechanisms 208 12.4 Future Research 208 12.5 Conclusion 209 References .209 Further Reading .211 Index 213ix Index A Acetic anhydride modified soybean oil (AMSO), 169 Acid ion exchange resin methods (AIER), 91 Acrylated epoxidized soybean oil (AESO), 57–59, 115, 116, 154, 168, 169, 171, 172, 184 Aedes aegypti, 207 AESO. See Acrylated epoxidized soybean oil (AESO) AIER. See Acid ion exchange resin methods (AIER) Air laid flax composites, 169 Alcohols, 13, 22, 105, 139 aliphatic, 79 epoxidation, 22 hydroformylation, 23 ozonolysis, 23 poly-functional, 105 ring opening by, 44, 104, 105 transesterification, 23 Alcoholysis reactions, 22, 45, 79, 104, 105, 140 Ambrettolide epoxide, 136, 137 Amidation, 44 of alcohols, 23 polyol methods, 42, 44 of triglycerides, 90 Amide diols, 44, 45 Amine-to-epoxide reactions, 106 Ammonium persulfate (APS), 182 AMSO. See Acetic anhydride modified soybean oil (AMSO) APS. See Ammonium persulfate (APS) Attapulgite nanocomposites, 67 Azadiriachta indica juss, 44 B Bacterial cellulose (BC), 171 Bending beam test, 200 Betapol, 139–141 Betula verrucosa, 138 Biobased epoxy resins, 113 Biochemical oxygen demand (BOD), 129, 130, 136 Biodegradable polyesters, 77. See also Polyesters Biofoam, 152 BiOH series, 105 BOD. See Biochemical oxygen demand (BOD) n-Butyl methacrylate (BMA), 175 t-Butyl peroxide (TBPO), 175 C Camelina sativa, 40 Candida albicans, 143 Candida antarctica, 28, 91, 129–131, 134–136, 141 Candida rugosa, 136, 139 Canola oil, 109, 113, 177 epoxidation kinetics of, 102, 103, 114 extraction of, 88 fatty acid methyl esters (FAME), 102, 103 Capillary supercritical fluid chromatography (SFC), 10 Carbonated plant oils and derivatives, 109, 110 Carbon nanotubes (CNTs), 31, 192 SEM images of, 32 spray pyrolysis setup, 31 Cationic polymerization catalyst (CPI), 177 CBE. See Cocoa butter equivalents (CBE) CCC. See Counter current chromatography (CCC) CF-PANI. See Polyaniline coated coconut fibers (CF-PANI) π-Cloud, 154 CNTs. See Carbon nanotubes (CNTs) Coatings, 46, 47, 56, 167 aliphatic isocyanates, use in, 38 antimicrobial, 48 cured epoxy, 115 fast-drying protective, 115 polymer, 59 polyurethane, 38 thermoplastic polyolefin, 66 waterborne dispersions, 48 water-repellent, 60 Cobalt naphthenate oxidation, 129 Cocoa butter equivalents (CBE), 139 Counter current chromatography (CCC), 10 Cox model, 173 CPI. See Cationic polymerization catalyst (CPI) Cross-linked polymers, 78, 79, 92, 113, 131 Cyclic carbonates, 61, 110 bifunctional, 66 bio-based, 68 1,4-butane diamine (BDA), 62 1,2-ethane diamine (EDA), 62 isophorone diamine (IPDA), 62 Cytochrome P450 monooxygenases, 143 D DAQ. See Data acquisition system (DAQ) Data acquisition system (DAQ), 196 DBTDL. See Dibutyltin dilaurate (DBTDL) DCPD. See Dicyclopentadiene (DCPD) Deoxyxylulose phosphate (DOX) pathway, 4 DETA. See Diethylenetriamine (DETA) Dibutyltin dilaurate (DBTDL), 194 Dicyclopentadiene (DCPD), 173 Dielectric permittivity, 194 Diels–Alder reaction, 81 Diethylenetriamine (DETA), 177 Differential scanning calorimetry (DSC), 111, 116, 132, 154 Diglycerides, 2 Diisocyanates, structure of, 39, 56, 57 