Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب The Finite Element Method - Linear Static and Dynamic Finite Element Analysis الإثنين 19 فبراير 2024, 1:30 am | |
|
أخواني في الله أحضرت لكم كتاب The Finite Element Method - Linear Static and Dynamic Finite Element Analysis Thomas J. R. Hughes Professor of Mechanical Engineering Chairman of the Division of Applied Mechanics Stanford University
و المحتوى كما يلي :
Contents preface xv A BRIEF GLOSSARY OF NOTATIONS XXII Part One Linear Static Analysis 1 FUNDAMENTAL CONCEPTS; A SIMPLE ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEM 1 Introductory Remarks and Preliminaries 1 Strong, or Classical, Form of the Problem 2 Weak, or Variational, Form of the Problem 3 Eqivalence of Strong and Weak Forms; Natural Boundary Conditions 4 Galerkin’s Approximation Method 7 Matrix Equations; Stiffness Matrix K 9 Examples: 1 and 2 Degrees of Freedom 13 Piecewise Linear Finite Element Space 20 Properties of K 22 Mathematical Analysis 24 Interlude: Gauss Elimination; Hand-calculation Version 31 The Element Point of View 37 Element Stiffness Matrix and Force Vector 40 Assembly of Global Stiffness Matrix and Force Vector; LM Array 42viii Contents 1.15 Explicit Computation of Element Stiffness Matrix and Force Vector 44 1.16 Exercise: Bernoulli-Euler Beam Theory and Hermite Cubics 48 Appendix 1.1 An Elementary Discussion of Continuity, Differentiability, and Smoothness 52 References 55 2 FORMULATION OF TWO- AND THREE-DIMENSIONAL BOUNDARY-VALUE PROBLEMS 57 Introductory Remarks 57 Preliminaries 57 Classical Linear Heat Conduction: Strong and Weak Forms; Equivalence 60 2.4 Heat Conduction: Galerkin Formulation; Symmetry and Positive-definiteness of K 64 2.5 Heat Conduction: Element Stiffness Matrix and Force Vector 69 2.6 Heat Conduction: Data Processing Arrays ID, IEN, and LM 71 2.7 Classical Linear Elastostatics: Strong and Weak Forms; Equivalence 75 2.8 Elastostatics: Galerkin Formulation, Symmetry, and Positive-definiteness of K 84 2.9 Elastostatics: Element Stiffness Matrix and Force Vector 90 2.10 Elastostatics: Data Processing Arrays ID, IEN, and LM 92 2.11 Summary of Important Equations for Problems Considered in Chapters 1 and 2 98 2.12 Axisymmetric Formulations and Additional Exercises 101 References 107 3 ISOPARAMETRIC ELEMENTS AND ELEMENTARY PROGRAMMING CONCEPTS 109 Preliminary Concepts 109 Bilinear Quadrilateral Element 112 Isoparametric Elements 118 Linear Triangular Element; An Example of “Degeneration” 120 Trilinear Hexahedral Element 123 Higher-order Elements; Lagrange Polynomials 126 Elements with Variable Numbers of Nodes 132Contents Appendix 3.1 Appendix 3.II Numerical Integration; Gaussian Quadrature 137 Derivatives of Shape Functions and Shape Function Subroutines 146 Element Stiffness Formulation 151 Additional Exercises 156 Triangular and Tetrahedral Elements 164 Methodology for Developing Special Shape Functions with Application to Singularities 175 References 182 4 MIXED AND PENALTY METHODS, REDUCED AND SELECTIVE INTEGRATION, AND SUNDRY VARIATIONAL CRIMES 185 4.1 “Best Approximation” and Error Estimates: Why the stan¬ dard FEM usually works and why sometimes it does not 185 4.2 Incompressible Elasticity and Stokes Flow 192 4.2.1 Prelude to Mixed and Penalty Methods 194 4.3 A Mixed Formulation of Compressible Elasticity Capable of Representing the Incompressible Limit 197 4.3.1 Strong Form 198 4.3.2 Weak Form 198 4.3.3 Galerkin Formulation 200 4.3.4 Matrix Problem 200 4.3.5 Definition of Element Arrays 204 4.3.6 Illustration of a Fundamental Difficulty 207 4.3.7 Constraint Counts 209 4.3.8 Discontinuous Pressure Elements 210 4.3.9 Continuous Pressure Elements 215 4.4 Penalty Formulation: Reduced and Selective Integration Techniques; Equivalence with Mixed Methods 217 4.4.1 Pressure Smoothing 226 4.5 An Extension of Reduced and Selective Integration Techniques 232 4.5.1 Axisymmetry and Anisotropy: