Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب A First Course in the Finite Element Method الإثنين 09 يوليو 2012, 11:08 pm | |
|
أخوانى فى الله أحضرت لكم كتاب A First Course in the Finite Element Method Fourth Edition Daryl L. Logan University of Wisconsin-Platteville
و المحتوى كما يلي :
Contents 1 Introduction 1 Prologue 1.1 Brief History 2 1.2 Introduction to Matrix Notation 4 1.3 Role of the Computer 6 1.4 General Steps of the Finite Eleme~t Method 7 I.S Applications of the Finite Element Method 15 1.6 Advantages of the Finite Element Method 19 1.7 Computer Programs for the Finite Element ~ethod 23 References 24 Problems 27 2 Introduction to the Stiffness (Displacement) Method 28 Introduction 28 2.1 Definition of the Stiffness Matrix 28 2.2 Derivation of the Stiffness Matrix for a Spring Element 29 2.3 Example of a Spring Assemblage 34 2.4 Assembling the Total Stiffness Matrix by Superposition '\ " (Direct Stiffness Method) 37 . 2.5 Boundary Conditions 39 2.6 ~otential Energy Approach to Derive Spring Element Equations 52iv A Contents References 60 Problems 61 3 Development of Truss Equations 65 Introduction 65 3.1 Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates 66 3.2 Selecting Approximation Functions for Displacements 72 3.3 Transformation of Vectors in Two Dimensions 75 3.4 Global Stiffness Matrix 78 3.5 Computation of Stress for a Bar in the x-y Plane 82 3.6 Solution of a Plane Truss 84 3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space 92 3.8 Use of Symmetry in Structure 100 3.9 Inclined) or Skewed, Supports 103 3.10 Potential Energy Approach to Derive Bar Element Equations 109 3.11 Comparison of Finite Element Solution to Exact Solution for Bar 120 3.12 Galerkin's Residual Method and ItS Use to Derive the One-Dimensional Bar Element Equations 124 3.13 Other Residual Methods and Their Application to a One-Dimensional Bar Problem 127 References 132 Problems 132 4 Development of Beam Equations 151 Introduction 151 4.1 Beam Stiffness 152 4.2 Example of Assemblage of Beam Stiffness Matrices 161 4.3 Examples of Beam Analysis Using the Direct Stiffness Method 163 4.4 Distributed Loading 175 4.5 Comparison of the Finite Element Solution to the Exact Solution for a Beam 188 4.6 Beam Element with Nodal Hinge 194 4.7 Potential Energy Approach to Derive Beam Element Equations 199. : Contents .a. v 4.8 Galerkin's Method for Deriving Beam Element Equations 2U1 References 203 Problems 204 5 Frame and Grid Equations 214 Introduction 214 5.1 Two-Dimensional Arbitrarily Oriented Beam Element 214 5.2 Rigid Plane Frame Examples 218 5.3 Inclined or Skewed Supports-Frame Element 237 5.4 Grid Equations 238 5.5 Beam Element Arbitrarily Oriented in Space 255 5.6 Concept of Substructure Analysis 269 References 275 Problems 275 6 Development of the Plane Stress and Plane Strain Stiffness Equations 304 Introduction 304 6.1 Basic Concepts of Plane Stress and Plane Strain 305 6.2 Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations 310 6.3 Treatment of Body and Surface Forces 324 '6.4 Explicit Expression for the Constant-Strain Triangle Stiffness Matrix 329 6.5 Finite Element Solution of a Plane Stress Problem 331 ReferenCes 342 Problems 343 7 Practical Considerations in Modeling; Interpreting Results; and Examples of Plane Stress/Strain Analysis Introduction 350 7.1 Finite Element Modeling 350 7.2 Equilibrium and Compatibility of Finite Element Results 363 350vi A.. Contents 7.3 Convergence of Solution 367 7.4 Interpretation of Stresses 368 7.5 Static Condensation 369 7.6 Flowchart for the Solution of Plane Stress/Strain Problems 374 7.7 Computer Program Assisted Step-by-Step Solution, Other Models, and Results for Plane Stress/Strain Problems 374 References 381 Problems 382 8 Development of the Linear-Strain Triangle Equations 398 Introduction 398 8.1 Derivation of the Linear-Strain Triangular Element Stiffness Matrix and Eq"\lations 398 8.2 Example LST Stiffness Determination 403 8.3 Comparison of Elements 406 References 409 Problems 409 9 Axisymmetric Elements 412 Introduction 412 9.1 Derivation of the Stiffness Matrix 412 9.2 Solution of an Axisymmetric Pressure Vessel 422 9.3 Applications of Axisymmetric Elements 428 References 433 Problems 434 10 Isoparametric Formulation 443 Introduction 443 10.1 Isoparametric Formulation of the Bar Element Stiffness Matrix 444 10.2 Rectangular Plane Stress Element 449 10.3 lsoparametric Fonnulation of the Plane Element Stiffness Matrix 452 10.4 Gaussian and Newton-Cotes Quadratufe (Numerical Integration) 463 10.5 Evaluation' of the Stiffness Matrix and Stress Matrix by Gaussian Qua~ture 469Contents • vU 10.6 Higher..Qrder Shape Functions 475 References 484 Problems 484 11' Three-Dimensional Stress Analysis 490 Introduction 490 11.1 Three-Dimensional Stress and Strain 490 11.2 Tetrahedral Element 493 11.3 Isoparametric Formulation 501 References 508 Problems 509 12 Plate Bending Element 514 Introduction 514 12.1 Basic ~ncep~ of Plate Bending 514 12.2 Derivation ofa Plate Bending Element Stiffness Matrix and Equations 519 12.3 Some Plate EJemep.t Numerical Compa.tjsons 523 12.4 Computer Solution for a Plate Bending Problem 524 References 528 Problems 529· 13 Heat Transfer and Mass Transpor't S34 Introduction ·534 13.1 Derivation of the Basic Differenti3.l Equation 535 13.2 Heat Transfer'with Convection 538 13.3 Typical Units; Thermal Conductivities, K; and Heat-Transfer Codficients,h 539 13.4 One-Dimensional Finite Element Formulation Using a Variational Method S40 13.5 Two-Dimensional Finite Element FonnuJation 555 13.6 Line or Point sOurces . 