Dimethylallyl pyrophosphate (DMAPP), 4 Dimethylol propionic acid (DMPA), 48, 58, 59, 194, 195 4,4-Diphenylmethane diisocyante (MDI), 181 Divinylbenzene (DVB), 174 DMA. See Dynamic mechanical analysis (DMA) DMAPP. See Dimethylallyl pyrophosphate (DMAPP) DMPA. See Dimethylol propionic acid (DMPA) DSC. See Differential scanning calorimetry DVB. See Divinylbenzene (DVB) Dynamic mechanical analysis (DMA), 115, 116, 168 test, 176 E EAS. See Epoxidized allyl soyate (EAS) EHO. See Epoxidized hemp oil (EHO)214 Index Elaeis guineensis, 44 ELO. See Epoxidized linseed oil (ELO) EML. See Epoxidized methyl linseedate (EML) EMO. See Epoxidized methyl oleate (EMO) Enzymes, 11, 91, 127, 129, 134 fatty acid-hydroxylation, 144 identification of, 129 for plant oil polymerization, 128 processes, 127 EOC. See Epoxy oxygen group content (EOC) Epoxidation, 22, 28, 44, 58, 91, 101, 141 of carbon double bonds by hydroperoxide, 28 chemo-enzymatic, 28 enzyme-catalyzed, 141 of fatty acids by lipase, 28 high temperature, 102 in-situ, 102 kinetics, 103 of plant oils, 100 polyol methods, 42 of triglyceride, 91 of unsaturated vegetable oils, 61 Epoxidized allyl soyate (EAS), 176 Epoxidized a,w-dicarboxylic acids, 132 Epoxidized canola (ECO), 110 Epoxidized hemp oil (EHO), 178 Epoxidized linseed oil (ELO), 44, 178 Epoxidized methyl linseedate (EML), 79 Epoxidized methyl oleate (EMO), 91, 111 Epoxidized oils, 57, 62, 114 anhydride cured, 114 hydrogenation of, 108 Epoxidized soybean oil (ESO), 44, 57, 111, 114, 159, 169, 178 in-situ reactive blending of, 117 polymerization of, 116 reaction of, 30 Epoxy oxygen group content (EOC), 142 Epoxy resins, 100 biobased, 110, 113 thermoset, 100, 114 Epoxy ring opening, 101, 102 by alcohols, 104, 105 hydroxylation reaction, 104 by anhydrides, 110, 111 by halogen reagents, 108 by lactic acid, 108 polymerization of, 111 by water, 106, 107 ESO. See Epoxidized soybean oil (ESO) Ethylene glycol, 105 F FAME. See Fatty acid methyl ester (FAME) Fatty acid methyl ester (FAME), 74 Fatty acids, 21 based amide polyols, 45 biosynthesis of, 6 derived from acetyl CoA, 7 derived from malonyl-Coenzyme A (malonyl CoA), 7 epoxidized, 41 hydroxylated, 41, 135, 143 lipase-catalyzed polycondensation of, 135 post-extraction processing of, 13 structure of, 75 transesterification of, 27 unsaturated, 141 vegetable oils, composition in, 75, 76 Fatty alcohols, 22, 23. See also Alcohols Fatty amides, 21, 22 Fatty amines, 21, 22 Fatty nitriles, 21, 22 FE-SEM. See Field-emission scanning electron microscope (FE-SEM) FFA. See Free fatty acids (FFA) FGS. See Functionalized graphene sheet (FGS) Fibers, 168 biobased, 168 biorenewable, 168 carbon, 168 glass, 168 pine wood, 184 reinforcements, 168 synthetic, 168 Field-emission scanning electron microscope (FE-SEM), 197 Flame retardant polyols, 45 Flax fibers, 169 architectural effects of, 170 arrangement modes of, 170 types of, 169 Flexural testing, 173, 179 Foams, 46, 57, 93, 152, 154, 184 flexible, 47 polyester, 82 rigid, 47 Fourier transform infrared spectroscope (FTIR), 152 Free fatty acids (FFA), 139 FTIR. See Fourier transform infrared spectroscope (FTIR) Functionalized