Prelude to Nonlinear Analysis 232 4.5.2 Strain Projection: The B -approach 232 4.6 The Patch Test; Rank Deficiency 237 4.7 Nonconforming Elements 242 4.8 Hourglass Stiffness 251 4.9 Additional Exercises and Projects 254 Appendix 4.1 Mathematical Preliminaries 263 4.1.1 Basic Properties of Linear Spaces 263 4.1.2 Sobolev Norms 266 4.1.3 Approximation Properties of Finite Element Spaces in Sobolev Norms 268X Contents 4.1.4 Hypotheses on a(- , •) 273 Appendix 4.II Advanced Topics in the Theory of Mixed and Penalty Methods: Pressure Modes and Error Estimates 276 by David S. Malkus 4.II.1 4.II.2 Pressure Modes, Spurious and Otherwise 276 Existence and Uniqueness of Solutions in the Pres¬ ence of Modes 278 4.II.3 4.II.4 4.II.5 4.H.6 Two Sides of Pressure Modes 281 Pressure Modes in the Penalty Formulation 289 The Big Picture 292 Error Estimates and Pressure Smoothing 297 References 303 5 THE C°-APPROACH TO PLATES AND BEAMS 310 5.1 Introduction 310 5.2 Reissner-Mindlin Plate Theory 310 5.2.1 Main Assumptions 310 5.2.2 Constitutive Equation 313 5.2.3 Strain-displacement Equations 313 5.2.4 Summary of Plate Theory Notations 314 5.2.5 Variational Equation 314 5.2.6 Strong Form 317 5.2.7 Weak Form 317 5.2.8 Matrix Formulation 319 5.2.9 Finite Element Stiffness Matrix and Load Vector 320 5.3 Plate-bending Elements 322 5.3.1 Some Convergence Criteria 322 5.3.2 Shear Constraints and Locking 323 5.3.3 Boundary Conditions 324 5.3.4 Reduced and Selective Integration Lagrange Plate Elements 327 5.3.5 Equivalence with Mixed Methods 330 5.3.6 Rank Deficiency 332 5.3.7 The Heterosis Element 335 5.3.8 71: A Correct-rank, Four-node Bilinear Element 342 5.3.9 The Linear Triangle 355 5.3.10 The Discrete Kirchhoff Approach 359 5.3.11 Discussion of Some Quadrilateral Bending Elements 362 5.4 Beams and Frames 363 5.4.1 Main Assumptions 363 5.4.2 Constitutive Equation 365 5.4.3 Strain-displacement Equations 366contents 5.4.4 Definitions of Quantities Appearing in the Theory 366 5.4.5 Variational Equation 368 5.4.6 Strong Form 371 5.4.7 Weak Form 372 5.4.8 Matrix Formulation of the Variational Equation 373 5.4.9 Finite Element Stiffness Matrix and Load Vector 374 5.4.10 Representation of Stiffness and Load in Global Coordinates 376 5.5 Reduced Integration Beam Elements 376 References 379 6 THE C°-APPROACH TO CURVED STRUCTURAL ELEMENTS 383 6.1 Introduction 383 6.2 Doubly Curved Shells in Three Dimensions 384 6.2.1 Geometry 384 6.2.2 Lamina Coordinate Systems 385 6.2.3 Fiber Coordinate Systems 387 6.2.4 Kinematics 388 6.2.5 Reduced Constitutive Equation 389 6.2.6 Strain-displacement Matrix 392 6.2.7 Stiffness Matrix 396 6.2.8 External Force Vector 396 6.2.9 Fiber Numerical Integration 398 6.2.10 Stress Resultants 399 6.2.11 Shell Elements 399 6.2.12 Some References to the Recent Literature 403 6.2.13 Simplifications: Shells as an Assembly of Flat Elements 404 6.3 Shells of Revolution; Rings and Tubes in Two Dimensions 405 6.3.1 Geometric and Kinematic Descriptions 405 6.3.2 Reduced Constitutive Equations 407 6.3.3 Strain-displacement Matrix 409 6.3.4 Stiffness Matrix 412 6.3.5 External Force Vector 412 6.3.6 Stress Resultants 413 6.3.7 Boundary Conditions 414 6.3.8 Shell Elements 414 References 415Part Two Linear Dynamic Analysis 7 FORMULATION OF PARABOLIC, HYPERBOLIC, AND ELLIPTICEIGENVALUE PROBLEMS 418 7.1 Parabolic Case: Heat Equation 418 7.2 Hyperbolic Case: Elastodynamics and Structural Dynamics 423 7.3 Eigenvalue Problems: Frequency Analysis and Buckling 429 7.3.1 Standard Error Estimates 433 7.3.2 Alternative Definitions of the Mass Matrix; Lumped and Higher-order Mass 436 7.3.3 Estimation of Eigenvalues 452 Appendix 7.1 Error Estimates for Semidiscrete Galerkin Approximations 456 References 457 8 ALGORITHMS FOR PARABOLIC PROBLEMS 459 8.1 One-step Algorithms for the Semidiscrete Heat Equation: Generalized Trapezoidal Method 459 8.2 Analysis of the Generalized Trapezoidal Method 462 