564 13.7 Three-Dimensional Heat Transfer Finite Element FormUlation 566 13.8 One-Dimensional Heat Transfer with Mass Transport 569 ,viii ... Contents 13.9 Finite Element Fonnulation of Reat Transferwith Mass Transport by Galerkin's Method 569 13JO Flowchart and Examples ofa Heat-Transfer Program 574 References 577 Problems 577 ;' 14 Fluid Flow 593 Introduction 593 14.f Derivation of the Basic Differential Equations 594 14.2 One-Dimensional Finite Element Fonnulation 598 14.3 Two-Dimensional Finite Element Formulation 606 14.4 Flowchart and Example of a Fluid-Flow Program 611 References 612 Problems 613 15 Thermal Stress 617 Introduction 617 15.1 Fonnulation of the Thermal Stress Problem'and Examples 617 Reference 640 Problems 641 16 Structural Dynamics and T'me-D~pen~ent Heat Transfer 647 Introduction 647 16.1 Dynamics of a Spring-Mass System 647 16.2 Direct Derivation of the Bar Element Equations 649 16'.3 Nwnerica1 Integratio~ in Time 653 16.4 Nat~l Frequencies of a One-Dimensional Bar 665 16.5 Time-Dependent One-Dimensional Bar Analysis 669 16.6 Beam Element Mass Matrices and Natural Frequ~cies 674 16.7 Truss, Plane Frame, Plane Stress/Strain, Axisymmetric, and Solid 'Element Mass Matrices: 681 16.8 Time-Dependent Heat T~~f~ 686Contents A ix 16.9 Computer Program Example Solutions for Structural Dynamics 693 References 702 Problems 702 Appendix A Matrix Algebra 708 Introduction 708 A.l Definition of a Matrix 708 A.2 Matrix Operations 709 . A.3 Cofactor or Adjoint Method to Determine the Inver:se of a Matrix 716. A.4 Inverse of a Matrix by Row Reduction 718 References 720 Problems 720 Appendix B Methods for Solution of Simultaneous Linear Equations 722 Introduction 722 B.t General Form of tPe Equations 722 B.2 Uniqueness, Nonuniqueness, and Nonexistence of Solution 723 B.3 Methods for Solving Lin~r Algebraic Equat.ions 724 B.4 Banded-5ymmetric Matrices, Bandwidth, Skyline, and Wavefront Methods 735' References 741 Problems 742 Appendix C Eq~ations from Elasticity \'leory 744 IntfOduction 744 CJ Differential Equations ofEquilibrium 744 C.2 StrainfDisplacement and Compatibility Equations 746 C.3 Stress/S~in Relationships 748 Reference' 751x .A Contents Appendix.D Equivalent Nodal Forces 752 Problems 152 Appendix E Principle of Virtual Work 755 References 758 Appendix F Properties of Structural Steel and Aluminum Shapes 759 Answers to Selected Problems 773 Index 79 A Adaptive refinement, 355 Adjoint method, 718 Admissible variation, 55 Aluminum shapes, properties of, 759-772 Amplitude, defined, 649 Approximation'functions, 72-74 compatible, 73 complete, 73-74 conforming. 73 displacement, 72-74 interpolation, 74 Aspect ratio (AR), 35). ,352-353 Axial symmetIy, 100 Axis of revolution, 412 Axis of symmetry, 412 Axisymmetric element, 9, 412-442, 684-685 applications of, 428-433 body forces, 419-420 consistent-mass matrix, 6S4-685 defined, 9, 412 discretization, 423 displacement functions, 415-417 element type, selection of, 415 equations, 419-421 introduction to, 412 pressure vessel, solution of, 422-428 sti1fDess matrix, 412-422, 423-428 strainjdispl.acement relationships, 411-419 stress/strain relationships, 417-419 surface foras, 420-421 B Banded-syrnm.etric method, 735-741 Bar elements, 67-72, 92-100, 109:-120, 120-124, 124-127, 127-131,444-449,665-669, 669-674. See also Truss equations analysis of. 665-669, 669-674 collocation method, 129 consistent-mass matrix, 651-653 displacement function, 68, 446, 650 dynamic analysis of, 649-653, 665--669, 669-674 equations, 124-127,447-449, 649-653 exact'solution, 120-124 finite element solution, 12():"'124 Galerldn's residual method, 124-127, 131 isoparametric formulation, 444-449 least squares method, 130 lOCal coordin'ates for, 66-12 lumped·mass matrix, 651 mass matrix, 650-653 Datural frequencies, 665-669 one-127-131,665-669,609-674 , potential energy approach, 109-120 residual methods, 124-127, 127-131 selection of, 67, 444-446,650 stiffness matrix, 66-72, 92-100, 444-449, 6~653 strain/displacement relationships, 69,446-447,650 stress. computation of, 82-83 stress/strain relationships. 69, 446-447,650 subdomain method, 129-130 three-dimensional space, 92-100 time-dependent (dynamic) stress analysis, 649-653 time..dependent problem, 669-674 transformation matrix, 92-100 Beam element, 152-161, 161-163, 194-199,214-218,218-236, 255-269, 674-681 arbitrarily oriented, 214-218, 255-269 bending, 153-158, 255-260 boundary conditions, 161-163 defined, 152 deformations, 153-158 ' displacement function, 155..:..156 equations, 157-158, 161-163 mass matrices, 674-681 natural frequencies, 674-681 nodal hinge, 194--199 rigid plane frames, 218-236 selection of, 154 shape functions, 155-156 sign conventions, 152, 256-257 space, arbitrarily oriented in, 255-269 stiffness, 152-161 stiffuess matrix, 153-158, 158-161 strain/displacement relatioDShips, 156-157 stress/strain relationships, 156--157 transformation matrix, 216, 259-260800 j, Index Beam element (Continued) transverse shear deformations, 158-161 twCHiimensionai, arbitJarily oriented, 214-218 Beam equations, 151-213 bending deformations; 153-158 boundaryeonditions, 161-163 direct stiffness method, 163-175 displacement functions, 155-156 distributed loading, 175-188 EuIer-Bemouli theory, 153-158 exact solution, 188-194 finite element solution, 188-194 fixed-end reactions, 175 Galerkin's method, 201-203 introduction to, 151-152 load replacement, 177-178 nodal hinge, element with a, 194-199 potential energy approach, 199-201 sign conventions, 152 stiffness matrix, 153-158, 158-161, 161-163 stiffuess ofel.ement, 152-161 strain/dispJacement relationships, 156-157 stress/strain relationships, 156-157 TlIDosbcDko theory, 158-161 transverse shear deformations, 158-161 work-equiva1ence method, 176-177 Bending, 153-158,255-260,514-518 beam elements in arbitrary space, 255-260 defonna~ons in beam elements, 15~-158 plate element. 