graphene sheet (FGS), 155 G Gauge factor, 193, 196, 202, 204 Gel permeation chromatography, 135 Gluconacetobacter xylinus, 171 Glycerides, 3, 6, 7 Glycerols, 62 alkylated, 5 application of, 24 difunctional cyclic carbonate, synthesis of, 64 hydroxyurethanes, synthesis of, 63 phenoxycarbonyloxymethyl ethylene carbonate, synthesis of, 64 transformation of, 24 Grains, production of, 3 Graphene oxide composites, 155 surface modification of, 156 modified pressurized oxidation method, 156 pressurized oxidation method, 156 raman spectrum of, 157 Grubbs catalysts, 132 H Halpin–Tsai model, 173 Helianthus annuus L., 40 Hexamethylene diisocyanate (HMDI), 180 HMDI. See Hexamethylene diisocyanate (HMDI) Hooke’s law, 196 HPAn. See Hyxahydrophthalic anhydride (HPAn) Hydratases, 143, 144 Hydroformylation, 23, 42 Hydrohalogenation methods, 108 of epoxidized oils, 108 Hydroxyl estolide, 112 Hydroxyurethane, 61. See also Polyhydroxyurethanes (PHUs) Hyxahydrophthalic anhydride (HPAn), 177 I IFSS. See Interfacial shear strength (IFSS) ILSS. See Interlaminar shear strength (ILSS) Interfacial shear strength (IFSS), 172 Interlaminar shear strength (ILSS), 179 IPDI. See Isophorone diisocyanate (IPDI) IPP. See Isopentyl diphosphate (IPP) Isocyanates, 38 aromatic, 38 hexamethylene diisocyanate (HDI), 38 isophorone diisocyanate (IPDI), 38 methylene diphenyl diisocyanate (MDI), 38 pentamethylene diisocyanate (PDI), 38 toluene diisocyanate (TDI), 38Index 215 Isopentyl diphosphate (IPP), 4, 6 mavelonate (MVA) pathway, 4 methylerythritol (MEP) pathway, 4 Isophorone diisocyanate (IPDI), 38, 58, 194 Isoprenoid-derived oils, 1, 3 J Jatropha curcas L., 41 Jute composites, 172 K Keratin fiber (KF), 171 KF. See Keratin fiber (KF) L Layered graphite, 155 Lesquerolic acid, 40 Lewis acid catalysts, 81 Lignin, 151, 152, 182 composites, 152 different concentrations of, 152 and fatty acid polyol, 154 phenyl propane monomers in, 152, 153 Limnanthes alba, 141 Lipases, 127, 129, 135, 136, 140, 141 Lipid acrylation, 177 Liquid chromatography (LC)–mass spectrometry (MS), 134 Lyocell fiber, 170, 177 M MACO. See Maleated castor oil (MACO) Macroreticular ion exchange resin, 105 MAECO. See Maleinized acrylated epoxidized canola oil (MAECO) MAESO. See Maleinized acrylated epoxidized soybean oils (MAESO) Maleated castor oil (MACO), 79, 80, 172 Maleinized acrylated epoxidized canola oil (MAECO), 115 Maleinized acrylated epoxidized soybean oils (MAESO), 115 Maleinized soybean oil (MSO), 116, 169 Mavelonate (MVA) pathway, 4 MCS. See Norbornenylehyldimethylchlorosilane (MCS) MEK. See Methyl ethyl ketone (MEK) MERGINOL series, 105 Mesua ferrea L., 41 Methacrylated lauric acid (MLAU), 171 Methacrylated soybean oil (MSO), 169 Methacrylic anhydride modified soybean oil (MMSO), 169 Methoxylated soybean oil polyols (MSOLs), 58 Methylerythritol (MEP) pathway, 4. See also Deoxyxylulose phosphate (DOX) pathway Methyl ethyl ketone (MEK), 194 4-Methylpyridine, 116 MLAU. See Methacrylated lauric acid (MLAU) MMSO. See Methacrylic anhydride modified soybean oil (MMSO) Monoglycerides, 2, 25, 90, 139 Montmorillonite, 160 MSO. See Maleinized