8.2.1 Modal Reduction to SDOF Form 462 8.2.2 Stability 465 8.2.3 Convergence 468 8.2.4 An Alternative Approach to Stability: The Energy Method 471 8.2.5 Additional Exercises 473 8.3 Elementary Finite Difference Equations for the One¬ dimensional Heat Equation; the von Neumann Method of Stability Analysis 479 8.4 Element-by-element (EBE) Implicit Methods 483 8.5 Modal Analysis 487 References 488 9 ALGORITHMS FOR HYPERBOLIC AND PARABOLICHYPERBOLIC PROBLEMS 490 9.1 One-step Algorithms for the Semidiscrete Equation of Motion 490 9.1.1 The Newmark Method 490 9.1.2 Analysis 492 9.1.3 Measures of Accuracy: Numerical Dissipation and Dispersion 504 9.1.4 Matched Methods 505 9.1.5 Additional Exercises 512 ContentsContents 9.2 Summary of Time-step Estimates for Some Simple Finite Elements 513 9.3 Linear Multistep (LMS) Methods 523 9.3.1 LMS Methods for First-order Equations 523 9.3.2 LMS Methods for Second-order Equations 526 9.3.3 Survey of Some Commonly Used Algorithms in Structural Dynamics 529 9.3.4 Some Recently Developed Algorithms for Structural Dynamics 550 9.4 Algorithms Based upon Operator Splitting and Mesh Partitions 552 9.4.1 Stability via the Energy Method 556 9.4.2 Predictor/Multicorrector Algorithms 562 9.5 Mass Matrices for Shell Elements 564 References 567 10 SOLUTION TECHNIQUES FOR EIGENVALUE PROBLEMS 570 10.1 The Generalized Eigenproblem 570 10.2 Static Condensation 573 10.3 Discrete Rayleigh-Ritz Reduction 574 10.4 Irons-Guyan Reduction 576 10.5 Subspace Iteration 576 10.5.1 Spectrum Slicing 578 10.5.2 Inverse Iteration 579 10.6 The Lanczos Algorithm for Solution of Large Generalized Eigenproblems 582 by Bahram Nour-Omid 10.6.1 Introduction 582 10.6.2 Spectral Transformation 583 10.6.3 Conditions for Real Eigenvalues 584 10.6.4 The Rayleigh-Ritz Approximation 585 10.6.5 Derivation of the Lanczos Algorithm 586 10.6.6 Reduction to Tridiagonal Form 589 10.6.7 Convergence Criterion for Eigenvalues 592 10.6.8 Loss of Orthogonality 595 10.6.9 Restoring Orthogonality 598 10.6.10 LANSEL Package 600 References 629 11 DLEARN—A LINEAR STATIC AND DYNAMIC FINITE ELEMENT ANALYSIS PROGRAM 631 by Thomas J. R. Hughes, Robert M. Ferencz, and Arthur M. Raefskyxiv Contents 11.1 Introduction 631 11.2 Description of Coding Techniques Used in DLEARN 632 11.2.1 Compacted Column Storage Scheme 633 11.2.2 Crout Elimination 636 11.2.3 Dynamic Storage Allocation 644 11.3 Program Structure 650 11.3.1 Global Control 651 11.3.2 Initialization Phase 651 11.3.3 Solution Phase 653 11.4 Adding an Element to DLEARN 659 11.5 DLEARN User’s Manual 662 11.5.1 Remarks for the New User 662 11.5.2 Input Instructions 663 11.5.3 Examples 691 1. Planar Truss 691 2. Static Analysis of a Plane Strain Cantilever Beam 705 3. Dynamic Analysis of a Plane Strain Cantilever Beam 705 4. Implicit-explicit Dynamic Analysis of a Rod 715 11.5.4 Subroutine Index for Program Listing 729 11.5.5 Program Listing 734 References 796 INDEX 797Index Absolute stability, 525 Accuracy, 462 Active column equation solver, 554, 633 Algorithm for constructing inter¬ polation functions, 176-77 Algorithmic damping ratio, 505 a-method, 532 Amplification factor, 466 Amplification matrix, 492 Amplitude decay, 505 Assembly algorithm, 43 Assembly operator, 44 A-stable, 525 Aubin-Nitsche method, 190 Augmented matrix, 32 Average acceleration method, 494-95 Axial force, 367 Axial strain, 367 Axisymmetric shells (see Shells of revolution, rings and tubes) Axisymmetry, 101-3 Babuska-Brezzi condition, 208, 292 Back substitution, 33, 642 Backward difference method, 460 Backward Euler method, 460 Banded matrix, 23 Bandwidth, 23 B-approach, 232 Barlow curvature points, 50 Barlow stress points, 31 Basis, 463 Basis functions, 9 Bazzi-Anderheggen p-method, 551 Beams (see also Bernoulli-Euler beam theory): assumptions, 363-64 cross-section properties, 367 element stiffness matrix and load vector, 375 local-global transformations, 367 matrix