514-518 rigidity ofa plate, 517 Body forces; 324-326, 419-420, 448, 460; 497-498 axisymmetric elemcots, 419-420 bar element, 448 centrifugal, 325 natural coordinate system, 448 plane element, 460 teU'ahedral element, 497-498 treatment of, 324-326 Boundary conditions, 13-14,34, 39-52, 103-109, 161-163, 320-322, 601 beam elements. 161-163 constant-strain triangular (CST) elemertt, 320-322 fluid flow, 601 homogeneous, 39-40 iDclincd supports, 103-109 introduction to, 13-14,34 DOnbomo.geneous, 39, 4O-4l penalty method, 50-52 C skewed supports, 103-109 stiffness method, 39-52 Castigli;lDO'S theorem, 12 Central difference method, 653, 654-659 Centrifugal body force, 325 Cireu1ar frequency, natural, 649 Coarse-mesh generation, 310 Coefficient matrix, inversion of, 726 Coefficient oftbennal expansion, 618 Cofactor method, 716-717 Collocation method, 129 Column matrices, 4, 708 Compatibility, 35, 363-367, 746-748 condition of, 748 equations, 746-748 finite element resultS, 363-367 requirement, 35 Compatible displacements, 155 Compatible functions, 73 Complete, approximation functions, 73-74 Computer programs, 6-7, 23-24, 314-380,524-528,693-701 finite element method, 23-24 plate bending element, solution for, 524-528 role of, 6-7 step-by-step solutions, 374-380 structuta1 dynamics, 693-701 Concentrated loads, 360-361 Condensation, see Static. condensation Conduction,535-538,542-546,551-S58 element conduction matrix, . 542-546, 551-558 beat, one-dimensional, 535-537 beat, two-dimensiona~ 537-538 Conforming functions, 73 Gonnecting (mixing) different kinds of elements, 361-362 Consistent-mass matrix, 651-653, 682-685 cOnstant-strain uianguJar (CST) element, 304-305, 310-324, 324-329, 342, 406-408 body forces, 324-326 boundaly conditions. 320-322 eoarse--~ generation, 310 defects, 342 .displacement function, 311-315 equations, 310-324 forces (stresses), 322-324 global equations, 320-322 introduction to, 304-305 LST elements, comparison of, 406-408 matrix, 310-324, 329-331 nodal displacements, 322 penalty formulation, 331 selection of, 310-311 strain/displacement relationships, 315-320 stress/strain relationships, 315-320 surface forces, 326-329 Constitutive law, 11 Constitutive ma!rix, 309, 522 Continuity, 35, 73 requirement, 35 symbol,73 Convection, heat tJansfer with, 538-539, 540 Convergence of finite element solution, 367-368 Coordinates, 66-72, 444-446 bar elements, 67-72,444-446 intrinsic system, 444 natura] system, 444 Coulomb-Mohr theory, 342 Cramer's rule, 724-725 CST, see Constant-strain triangular (CST) element Cubic elements, 9 Curvature matrix, 521-522 D D'A!embert's principle, 755-756 Defects, CST elements, 342 Deformation, "33, 153-158, 158-161, 514-518 bending'in beams, 153-158 bending rigidity of a plate, 517 defined, 33 Kirchhoff assumptions, $]5-516 plate bending, 514-518 potential energy, 518 stress/strain relationships, 517-518 transVerse shear in beams, 158-161 Degrees offreedom, 14, IS, 29 defined,15 spring element, 29 unknown, 14 Determinant, defined, 716 Differential equations, 535-538, 594-596, 744-746 elasticity theory, 744-746 equilibrium, 744-746 fluid flow, 594-598 . heat transfer, 535-538 Direct equilibrium method, 11 Direct integration, 653 Direct stiffness method, 2-4, 13-14, 28,37-39, 163-175. See also Superposition beam analysis using, 163-175 history of, 2-4, 28 total stiffness matrix, assembly by, 37-39 use of, 13-14Direction cosines, 85, 95-96 Directional stiffness bias, 371 Discontinuities, natural subdivisions at, 354, 357 Discretization, 1,8-10,331-332,423 axisymmetric element, 423 finite element method, 1, 8-10. 331-332 plane stress, 331-332 Displacement function, 11,31-32,68, 15.5-156, 311-315, 399-401,446, 450-451, 455-456, 494-496, 519-521 - bar element, 68, 446 beam element, 155-156 constant-strain triangular (CSlj element, 11l-315 Hermite cubic interpolation, 155-156 interpolation, 32 isoparametric function, 446, 450-451,455-456 linear-strain triangle (LSl), 399-401 plane element" 455-456 plane stress element, 450-451 plate bending element, 519-521 selection o( 11 shape, 32, 155-156 spring element, 31-32 tetrahedral element, 494-496 DispIacement method, 7, 28-64. See also Stiffness method introduction to, 28-64 use of, 7 Displacements, 34, 70, 72-74, 755-758. See also Strain/" djsp1acement relationships appromnation functions for, 72-74 compatible, 755 nodal, 34, 10 virtual work, principles of, 755-758 Distributed loading, 175-188 beams, 175-188 eft'eetive global nodal forces, - 181-182 fixed-end reactions,. 175 _ general formulation of, 178-179 load replacement, 171-178 work..equiva1ence method, 176-177 Dynamics, 647-700 axisymmetric element, analysis of, 684-685 bar element equations, 649-653 beam element DlaS.') mattia:s, 674-681 central difference method, 653, 654-659 computer program example solutions, 693-701 E introduction to, 647 mass matrices, 650-653, 674-681, 681-685 natural frequencies, 649, 665-669, 674-681 Newmark's method, 659-663 numerical integration in time, 653-665, 687-693 one-dimensional bar analysis, 665-669, 669-674 plane frame element, analysis of, 682-683 plane stress/strain element, analysis of, 683--684 spring-mass system, 641-649 structural, 647-707 tetrahedral (solid) element mass matria:s, analysiS of, 685 time, numerical integration in, 653-665, 687"'-693 time-dependent heat transfer, 686-693 t.ime-dependent stress analysis, 649-653, 669-674 truss element, analysis of, 681-682' Wj]so~'s (Wdson·Theta) method, 664-665 EffectivC stress, 341 Elasticity theoIy, 744-751 compatibility equations, 746-748 condition of compatibility, 748 differential equations of equilibrium, 744-746 equilibrium, differential equations of. 744-746 introduction to, 744 modulus ofe1asticity, 748 strain/displacement, 746-748 stress/strain relationships, 748-751 Elements, 8-1(}, 11, 13-14,30-34, 65-150, 151-213, 304-30S, 310-324, 342,351-362. 