soybean oil (MSO); Methacrylated soybean oil (MSO) MSOLs. See Methoxylated soybean oil polyols (MSOLs) Mucor miehei, 129 Myzus persicae, 207 N Nanocomposites, 150, 194 durability, 194 melt processing of, 150 Nanofiller, 149, 151, 197, 198 dispersion of, 197 NIPU. See Nonisocyanate polyurethanes (NIPU) Nonisocyanate polyurethanes (NIPU), 59, 110 Norbornenylethyldimethylchlorosilane (MCS), 173 Norbornenylethyltrichlorosilane (TCS), 173 Novozym 435, 132 O Octopamine receptors, 208 Oil-producing crops, production, 3 Oleic acid, 7, 113, 131, 144, 154 based polyesters, 131 epoxidation of, 131 lipase-catalyzed epoxidation of, 142 OOC. See Oxirane oxygen content (OOC) Organosiliconic polymers, 66 Oxirane oxygen content (OOC), 102 Oxiranes, ring opening of, 44 Ozonolysis, 23, 42, 44, 100 P Palm oil, 2, 12, 20, 31, 40, 47, 115, 140 extraction of, 12 fractionation of, 12 refining of, 12 SEM images of CNT, 32 Passiflora edulis Sims f. flavicarpa Degener, 41 PCL. See Polycaprolactone (PCL) PEFA. See Poly(ether fatty amide) (PEFA) Performic acid formation of, 101 ring-opening by, 28, 101 Perhydrolysis, 29 Pest control, 207, 209 conventional, 209 Pest resistance, 207–209 Petroleum-based polymers, 55, 83 Petroleum resources, 167 PFF. See Pyrolyzed chicken feather fibers (PFF) PHAs. See Polyhydroxyalkanoates (PHAs) Phospholipids, 2, 12, 89 Phosphorylated polyols, 45 Photopolymerization, 115, 117, 178 PHUs. See Polyhydroxyurethanes (PHUs) Plant biosynthesis, 1 Plant oil, 1, 8, 127, 167, 193 acid value, 1 alkene moieties, presence of, 8 based carbon nanotube composites, 154 based clay and silica nanocomposites, 159 based epoxy composites, fiber-reinforced, 176 based foam composites, fiber-reinforced, 184, 185 based graphene oxide composites, 155 based polyurethane composites, fiber-reinforced, 179 based vinyl polymer composites, fiber-reinforced, 168 biochemistry of, 3 chemical characterization, 10 chemical reactivity of, 6–9 chemistry of, 3 conversion into polyols, 58 epoxidation of, 29, 100 acrylated epoxidized, 109 acrylated resins of, 114 derivatives of, 103 direct polymerization of, 116 extraction and processing of, 11 fatty acids, 1, 40, 41 glycerides, 3 hydroxyl value, 1 iodine values of, 41 isoprenoid derived hydrocarbons, 1 large-scale extraction and processing, 12 major sources, 11 modified polyesters, 73 advantages of, 73 applications of, 73216 Index fatty acid process, 75 industrial applications, use in, 74 monoglyceride process, 75 olefin/iodine value, 1 perhydrolysis of, 29 peroxide value, 1 small scale extraction and processing, 11–12 terpenoids, 3 transesterification reaction of, 74 transformations, 138 enzyme assisted, 138 Plant oil-based derivatives, 21 fatty acids, 21 fatty amines, 21 Plant oil-based filler composites, 152 cellulosic fibers, 152 lignin fibers, 152 Plant oil-based polymer nanocomposites, 149 anisotropic properties of, 150 development and tailoring of, 150 structure–property relationship of, 150 Plant oil-based polymers, 74, 87 advantages of, 87 applications of, 82 molecular weight, 88 oil extraction methods, 89 modification of monomers, 90 from natural source, 89 