formulation, 373 strain-displacement equations, 366 strong form, 371 variational equation, 369 weak form, 372 Bending moments, 367 Bemoulli-Euler beam theory, 48-51 Best approximation property, 186 Bilinear quadrilateral element, 112 Biquadratic Lagrange element, 129 Blank common, 633 Block power method, 577 Body force, 76 Bossak's method, 550 Boundary, 59 Boundary conditions, 2 Boundary heat flux calculations 107 Boundary traction calculations, 107 Brick elements, 123, 136 BTCS method, 480 Bubble function, 130, 134 Bubnov-Galerkin method, 8 Bulk modulus, 192 C*(ft), 52 CtW, 52 Capacity, 419 Capacity matrix, 422 Cauchy stress tensor, 76 C°-elements, 110 C'-elements, 110 Central difference method, 494-95 Chain rule, 44 Change of variables formula: Dirac delta function, 158 one dimension, 44 three dimension, 140 two dimensions, 138 7798 Index ’aracteristic velocity, 510 rolesky decomposition, 644 rcular plates, 328-32, 339-42, 346, 347, 350, 358 osed unit interval, 2 •efficient of heat transfer, 71 'factors, 149-50 '[location schemes, 530 impacted column equation solver, 554 •mpacted column storage, 633 'mpleteness of finite element functions, 110-11 'mpleteness of function spaces, 265 'nditional consistency, 481 'nditional stability, 466 60 •nductivity matrix, 60 elements, 110 'nservation of total energy, 457 insistency, 462 insistent mass, 436, 507 institutive equation: clastostatics, 76 jeat conduction, 60 nstrained media problems, 192 'retrained variational problem, 194 •retraint ratio, 209, 223, 289, 324 tions, 52 ntinuous pressure elements, 215-16 nvection-diffusion equation, 161 •nvergence, 462 criterion for eigen¬ values, 592 rrectors, 553, 562, 657 uples, 367 ack elements, 159 (see also Singular elements) ank-Nicolson method, 460, 480 eeping flow, 193 itically damped, 524 'deal sampling frequency, 493 ossed triangles, 224, 286 out factorization, 485, 636 ibic beam element, 520 ibic four-node element in one dimension, 128 tbic Hermite shape functions,49 triangular element, 169 Curvature, 50, 314, 367 Dahlquist's theorem, 525 Data structure, 633 Deflation, 626 Degeneration, 120, 125, 126, 180-81 Density, 419, 423 Derivatives of shape functions, 146-50, 174 Destination array (see ID array) Deviatoric components, 233 Diagonal scaling, 642 Dilatational components, 233 Dipole, 50 Dirac delta function, 24, 158 Direct stiffness method, 41 Discontinuous pressure elements, 210-14 Discrete Kirchhoff approach, 359 Discrete Poisson equation for pressure, 203 Discrete Rayleigh-Ritz approxi¬ mation, 585 Discrete Rayleigh-Ritz reduction, 574 Discretization, 7, 65 Displacement, 366 Displacement difference equation form, 527 Displacement vector, 11, 76 Distributions, 25 Divergence theorem, 60 DKQ, 359, 361, 362 DKT, 361 DLEARN coding techniques, 632 DLEARN examples: dynamic analysis of a plane strain cantilever beam: description, 705-6 input file, 706 output, 717-29 implicit-explicit dynamic analy¬ sis of a rod: description, 715-16 input file, 717 output file, 717-29 planar truss: description, 691-92 input file, 692 output, 693-704 static analysis of a plane strain cantilever beam: description, 705 input file, 705 DLEARN input instructions: boundary bonditions data, 672 coordinate data, 667 element data: three-dimensional, elastic truss element, 687 two-dimensional, isotropic elasticity element, 680 execution control, 664 input data echo, 663 kinematic initial condition data, 678 load-time functions, 677 nodal history data, 667 prescribed nodal forces and kinematic boundary condi¬ tions, 673 time sequence data, 666 DLEARN program listing, 734-96 DLEARN program structure: global control, 651 initialization phase, 651-53 solution phase, 653-59 DLEARN storage in blank com¬ mon: dynamic analysis data, 646 equation system data, 650 static analysis data, 647 time sequence and time history data, 645-46 DLEARN storage requirements for four-node element, 647-50 DLEARN subroutine