398-403, 444--449,449-452, 480-482, 493-500,501-508, 514-533 aspect ratio (AR), 35] axisymmetric; 9 bar, 65-150,444-449 beam, lS1-21~ eoarse--mesb. generation, 310 connecting (mixing), modeling, 361-362 constant...strain triangular (CST), 304-305, 310-324, 342 cubic,.9 __ defects, CST, 324 equations, 11, J3-J4, 34, 69-70, 402-403,451-452, 522-523 finite, 8 Index ... 84l forces, 34, 70 heterosis, 523 isopara:metric, 446 laGrange, 482 linear, 9 linear hexahedral, 501-504- linear-strain triangle (LST), 398-403 plane stress, 449-452 plate bending. 514-533 Q8,480 Q9,482 quadratic, 9 quadratic bexahedral, 504-508 refinement, methods of, 355-356, 358-359 selection of, 8-10, 30-31,310-311 399,444--446,449,519 serendipity,481 shapes. modeling, 351 sizing, 355-356, 358-359 spring, 30-34 - stiffues:s matrix, It ~ 33-34, 66-72, 402-403,447-449,451-452, 522-523 tet:rah.edral. 493-500 transition triangles, 359-360 Energy method, 12 Equations, II, 13-14, 34, 52-60, 65-149, 151-213,214-237, 238-255,310-324,398-411, 419-422, 447-449, 451-452, 459-460, 497-498, 522-523, 535-538, 542-$46, 557-558, 594-596, 599-601. 608, 659-661, 664-665,722-743, 744-751. See also .Elasticity theory; SimuJtaneous linear equations axisymmetric eIeiner.tt, 419-422 bar element. 124-127, 447-449 beam, 151-213 beam-clement, 199-201, 201-203 compatibility, 746-748 constant--strain triangnlar (CST) element, 310-324 diffcn:ntia1~ 535-538, 594-596, 744-745 element, 11, 13-14,69-70 element conduction, 542-546. 557-558 finite e1cmcnt, III ftuid ftow, 599-601, 608 frame, 214-231 global, 13-14,34, 70, 161-163, S4E 601 grid. 214, 238-255 heat transfer, 535-518 i.soparametric formulation, 447-449 459-460 Jacobian function, 447802 ... ·Index Equations (Continued) linear-strain triangle (LST), 398-411 Newmark's, 659-661 one-dimensional, 124-127, 131, 542-546 plane element, 459-460 plane stress element., 451-452 plate bending element, 522-523 simultaneous linear, 722-743 spring element, 52-60 tetrahedral element, 497-498 total, 13-14, 70 truss, 65-149 two-dimensional,557-558 Wilson's, 664-665 Equilibrium, 363-367, 744-746 compatibility and, 363-367 differential equations 744-746 finite element results,.363-367 Equivalent stress., 341 Euler-Bemouli theory, 153-158 Exact solution, 120-124, 188-194 bar element, 120- t24 beams, 188-194 finite element solution, comparison to, 120-124, 188-194 Explicit numerical integration method, 689 F Field problems, 52 Finite element, defined, 8 Finite element method, 1-26, 120-124,350-363,540--;555, 555-564, 566-568, 569-574, 59&-606,606-610. See also Madding advantages of, 19-22 applications of, 15-19 . boundary conditions, 13-14 computer, role of, 6-7 computer programs for, 23-24 constitutive law~ 11 defined, I, 8 degrees offreedom, 14, 15 direct equilibrium method, 11 \ direct stiffness method, 2-3, 13-14 discretization, 1,8-10 displacement function, selection of, II displacement method, 7 element conduction matrix, 542-546,557-558 element types, selection of, 8-10, 541, 555, 598 energy method, 12 exact solution, comparison to, 1~124 flexibility method, 7 fluid flow, 598-606, 606-610 force method, 7 functional, 12 generalized displacements, 14 global equations, 13-14 gradient/potential relationship, 599, 607 heat flux/temperature gradient relationship, 542, 556-557 heat transfer, 540-555, 555-564, 566-568, 569-574 history of, 2-4 introduction to, 1-26 matrix notation, 4-6 modeling, 350-363 one-dimensional, 540-555, 569, 598-606 potential ftinction, 598-599, 607 primal}' unknowns, 14 results, interpretation of, 14 steps of, 7-14 stiffness method, 7 strain/displacement relationships, 11 stress/strain relationships, 11, 14 temperature fuJiction, 541, 556 temperature gradient/temperature relationships, 542, 556-557 three-dimensional, 566-568 total equations, 13-14· • truss equations, 120-124 two-dimensional, 555-564, 606-610 v;uiationai method, 540-555 velocity/gradient relationship, 599, 607 weighted residuals, methods of, 12-13 work method, 12 Finite element solution, 120-124, 188-194,331-342,363-367, 367-369 approximations in, 364-367 bar element, 120-124 beams, 188-194 compatibility of.results, 363-367 convergence of, ·361-368 CST defects, 342 discretization, 331-332 equifibriwn of results, 363-361 exact solution, comparison to, 120-124,188-194 plane stress, 305-309 stiffness matrix, assemblage of, 332-342 Fixed-end forces, 229-230 Fixed-end reactions, 115 Flexibility metbod, 7 Flowcharts, 374, 574,611,656,661 central difference method, 656 fluid dow; 611 heat transfer, 574 Newmark's equations, 661 nwnerical integration, 656 plane stress/strain, 374 Fluid flow, 593-616 boundary conditions, 601 differential equations, 594-598 equations, 599-601, 608 finite element formulation, 598-606, 606-610 flowchart for, 611 global equations, 601 gradient/potential relationship, 599, 607 introduction to, 593 nodal potentials, 601 one-dimensional, 598-601 pipes, 596-598 porous medium, 594-596 potential function, 589 program, example of. 611-61i solid bodies, around, 596-598 stiffness matrix, 599-601, 608 two-dimensional, 606-6l0 velocities, 602 , velocity/gradient relationship, 599, 601 . volumetric dow rates, 602 Force, 7, 34, 36, 70, 178-182, 229-230,232-233,322-324, 324-329,419-421, 44&--449, 460, 497-498, 752-754 axisymmetric elements, 419-421 bar element, 70, 448--449 body, 324-326,419-420,448,460, 497-498 centrifugal body, 325 constant-strain triangular (CST) element, 322-324, 324-329 equivalent nodal, 178-180,752-154 fixed-end, 22~-230 global nodal matrix, 36 method,7 nodal, 178-182,232-233 plane element, 460 rigid plane frames, 229-230, 232-233 spring element, 34 stresses, 322-324 sulface, 326-329,420-421, 448-449,460,498 tetrahedral element, 497-498 Forced convection, 538, 540 Frame equations, 214-237 effective nodal forces, 232-233 fixed-end forces, 229-230 inclined supports, 137 introduction to, 214 rigid plane frames. 