polymerization from oil source, 90 polyamides, 74 polyesters, 74 polyethers, 74 polyolefins, 74 properties of, 91 Plasticizers, 29, 30 Poisson’s ratio, 196 Polyaniline coated coconut fibers (CF-PANI), 182 Polycaprolactone (PCL), 181 Polyesters, 74, 129 biodegradable, 129 cross-linkable, 129 epoxide containing, 130 functional, 129 lipase-catalyzed synthesis, 129 linear, 76 oleic acid containing, 131 plant oil-based, 129 biodegradable, 129 cross-link, 129 enzyme-assisted synthesis, 129 functional, 129 polycondensation reaction, 74 Polyetheramides, 45 Poly(ether fatty amide) (PEFA), 92, 93 Polyethers, 88 applications of, 93 polyols, 93 Polyhedral oligomeric silsesquioxane (POSS) compounds, 92 Polyhydroxyalkanoates (PHAs), 77 Polyhydroxyurethanes (PHUs), 56, 59, 68 alternative systems, 67 bio-based, 61 and composites, 66 4,9-dioxa-1,12-dodecanediamine (DODDA), 60 petroleum-based, 60 polysiloxane hybrid material synthesis, 67 synthesis from limonene, 66 p-xylylenediamine (p-XDA), 60 Polymeric 4,4 -disphenylmethane dissocynate (pMDI), 179 Polymerization, 127 chemical, 127 enzyme catalyzed, 127 Polymers, 127 biomaterials, 81 industry, 192 science, 73 synthesis, 127, 167 Polyolamines, 107 Polyols, 42 bio-based, 57 structure of, 57 Poly(sebacic acid-co-ricinoleic acid), 78 Polyurethane dispersions (PUDs), 193 Polyurethanes (PU), 38, 45, 68, 151 alternative routes for making, 45 applications of, 46 from bio-based polyols, 57 chemical structure of, 56 foams, 46 microphase separation of, 151 nanocomposites, 158 fracture surface of, 158 synthesis of, 158 TGA measurement for, 159 thermal stability of, 158 petroleum-based, 56 plant oil-based, 38 urethane reaction of, 38 POSS. See Polyhedral oligomeric silsesquioxane (POSS) compounds Poylisoprenoids, 4 Pressure-sensitive adhesives (PSA), 111, 114 Prileschajew reaction, 28 1,2-Propanediol, 105 1,3-Propanediol, 105 Prosopis juliflora, 41 PSA. See Pressure-sensitive adhesives (PSA) Pseudomonas cepacia, 129 PU. See Polyurethanes (PU) PUDs. See Polyurethane dispersions (PUDs) Pyrolyzed chicken feather fibers (PFF), 171 R RA. See Ricinoleaic acid Raman spectrum, 156, 157 Response surface methodology (RSM), 142 Rhizopus delemar, 139, 140 Rhizopus oryzae, 177 Ricinoleaic acid (RA), 7, 19, 40, 42, 58, 81, 135, 136, 141 Ring-opening metathesis polymerization (ROMP), 173 ROMP. See Ring-opening metathesis polymerization (ROMP) RSM. See Response surface methodology RSO. See Rubber seed oil (RSO) Rubber seed oil (RSO), 182 S Sapindus mukorossi seed oil (SMSO), 142 Scanning electron microscope (SEM), 152, 197 SEM. See Scanning electron microscope (SEM) Sensing principle, 193, 196, 197 Sensor fabrication, 193, 194, 196 SEPEP. See Soybean phosphate ester polyol (SEPEP) SFC. See Capillary supercritical fluid chromatography (SFC) Shape-memory polymers, 48 SHM. See Structural health monitoring (SHM) SMSO. See Sapindus mukorossi seed oil Solid freeform fabrication (SFF), 177 Sonication, 150, 158, 194 SOPERMA. See Soybean oil pentaerythritol glyceride maleates (SOPERMA) SOVERMOL series, 105 Soybean oil, 13, 20, 28, 31, 40, 61, 82, 91, 152, 167, 169, 171, 174, 176, 