index, 729-34 Domain, 1 Doubly curved shells: element force vector, 396 element stiffness matrix, 396 fiber coordinate systems, 387 geometry, 384 kinematics, 388 lamina coordinate systems, 385 reduced constitutive equation, 389 strain-displacement matrix, 392 stress resultants, 399 Douglas, 27 Drilling degrees of freedom, 404 Driven cavity flow, 230-31, 282-85 DuFort-Frankel method, 481 Dupont, 27 Dynamic storage allocation, 633-44Index Eigenvalue problems: buckling of a thin beam, 431 free vibration of an elastic rod, 430 free vibration of a thin beam, 433 generalized, 570 standard, 571 standard error estimates, 433 Elastic coefficients, 76 Elastic membrane, 428 Elastodynamics (see Hyperbolic problems) Elastostatics: axisymmetric formulation, 101-3 element displacement vector, 91-92 element force vector, 90 element stiffness matrix, 90 element strain-displacement ma¬ trix: axisymmetric case, 102 three-dimensional case, 90 two-dimensional case, 90 Galerkin formulation, 84 matrix formulation, 87 strong form, 77 summary of important equa¬ tions, 98-99 weak form, 78 Element body forces, 162-63 Element boundary forces, 161-63 Element-by-element (EBE) im¬ plicit methods, 483 Element force vector, 41 Element groups, 633 Element nodes array (see IEN ar¬ ray) Elements, 20 Element stiffness implementation, 151-56 Element stiffness matrix, 41 Elements with variable numbers of nodes, 132-35 Empty set, 58 Energy inner product, 186, 273 Energy method (see Stability via the energy method) Energy norm, 186, 273 Energy stability, 472 Enriched bilinear displacementsconstant pressure quadrilat¬ eral, 259 Equation of motion, 423 Equilibrium equations, 77 Equivalence theorem, 221, 330 Error, 186 Error equation, 470 Error estimates: elliptic boundary-value prob¬ lems, 189 elliptic eigenvalue problems, 433 semidiscrete Galerkin approxi¬ mations, 456 Error in the derivative, 29 Essential boundary conditions, 6 Estimation of eigenvalues, 452 Euclidean basis vectors, 85-86 Euclidean decomposition of a sec¬ ond-rank tensor, 78 Euler-Lagrange equations, 5 Explicit methods, 461 Explicit predictor-corrector meth¬ ods. 553 Exponential shape functions, 47 Factorization, 637 Fiber, 384 Fiber numerical integration, 398 Finite difference equations, 479 Finite difference stencil, 31 Finite element, 20 Finite element domain, 20 Finite Taylor expansion, 28 Flop, 642 Force vector, 11 Forward difference method, 460 Forward Euler method, 460 Forward reduction, 32, 639 Fourier coefficients, 463 Fourier law, 60 Fox-Goodwin method, 493 Fractional-step algorithm, 474 Frames (see Beams) FTCS method, 479 Function spaces, 8 Fundamental lemma of the cal¬ culus of variations, 6 Galerkin equation, 9 Galerkin method, 8 Gauss elimination: example, 35 hand-calculation algorithm, 33 Gaussian quadrature (see Numeri¬ cal integration) Gear’s methods. 526 Generalized derivative, 17 Generalized displacements, 243 Generalized Fourier law, 60 Generalized functions, 25 Generalized Hooke’s law, 76 Generalized Jacobi method, 578 Generalized solution, 4 Generalized step function, 21 Generalized trapezoidal methods commutative diagram, 465 convergence, 468 equations, 460 implementations, 460-61 modal reduction to SDOF fom 462 SDOF model problem, 464 stability, 465-67 Geometric stiffness, 432 Ghost eigenvalues, 594 Givens method, 572, 619 Green’s function, 25 Growth/decay estimates, 457 //‘(D). 