218-236 skewed supports, 237Free convection. 538,540 Fringe carpet., 369 Functional, defined, 12 G Galerkin's method, 12-13, 124-127, 131,201-203 bar element formulation, 125-127 beam element equations, 201-203 general fonnuIation, 124-125 one-dimensionaJ bar element equations, 124-127, 131 residual method, 124-127, 131 lISe of, 12-13 Gauss·Jordan method, 718-720 Gauss-Seidel iteration, 733-735 Gaussian elimination, 726-733 Gaussian quadrature, 463-466, 469-475 element stresses, evaluation of, 473-475 one-point, 463-464 stiffness matrix, evaluation of, .469-413 three-point, 465-466 two-point fonnula. 464-465 Global equations, 13-]4, 34,70, 161-163,320-322,601 assemblage of, 13-14 bar clement, 70 beam element, 161-163 constant-strain triangular (CST) element, 320-322 Huid flow, 601 spring element, 34 Global stiffness matrix, 36, 78-81. See also Total stifihess matrix bar element, 78-81 inverse. 80 spring assembly, 36 . transverse, 80 Gradient/potential relationsbip, 599, 607 Grid, defined, 238 . Grid equations, 214, 238-255 dete:nnination of, 238-255 introduction to, 214 H open sections, 241 polar moment of inertia, 240 torsional constant, 240-241,242 h method of refinement, 355-356 Hannonic motion, simple, 649 Hea~ fiux, 542, 546 Heat flux/temperature gradient relationship, 542, 556-557 Heat transfer, 534-593, 686-6!a coefficients, 539-540 convection, 538-539, S40, differential equations, 535-538 element conduction matrix, 542-546, 557-S5S finite element fonntdation, 540-555, 555-564, 566-568, 569-574 flowchart for, 574 Galerkin's method, 569-574 heat conduction, one-dimensional, 535-537 beat conduction, two-dimensional, 537-538 heat flux/temperature gradient relationship, 542, 556-557 heat·transfercoefficients, 539-540 introduction to, 534-535 line sources, 564-566 mass uansport, 569-574 nodal temperature, 546 nwneric:al time integration, 687-683 one..point sources, 564-566 program, examples of, 574-576 temperature function, 541, 556 temperature gradient/tenlf)erature relationships, 542, 556-557 thermal conductivities, 539-540 three-dimensional, 566-568 time-dependent, 686-693 two-dimensional, 555-564, 574-567 units of, 539-540 variational method, 540-555 Hermite cubic interpolation function, 155-156 Heterosis element, 523 Hooke's Jaw, 11,67 I Identity matrix, 712 Inclined supports,_ 103-109, 237 frame equations, 237 truss equations, 103-109 Infinite medium, 361 Infinite stress, 360-361 Integration, !fee Numerical Integration . Interpolation functions, 32, 74. See also Approximation functions Intrinsic coordinate system, 444- Inverse, defined, 80 Inverse ofa matrix, 7l2, 716-718, 71&-720 adjoint method, 718 cofactor method, 716-717 defined, 712 Gauss-Jordan method, 71&-720 row reduction, 718-720 lsoparametric formulati9ll, 443~89, 501-508 bar element stiffness matrix., 444--449 defined, 444, 483 J Index A. 80. element stresses, evaluation of, 473-475 Gaussian quadrature, 463-466, 469-475 intrinsic coordinate system, 444 introduction to, 443 linear hexahedral element, 501-50.: natural coordinate system, 444 Newton-Cotes quadrature, 467-49. numerical integration, 463-469 plane element stiffness matrix, 452-462 plane stress element, 449-452 quadratic hexabedral e~ment, 504-508 shape functions, higher-order, 475-484 stiffness matrix, evaluation of, 469-473 stress analysis. 501-508 transformation mapping, 444 Jacobian function, 447 Joint force, see Nodal force K Kirchhoff assumptions, 515-517 L \ L:aGrange interpolation, 482 Least squares method, 130 Line elements, defined, 3M Line sources, 564-566 Linear elements, 9 . Linear..elastic bar element, see Bar elements; Truss equations Linear hexahedral element, SOI-5M Linear-strain triangle (LSlj equation: 398-411 CSTelements,comparisonof,406-4{ defined, 398, 401 derivation of, 389-403 displacement function, 399-401 element type, selection of, 399 introduction to, 398 Pa.sc:al triangle, 400 quadratic-strain triangle (QST) element., 400 stiffness, determination of, 4Ol-4Ot st:i.f6less matrix. 398-403 strain/displacement relationships, 401-402 stress/strain relationships, 401-402 Load rep1acc:ment, 177-178 Local stiffness matrix, 34 Longitudinal wave velocity, 670 LST.'see Linear-strain triangle (I..ST. equations Lumped-mass matrix, 651, 682804 .. Index M Mass matrix, 650-653,674-681, 681-685 axisymmetric element, 684--(;85 bar eJemeDt, 650-653 beam element, 674-681 consistent-mass, 651-653, 682-985 lumped-mass, 651, 682 natural frequencies and. 674-681 plane frame element, 682-683 plane stress/strain element, 683-684 tetrahedral (solid) element, 685 truss element., 681-682 Mass transport, 569-574 Galerkin's method, 569-574 heat transfer and, 569-574 mass flow rate, 569 Matrix, 4-6, 11, 28-29, 29-34, 36, 37-39,06-72,78-81,92-100, 216,259-260,304-305,309, 310-324,329-331,519-523, _.542-546,557-558,620-622, 650-653,647-681.681-68S, 708-721. See also Matrix algebra; Mass matrix; Stiffness matrix algebra, 708-721 column, 4, 708 consistent-mass., 651-653 constant-strain,triangular (CST) . element, 304-305, 310-324, 329-331 constitutive, 309,522 curvature, 521-522 defined, 4,708-709 element conduction, 542-546, 557-558 element stiffness., 11 global nodal displacement, 36 global nodal force, 36 global stiffiless, 36, 78-81 identity, 712 local stiffness, 34 lumped-m~ 651 mass, 650-653, 647-681. 