178 based cationic polyurethane coatings, 48 based polyols, 47, 48 based polyurethanes, 58, 92 carbonated, 109 cationic polymerization of, 82 chemical structure of, 58 with diamines, 46 epoxidized, 29, 30, 45 lactic acid-epoxidized, 108 methacrylated, 169 methoxylated, 92 Plant oil (cont.)Index 217 structures of maleates alcoholyzed triglycerides, 58, 80 Soybean oil pentaerythritol glyceride maleates (SOPERMA), 171 Soybean phosphate ester polyol (SEPEP), 179 Stenotrophomonas nitritireducens, 144 Structural health monitoring (SHM), 191, 192 Sugar fatty acid esters, 138 Sulfuric acid, 104, 105, 136 Synthetic pesticides, 207–209 T TBAB. See Tetrabutylammonium bromide (TBAB) TCS. See Norbornenylethyltrichlorosilane (TCS) TDI. See Toluene-2,4-diisocyanate (TDI) TEA. See Triethylamine (TEA) Tensile test laboratory setup, 200 Terpene-based acid anhydride (TPAn), 177 Terpenes, 5, 65 dimethylallyl pyrophosphate (DMAPP), 4 isopentyl diphosphate (IPP), 4 isoprene-derived, 65 use of, 65 Terpenoids, 5 biosynthesis of, 3 Tertiary amines, 21, 107, 194 TETA. See Triehylenetetraamine (TETA) Tetrabutylammonium bromide (TBAB), 62 Tetrafluoroboric acid, 105 TGA. See Thermogravimetric analysis (TGA) Thermal mechanical analysis (TMA), 116 Thermogravimetric analysis (TGA), 131, 154, 158, 159, 172, 197, 199 Thermoplastic polyesters, 76. See also Polyesters aliphatic groups, 76 aromatic groups, 76 Thermoplastic polyurethane (TPU), 155 Thymol, 5, 208 TMA. See Thermal mechanical analysis (TMA) Toluene-2,4-diisocyanate (TDI), 180 TPAn. See Terpene-based acid anhydride (TPAn) TPU. See Thermoplastic polyurethane (TPU) Transesterification, 23, 41, 48, 64, 74, 91, 105, 139, 176 fatty acid esters of, 27 lipase-catalyzed, 139 triglycerides of, 26 vegetable oils of, 28 of waste oils rapeseed waste frying oil, 27 Triehylenetetraamine (TETA), 177 Triethylamine (TEA), 194 Triglycerides, 2, 61, 103 epoxidization of, 90 epoxidized methyl oleate, 91 structure of, 40 transesterification of, 26 Tripalmitin, 140, 141 Tung oil, 19, 30, 81, 82, 172 U Unsaturated a,w-dicarboxylic acids, 132 lipase-catalyzed polycondensation of, 132 Unsaturated polyester resin (UPR), 78 V Vacuum-assisted resin transfer molding technique, 171, 172 Van der Waals bonding, 150 Varroa mites, 208 Vegetable oils, 11, 19, 55 based polyols, 43 carbon nanotubes (CNTs), 31 conjugates, 30 degree of unsaturation, 20 epoxidation of, 28 epoxy derivatives, 28, 29 ester derivatives, 25 fatty acids composition in, 20 hydrolysis of, 21 sources of, 40 transesterification of, 28 viscosity of, 26 world production of, 20 Vernolic acid, 7, 40, 104 Vernonia galamensis, 104 Vernonia oil, 19, 40, 90, 104, 141 4-Vinylpyridine, 116 VOCs. See Volatile organic compounds (VOCs) Volatile organic compounds (VOCs), 47, 48, 58, 116 W Waterborne polyurethane (WPU), 155 Waterborne, polyurethane dispersions (PUDs), 48, 58, 193–195 Wheat straw (WS), 175 WPU. See Waterborne polyurethane (WPU) Y Young’s modulus, 117, 173
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Bio-Based Plant Oil Polymers and Composites رابط مباشر لتنزيل كتاب Bio-Based Plant Oil Polymers and Composites
|
|