54 Half-bandwidth, 23 Heat conduction: axisymmetric formulation, 101 element force vector, 69 element stiffness matrix, 69 element temperature vector, 71 Galerkin formulation, 64 matrix formulation, 67 strong form, 61 summary of important equa¬ tions, 99-100 weak form, 61 Heat equation, 61, 419, 422 Heat flux, 107 Heat flux vector, 60 Heat supply, 60 Heaviside function, 25 Hermite shape functions, 49 Hermitian matrix, 564 Heterosis plate element, 335 Heterosis shell element, 401 Higher-order elements, 126 Higher-order mass, 446, 507 Hilber-Hughes-Taylor method (see a -method) Hilbert projection theorem, 280 Hilbert space, 266 Homogeneity: elastic coefficients, 155 elastostatics, 76 heat conduction, 60 Hooke’s law. 76800 Index ubolt’s method, 529 urglass modes, 239, 254 urglass stabilization operator, 254 ,urglass stiffness, 251 method, 572, 582 drostatic pressure, 193 problems: •natrix formulation, 424 .emidisercte Galerkin formula¬ tion, 424 strong form, 423 weak form, 423 array: iefinrtion: elastostatics, 85 heat conduction, 66 sxample: elastostatics, 94 heat conduction, 72-73 N array: definition, 71 example: elastostatics, 94 heat conduction, 72-73 plicit-explicit element mesh partitions, 461 plicit-explicit methods, 553 plicit methods, 461 .ompatible elements, 110, 243 :ompatible modes, 243 impressible elasticity, 192-93 lex-free notation, 63 :rtial inner product, 584 initesimal rigid-body motions, 88 initesimal strain tensor, 76 tial condition, 418 tial strain, 105 tial stress, 104-5 tial-stress stiffness matrix, 104, 432 ter product, 264 'egration by parts, 60 terior element boundaries, 68 terpolation estimate, 189 terpolation functions, 9 terpolation property, 114 verse function theorem, 119 verse iteration, 579 ms-Guyan reduction, 576 OFLEX, 361 Isoparametric elements, 118, 271 Isotropy: elastic coefficients, 155 elastostatics, 83 heat conduction, 60 Jacobian determinant, 119 Jacobi method, 572 Joints, 20 Kinematic boundary conditions, 563, 655 Kinematic condition of incom¬ pressibility, 193 Kinetic energy, 512 Kirchhoff mode concept, 324, 353 k,m-regular, 189, 269 Knots, 20 Kronecker delta, 21 Krylov sequence, 586 LAO), 54 Lagrange elements, 130, 138, 139 Lagrange-multiplier method, 195 Lagrange plate elements, 327 Lagrange polynomials, 127, 176 Lagrange shell elements, 400 Lagrange-type interpolation over tetrahedra, 171 Lagrange-type interpolation over triangles, 166-69 Lame parameters, 83, 192 Lamina, 384 Lanczos algorithm, 582-90 example, 590 summary (table), 588 Lanczos vectors, 586 LANSEL eigenvalue package, 600-29 Lax equivalence theorem, 470 LBB condition, 208 Leap frog method, 480 Least squares, 227 Limitation principle, 226 Linear acceleration method, 493 Linear multistep (LMS) methods for first-order equations, 523 Linear multistep (LMS) methods for second-order equations, 526 Linear nonconforming triangle, 250 Linear one-dimensional finite ele¬ ment, 37 Linear spaces, 263 Linear tetrahedral element, 126, 170 Linear triangular element, 120, 167 Linear triangular plate element, 355 LM array: definition: elastostatics, 92 heat conduction, 72 one-dimensional model prob¬ lem, 42 example: elastostatics, 94 heat conduction, 72-73 Lobatto element, 440 Lobatto quadrature, (see Numeri¬ cal integration) Local spurious modes, 287 Local truncation error, 468, 529 Location matrix (see LM array) Locking, 323 Locking element, 293 LORA, 345, 351 Loss of orthogonality, 595 Lumped mass, 436-45, 507 nodal quadrature, 436 row-sum, 444 special lumping, 445 Macaulay bracket, 25 Macroelement, 224, 259 Mass, consistent (see Consistent mass) Mass, higher-order (see Higherorder mass) Mass, lumped, 436—45, 507 (see also Lumped mass) Mass matrices for shell elements, 564 Mass matrix, 426 Matched methods, 505 Matrix equations, 11 Mean-dilatation approach, 232 Mean incompressibility, 161 Mean-value theorem, 28 Mechanisms, 240 Memory manager, 644Index Memory pointer dictionary, 631, 644 Mesh, 7 Mesh locking, 208 Mesh parameter, 189 Mesh partitions, 552 Midpoint rule, 460 Minimum potential energy princi¬ ple, 188 Misconvergence, 594 Mixed boundary-value problem of linear elastostatics, 77 Mixed formulation of elasticity: element arrays, 204-6 Galerkin formulation, 200 matrix formulation, 200-204 strong form, 198 weak form, 199 Mixed method, 195, 197 Modal analysis, 487, 540 Moment tensor, 314 Multicorrector iteration, 656 Multiple eigenvalues, 595 Natural boundary conditions, 6 Natural coordinates, 112 Natural norm, 265 Nearly incompressible case, 217 Newmark method: commutative diagram, 494 displacement-difference equa¬ tion form, 527 equations, 490-91 error equation, 496 high-frequency behavior, 498-500 implementation, 491 predictors, 491 stability conditions, 492-93 truncation error, 496 viscous damping, 500 Newton's law of heat transfer, 71 Nodal points, 20 Nodes, 20 Nonconforming elements, 110, 242 Nonlocking element, 293 Norm, 265 Numerical dispersion, 504 Numerical dissipation, 504 Numerical integration: Gaussian quadrature, 141-45 Lobatto quadrature. 