681-685 moment, 521-522 notation for, 4-6 orthogonal,713-714 quadra~c form, 716 rectangular, 4, 708 row, 708 singular, 718 square, 708 stiffneSs, 28-29, 29-34, 66-7~ 92-100, 519-523, ~50-653 stiffness influence coefficients, 5 stft'SS/strain, 309 symmcttic, 712 system stif1hess, 36 thermal strain, 620-622 three dimensions, for bars in, 92-100 total stiffness, 36, 37-39 transfonnatiOD (rotation), 92-100, 216, 259-260 unit, 712 Matrix algebra, 708-72t addition of matrices, 710 adjoint meth~ 718 cofactor method,.716-717 definitions of, 708-709 differentiation's, 71+-.715 Gauss-Jordan method, 7]8-720 identity matrix, 721 integrating, 715-716 inverse of, 712,716-718,718-720 multiplication by a scalar, 709 mUltiplication of matrices, 710-711 operations, 709-716 orthogonal matrix, 713-714 fOW reduction, 718-720 symmetric matrices, 712 tIanspose, 711-712 unit matrix, 712 Maximum distortiQD energy theory, 341=-342 Mindlin plate theory, 523, 526 Minimum potential energy, principle of, 52-53, 57-59, III finite element equations, III spring element equations, 52-53, 57-59 Modeling,350-397 adaptive refinement, 355 aspect ratio (AR). 351, 352-353 checking, 362 compatibility of results, 363-367 computer program assisted step-bystep solutions, 374-380 concentrated loads, 360-361 connecting (mixing) elements, 361-362 ' convergence of solution, 367-368 discontinuities, natural subdivisions at, 354,357 equilibrium of resu1ts, 363-367 finite element, 350-363 flowcharts, 374 general considerations, 351 h method of refinement, 355-356 infinite medium, 361 infinite stress, 360-361 introduction to, 350 natural subdivisions, 354, 357 p method of refinement, 358-359 point loa~ 360-361 postprocessor results. 362-363 refinement, 355-356, 35&-359 static:: condensation, 369-373 stresses, interpretation of, 368-369 symmetry, 351-354, 355-356 tIansition triangles, 359-360 Modes, natural, 666, 668 Modulus of elasticity, 748 Moment matrix, 521-522 N Natural convection, 538, 540 Natural coordinate system, 444, 447 Jacobian function. 447 use of, 444 Natural frequencies, 649, 665-669, 674-681 amplitude. 649 bar element, one-dimensional, 665-669 beam element, 674-681 circular, 649 mass matrices, 674-681 modes., 666, 668 role of thumb for, 668 Natura1 subdivisions at discontinuities, 354, 357 Newmark's method of numerical integration, 659-663 Newton-Co~es quadrature. 467-469 intervals, 467 numerical integration, 467-469 Nodal displacements, 34, 36, 70, 322 bar element, 70 constant-strain triangular (CST) element, 322 global matrix, 36 spring element, 34 Nodal forces, 178-182,232-233, 752-754 effective, 232-233 effec:'tive global, 181-182 equivalent., 178-180,752-754 load displacement, beams, 178-182 rigid plane frames, 232-233 Nodal hinge, beam elements, 194--199 Nodal potentials, 601 Nodal temperature, 546 Nodes, 29, 152, 370 actual. 370 condensed out, 370 defined, 29 sign conventions for beams, 152 Nonexistence of solution, 724 Nonuniqueness of solution, 723-724 .Numerical comparisons. plate bending element, 523-524 Numerical integration, 463-469, 653-665,687-693 central difference method, 653, 654-659 direct integration, 653 dynamic systems, 653-665 explicit, 689o flowcharts for, 656, 661 Gaussian quadrature, 463-466, 469-475 heat-transfer, 687-693 Newmark's method, 659-663 Newton-Cotes quadrature, 467-469 Simpson one-third rule, 463, 467 time, 653-665, ~87-693 trapezoid rule, 463, 467-468, 687 Wilson's method, 664-665 One-dimcnsional elements, 124-127, 127-13!, 540-555, 569, 598-601, 665-·669, 669-674 bar analysis. 665-669, 669-674 bar element equations, 124-127 bar element problems, 127-131 fluid flow. 598-601 heat-tran~fer problems, 540-555, 569 mass transport, 569 natural frequencies, 665-669 time-dependent, 669-674 Open sections, 241 Orthogonal matrix, 713-714 p p method of refinement, 358-359 Parasitic shear. 342 Pa."Cal triangle, 400 Penalty formulation, 331 Penalty method, 50-52 Period of vibration. 649 Pipes, fluid flow in, 5%-598 Plane element, 452-463, 682-684 body forces, 460 consistent-mass matrix, 683-684 displacement functions, 455-456 equations, 459-460 isoparametric formulation, 452-463 mass matrices, 682-684 quadrilateral element, 684 selection of, 453-455 stiffness matrix, 452-463 strain/displacement relationships, 456-459 stress/strain relationships. 456-459, 683-684 surface forces, 460 Plane {rames, 218-236,682-683 element, 682-683 mass matrices, 682-683 rigid, 218-236 . Plane strain, 305-309, 374-380, 683-684 concept of, 305-309 consistent-mass matrix, 683-684 defined, 305 flowchart fOf, 374 program assisted step-by-step solutions, 374-380 Plane stress, 305-309, 331-342, 374-380,449-452, 683-684 concept of, 305-309 consistent-mass mall'ix, 683-684 defined,305 discretization, 331-332 displacement functions, 450-451 element, 449-452 finite element solution of, 331-342 flowchart for, 374 isoparametrlc formulation. 449-452 maximum distortion energy theory, 34!-342 principal angle, 307 program assisted step-by-step solutions, 374-380 rectangular element, 449-452 stiffness matrix assemblage for, 332-341 von Mises (von Mises-Hencky) theory, 341-342 Plane truss, solution of, 84-92 Plate bending element, 514-533 computer solution for, 524--528 concept of, 514-518 deformation of, 514-515 displacement function, 519-521 equations, 519-523 geometry of, 514-515 heterosis element., 523 introduction to, 514 Kirchhoff assumptions, 515-517 Mindlin plate theory, 523, 526 numerical comparisons, 523-524 potential energy, 518 rigidity of, 517 selection of, 519 stiffness matrix, 519-523 strain/displacement relationships, 521-522 stress/strain relationships, 517-518, 521-522 Point loads, 360-361 Point sources, 564-566 Polar moment of inertia, 240 Porous medium, fluid flow in, 594-596 Potential energy approach, 52-60, 109--120, 199-201,518 admissible variation, 55 bar element equations, 109-120 beam element equations. 199--201 mi.nimwn potential energy, principle of, 52-53, 57-59, 111 plate bending element, 518 spring element equations, 52-60 stationary value, 54 Index ... 