440 rules for tetrahedra, 172, 174 rules for triangles, 172-74 Simpson’s rule, 141 trapezoidal rule, 140 One-dimensional model problem: element force vector, 41 element stiffness matrix, 41 Galerkin formulation, 9 matrix formulation, 11 strong form, 3 summary of important equa¬ tions, 100 weak form, 4 One-step multivalue methods, 492 One-to-one, 118 Onto, 118 Open set, 57-59 Open unit interval, 2 Operator splitting, 552 Optimal collocation methods, 531 Optimally constrained, 300 Order of accuracy, 30, 468 Order of convergence, 30 Orthogonality, 264, 571 Orthonormality, 571 Overconstrained, 300 Overdamped, 524 Overshoot, 537 _ Parabolic problems: matrix formulation, 421 semidiscrete Galerkin formula¬ tion, 420 strong form, 419 weak form, 419 Parallel processing, 486 Parent domain, 112 Parent tetrahedron, 170 Parent triangle, 165 Park’s method, 526 Partitioned form, 573 Pascal triangles, 139 Patch test, 238, 248, 256, 259-61 Penalty formulation of incom¬ pressible elasticity, 217, 289 Penalty method, 196 Pergola roof, 334 Perpendicular, 264 Petrov-Galerkin method, 9 Pinched cylinder, 401 Plane strain, 83, 103, 237 Plane stress, 83, 103 Bl Plate theory (see Reissner-Mind plate theory) Poisson-Kirchhoff theory, 310,; Poisson’s ratio, 83 Positive-definite matrix, 23 Post processing, 107 Potential energy, 188 Preconditioned conjugate gradi¬ ents (table), 485 Predictor-corrector algorithms, 473, 476 Predictor-multicorrector al¬ gorithms, 562 Predictors, 553, 562, 654-55 Prescribed boundary displace¬ ments, 77 Prescribed boundary heat flux, 6 Prescribed boundary temperature 61 Prescribed boundary tractions, 75 Pressure modes, 207, 277 Pressure smoothing, 227 Principal invariants, 498, 528 Principal roots, 529 Profile, 554, 633 Projects, 261-62 Pseudonormal, 384 QUAD4, 345, 351, 362, 395 Quadratic tetrahedral element, 171 Quadratic three-node element in one dimension, 128 Quadratic triangular element, 136 168 Quasi-uniform, 269 Range, 1 Rank check, 257, 637 Rank deficiency, 191, 239, 278, 332-34 Rate of convergence, 468 Rayleigh damping, 426, 492 Rayleigh quotient, 435, 452 Rectangular plates, 338-40, 346-49, 363 Reduced integration, 221, 327 Reduced integration beam ele¬ ments, 376 Reduced system, 571 Region of absolute stability, 525 Regular, 269 Regularized element array, 486802 Index jsner-Mindlin plate theory: ssumptions, 310 oundary conditions, 324-26 onstitutive equation, 313 onvergence criteria, 322 lenient stiffness matrix and load vector, 321 jnetnatics, 311-12 oatrix formulation, 319 rain-displacement equations, 313 Tong form, 317 ariational equation, 315 zeak form, 318 ative error, 36 ative period error, 505 irdered Crout EBE precondi¬ tioner, 486 idual, 585 idual bending flexibility, 378 -idual forces, 656 toring orthogonality, 598 urn of banished Ritz vectors, 597 imbic plates, 346-47, 351, 352 gs (see Shells of revolution, rings and tubes) tz value, 585 z vector, 585 tation, 314, 366 uth-Hurwitz criterion, 530 yal road method (see FoxGoodwin method) tl’yev’s method, 481 iwarz inequality, 264 OF model problem, 464 nor element, 159-60 ective orthogonalization meth¬ ods, 598 ective reduced integration, 221, 327 MILOOF, 361 condition, 598 elements, 135, 138, 139 it closure, 58 4 intersection, 58 4 union, 58 ape functions, 9, 112-37, 165-71 quadrilaterals and bricks, 112-37 tetrahedra, 170-71 