80S total potential energy, 53, 518 truss equations, 1'09-) 20 variation, 55 Potential function, 589 Pressure vessel, axisymmetric, solution of, 422-428 Primary unknowns, defined, 14 Principal angle, 307 Principal stresses, 307 Q Q8 element, 480 Q9 element, 482 Quadratic elements, 9 Quadratic form, 716 Quadratic hexahedral element, 504-508 Quadratic-strain triangle (QST) element, 400 Quadrilateral element consistent-mass matrix, 684 .R Refinement, 355-356, 358-359 adaptive, 355 h method, 355-356 p method. 358-359 Reflective (mirror) symmetry, 100-103 Rigid plane frames, 218-236 defined, 218 examples of, 218-236 Row reduction, 718-720 S Serendipity element, 431 Shape functions, 32, 155-156, 475-484 beam element, 155-156 defined,32 higher-order, 475--484 isoparametric formulation, 475-484 laGrange element, 482 Q8 element, 480 Q9 element, 482 serendipity element, 481 Shear locking, 342 Sign conventions, beams, H2, 256-257 . Simultaneous linear equations, 722-743 banded...syrtl.metric method, 735-741 Cramer's rule, 724-725 Gauss-Seidel iteration, 733-735 Gaussian elimination, 726-733 general fonn of, 722-723 introduction to, 722 inversion ofcoefficient matrix, 726 methods for solving, 724-735 nonexistence ofsolution, 724 nonuniqu.eness of solution, 723-724806 • Index Simultaneous linear equations (Continued) skyline method, 735-741 uniqueness of solution, 723 wavefront method, 735-741 Sizing ofclements, 355-356, 35&-359 Skew, defined, 370-371 Skewed supports, 103-109,237 frame equations, 237 truss equations, 103-109 Skyline method, 735-741 Smoothing process, 369 Solid bodies, fluid flow around, 596-598 Solid element, see Tetrahedral element Spring clements, 29-34,34-37,52-60 assemblage of, 34-37 compatibility requirement, 35 continuity requirement, 35 degrees of freedom, 29 displacement function, 31-32 element type, 30-31 equations, 52-60 global equation for, 34 nodal displacements, 34 nodes, 29 potential energy approach, 52-60 spring constant, 29 stiffness matrix for, 29-34 Spring-mass system, 647-649 amplitude, 649 dynamics of, 647-649 hannonic motion, simple, 649 natural circular frequency, 649 period of vibration, 649 Static condensation, 369-373 concept of, 369-373 condensed load vector, 370 condensed out nodes, 370 condensed stiffness matrix, 370 directional stiffness bias, 371 skew, 370-371 Stationary value, 54 Stiffness equations, 304-349 constant-strain triangular (CS11 element, 304;-305, 310-324, 324-329, 329-331 explicit expression, 329-331 finite element solution, 331-341 introduction to, 304-305 maximum distortion energy theory, 341-342 plane strain, 305-309 plane stress, 305-309, 331-342 von Mises (von Mises-Hencky) theory, 341-342 Stiffuess inftuence eoefficients, 5 Stiffness matrix, 28-29, 29-34, 36, 66-72,92.:..100,153-158, '158-161, 161-163,304-305, 310-324,332-341,369-313, 402-403,403-406, 419-422, 423-428,444-449,451-452, 452-463, 469-473, 497-500, 519-523,599-601,608,735-741 axisymmetric element, 419-422, 423-428 banded-symmetric method, 735-741 bar element, 66-72, 444-449 beam equations, 153-158, 158-161, 161-163 beams, examples of assembJage of, 161-163 bending deformations, 153-158 body forces, 419-420, 448 condensed, 370 constant-strain triangular (CST) element, 304-305, 310-324 defined, 28-29 Euler-Bemouli theory, based on, 153-158 evaluation of, 469.473 fluid flow, 599-601,608 Gaussian quadrature, 469-473 isoparametric formulation, 444-449, 469-473 linear-strain triangle (l.S1) element, 402-403, 403-406 local, 34 plane element, 452-463 plane sl.reSS element, 451-452 plane stress problem, assemblage offor, 332-341 plate bending element, 519-523 skyline method, 735-741 spring element, 29-34 static condensation, 369-373 superposition, assemblage by, 332-341,423-428 suIface forces, 420-421,448-449 tetrahedral element, 497-500 threedimensions,forbarsin,92-100 Timoshenko theory, base(! on, 158-161 . total (global), 36,37-39, 332-341 transition matrix and, 92-100 transverse shear deformations, 158-161 wavefront method, 735-741 Stiffness method, 7, 28-64 boundary conditions, 34, 39-52 direct, 37-39 introduction to, 28-64 minimum potential energy, principle of, 52-53, 57-59 penalty method, 50-52 potential energy approach., 52-60 spring constant, 29 spring clements, 29-34, 34-37, 52-60 stiffness matrix, 28-29, 29-34, 36 superposition, 37-39 total potential energy, 53 total stiffness matrix, 37-39 use of, 7 Strain, 306-309. See also Plane strain normal,308 shear, 308 two-dimensional state of, 306-309 Strain/displacement relationships, 11, 33,69,156-157,315-320, 401-402,417-419,446-447,451, 456-459,490-493,496-497, 521-522,146-748 axisymmetric element, 417-419 bar element, 69 beam element, 156-157 condition ofcompatibility, 748 constant*strain triangular (CS1) element, 315-320 deformation, 33 elasticity theory, 746-748 Hooke's law, I I, 67 isoparametric formulatioll, 446-:447,456-459 linear-strain triangle (LST) elements, 401-402 plane clement, linear, 456-459 plane stress element, 451 plate bending element, 521-522 spring element, 33 stress analysis, 490-493 tetrahedral element, 496-497 Stress, 82-83, 306-309, 341-342, 360-361, 368-369, 473-475. See also Plane stress; Thenna1 stress computation of for a bar element, 82-83 Coulomb-Mohr theory, 342 effective, 341 equivalent, 341 evaluation of, 473-475 fringe carpet, 369 Gaussian quadrature, 473-475 infinite, 360-361 interpretation of, 368-369 maximum distortion energy theory, 341-342 principal, 307 smoothing process, 369 two-dimensional state of, 306-309 von Mises (von Mises-Hendcy) theory, 341-342 Stress analysis, 490-513 isoparametric formulation, SOl-50S linear hexahedral element, 501-504 quadratic hexahedral element, 504-508 strain/displacement relationships, 490-493stress/strain relationships, 490-493 tetrahedral element, 493-500 three-dimensional, 490-513 Stress/suain relationships, II, 14,33, 69, 156-157,315-320,401-402, 417-419,446-447,451,456-459, 490-493,496-497,517-518, 521-522,748-751 axisymmetric element, 417-419 bar dement, 69 beam element, 156-157 constant-strain triangular (CST) element, 315-320 constitutive law, 11 defonnation, 33 elasticity theory, 748-751 isoparametric formulation, 446-447, 456-459 linear-strain triangle (LST) elementS, 40],..402 modulus of elasticity, 748 plane element, linear, 456-459 plane stress element, 451 plate bending element, 517-518, 521-522 solving for, 14 spring element, 33 . stress analysis, 490-493 tetrahedral clement, 496-497 Structural dynamics, see Dynamics Structural Sled, properties of, 759-712 Structures, 100-103,214-303 frame equations, 214-237 grid equations. 