triangles, 165-70 Shape function subroutines, 146-50 Shear constraints, 323 Shear correction factors, 391 Shear force, 314, 367 Shear modulus, 192 Shear strain, 312, 323, 367 Shells (see Doubly curved shells) Shells as an assembly of flat ele¬ ments, 404 Shells of revolution, rings and tubes: boundary conditions, 414 element force vector, 412 element stiffness matrix, 412 fiber coordinate systems, 407 geometry, 405 kinematics, 407 lamina coordinate systems, 406 reduced constitutive equations, 407 strain-displacement matrix, 409 stress resultants, 412 Shifting, 574 Singular elements, 175-82 Skew-symmetric second-rank ten¬ sor, 79 Skyline, 633 Slope, 50 Small displacements superposed upon large, 104 Sobolev imbedding theorems, 268 Sobolev norms, 186, 266-67 Sobolev spaces, 54, 267 Sobolev’s theorem, 54 Space of pressures, 198 Spectral radius, 497 Spectral stability, 497 Spectral transformations, 575, 583 Spectrum slicing, 578 Speed of sound, 510 Spurious roots, 529 Spurious zero-energy modes (see Rank deficiency) Square plates, 328-29, 337-39, 356, 357, 359 Stability, 462 Stability polynomial, 524, 527 Stability via the energy method: generalized trapezoidal meth¬ ods, 471 implicit-explicit algorithms, 559 Newmark methods, 556 predictor-corrector methods, 557 Standard element families, 137-38 Standard error estimate, 190 Statically condensed elastic coefficient matrix, 103 Static condensation, 246, 573 Static load patterns, 574 Stiffly stable, 526 Stiffness matrix, 11 Stokes flow, 193 Strain-displacement equations. 76 Strain energy, 187, 512 Strain projection, 232, 236 Strain tensor, 76 Stress tensor, 76 String on an elastic foundation, 46 Structural dynamics (see Hyper¬ bolic problems) Structural dynamics algorithms: comparison, 532 discussion, 535 Sturm sequence check, 578 Subspace iteration method, 577 Superconvergence, 27 Sylvester’s inertia theorem, 578, 627 Symmetric bilinear forms, 7 Symmetric matrix, 12 Symmetric second-rank tensor, 79 Taylor’s formula with remainder, 27 Temperature, 60 Tetrahedral coordinates, 170 Tetrahedral elements, 126, 170-71 Thermal expansion coefficients, 105 Thin plate, 313 Three-node quadratic element, 157-58 Time-step estimates: linear beam elements, 515-17 quadrilateral and hexahedral el¬ ements, 517 three-node quadratic rod ele¬ ment, 514 two-node linear heat conduction element, 515Index two-node linear rod element, 513-14 71. 342, 362 Torsionless axisymmetric analy¬ sis, 236 Torsionless axisymmetric case, 101 Total energy, 512 Total potential energy function, 194 Tractions, 77 Transition element, 159-60 Transverse displacement, 314 Trapezoidal rule (see Average ac¬ celeration method) Trial solutions, 3 Trial vectors, 574, 585 Triangular coordinates, 166 Triangular elements, 121, 136, 138, 139, 167-69, 180-81 Tridiagonal matrix, 589 Trilinear hexahedral element, 123 Truncation errors, 496 Tubes (see Shells of revolution, rings and tubes) Twist, 367 Twisted ribbon, 351, 353, 354 Twisting moment, 367 Two-point boundary-value prob¬ lems, 2 Unconditional stability, 466 Underconstrained, 300 Underdamped, 524 Unified single-step methods, 552 Uniform reduced integration, 221, 327, 414 Unit outward normal vector, 57-58 Unit roundoff error, 595 Unit step function, 25 Upper triangular matrices, 636 Variational crimes, 8 81 Variational equation, 4 Variations, 4 Virtual displacement principle, « 78 Virtual work principle, 4, 78 Viscous damping, 426 Von Neumann method, 479, 52: Wave equation, 427, 506 Weak solution, 4 Wedge-shaped elements, 125, 171-72 Weighted residual methods, 9 Weighting functions, 4 Wilson-0 method, 530 Winkler foundation, 428 Young’s modulus, 83 Zero-energy modes (see Rank deficiency)
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب The Finite Element Method - Linear Static and Dynamic Finite Element Analysis رابط مباشر لتنزيل كتاب The Finite Element Method - Linear Static and Dynamic Finite Element Analysis
|
|