238-255 rigid plane frames, 218-236 substructure analysis, 269-275 symmetry in, 100-103 Subdivisions, natura.!, 354, 357 Subdomain method, 129-130 ,Subparametric formulation, '483-484 Substructure analysis, 269-275 Superposition, 37-39, 332-341, 423-428. See alst) Direct stiffness method axisymmetric element, assemblage for by, 423-428 plane stress problem, assemblage for by, 332-341 total (global) stiffness matrix, assemblage by, 37-39, 332-341 Surface forces, 326-329, 420-421, 448-449, 460, 498 , axisymmetric elements, 420-421 bar element, 448-449 natural coordinate system, 448-449 plane element, 46(} tetrahedral element. 498 treatment of, 326-329 Symmetry, 100-103,351-354, 355-356 axial,IOO finite element modeling, 351-354, 355-356 reflective (mirror), 100-103, 351 structures, use of in, 100-103 Symmetric matrix. 712 System stiffness matrix, see Total stiffness matrix T Temperature, 541-542, 546, 556, 574-576 distribution, examples of, 574-576 function, 541, 556 gradients, 542, 546 nodal, 546 Temperature gradient/temperature relationships, 542, 556-557 Tetrahedral element, 493-500, 685 body forces, 497-498 consistent~mass matrix, 685 displacement functions, 494-496 equations, 497-498 selection of, 493-494 stiffness matrix, 497-500 strain/displacement relationships, 496--497 stress/strain relationships, 496-497 surface forces, 498 Thermal conductivities, 539-540 Thermal strain matrix, 620-622 Thermal stress, 617-646 coefficient of thermal expansion, 618 formulation of,617-640 introduction to, 617 thermal strain matrix, 620-622 Three-dimensional elements, 490-513, 566-568 heat·transfer problems, 566-568 space, 92-100 stiffness matrix for a bar, 94-100 stress analysis, 490-513 tetrahedral element, 493-500 transformation matrix for a bar, 92-94 Time, numerical integration in, 653-665,687-689 Time~dependent, 649-653, 669-674, 686-693 bar analysis, one-dimensional, 669-674 heat transfer, 686-693 longitudinal wave velocity, 670 numerical time integration, 681-693 stress analysis., 649-653 structural dynamics, 649-653, 669-674 Index .. 8 Timoshenko theory, 158-161 Torsional conscant, 240-241, 242 Total equations, see Global equatio Total potential energy, defined, 53 Total stiffness matrix, 36, 37-39, It: See also Global stiffness matrix beam elemen[, 162 direct stiffness' method, assembly by, 37-39 spring assembly, 36 superposition, assembly by, 37-39 Transfonna(ion mapping, 444 Transformation (rotation) matrix, 92-100,216,259-260, 713 Transition triangles, 359-360 Transpose of a matrix, 711 Transverse, defined, SO Transverse shear deformations, 158-161 Trapezoid rule, 467-468, 687 Truss equations, 65-149, 681-682. See a/st) Bar elements approximation functions, 72-74 bar elements, 67-72, 92-100, 109-120, 12()-124, 124-127, I27-13l boundary conditions, 103-109 collocation method, 129 consistent-mass matrix, 682 displacements, 72-74 exact solution, ]20-124 finite element solution, 120-124 Galerkin's residual method, 124-127, 13l global stiffness matrix, 78-8} inclined supports, 103-109 introduction to, 65 ~st squares method, 130 local coordinates for, 66-72 lumped-mass matrix, 682 mass matrices, 681-682 plane truss, solution of, 84-92 potential energy approach, 109-120 residual methods, 124-127, 127-131 skewed suppons, 103-109 stiffness matrix, 66-72, 92-100 strain/displacement relationships, stress, computation of for a bar element, 82-83 stress/strain relationships, 69 subdomain method, 129-t3O symmetry, use of in structures, 100-103 transfonnation (rotation) matrix, 92-100 vectors, transformation ofin two dimensions, 75-77808 .i. Index Two dimensional elements, 75-77, 214-218, 304-349, 555-564, 574-576. 606-610 U beam clements, arbitrarily oriented, 214-218 flowchan for heat-transfer process fluid flow, 606-610 heat-transfer problems, 555-564 plane stress and strain equations, 304-349 temperature distribution, 574-576 vectors, transformation of in, 75-77 Uniqueness of solution, 723 Unit matrix, 712 V Variation, defined, 55 Variational methods, 52, 540-555 Vectors, 75-77, 370 condensed load, 370 transfonnation of in two dimensions, 75-77 Velocity, 602, 670 fluid flow 602 longitudinal wave, 670 Velocity/gradient relationship, 599, 607 Virtual work, principle or, 755-758 compatible displacements, 755 D'Alembert's principle, 155-756 Volumetric flow rates, 602 Von Mises (von Mises·Hencky) theory, 341-342 W Wavefront method. 735-741 Weighted residuals, methods of. 12-13, 124-127, 127-131, 201-203 bar element equations, 124-127, 127-l3I beam element equations, 201-203 collocation method, 129 Galerlcin's method, 12--13, 124-l27, 131,201-203 introduction to, 12-13 least squares meth.od, 130 one-dimensional problems, 127-131 subdomain method, 129-130 Wilson's (Wilson-Theta) method of numerical integration, 664-665 Work methods, l2, 52-53, 57-59, 176-177,755-758 Castigliano's theorem, 12 introduction to, 12 minimum potential energy, principJe of, 52-53, 57-59 virtual work, principle of, 755-758 work-equivalence, 176-177
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب A First Course in the Finite Element Method رابط مباشر لتنزيل كتاب A First Course in the Finite Element Method
عدل سابقا من قبل Admin في الجمعة 11 سبتمبر 2020, 1:13 am عدل 2 مرات |
|