Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Circuit Systems with MATLAB and PSpice الجمعة 08 مارس 2024, 12:42 am | |
|
أخواني في الله أحضرت لكم كتاب Circuit Systems with MATLAB and PSpice Won Y. Yang and Seung C. Lee Chung-Ang University, South Korea
و المحتوى كما يلي :
Contents Preface xiii Limits of Liability and Disclaimer of Warranty of Software xv 1 Basic Concepts on Electric Circuits 1 1.1 Symbols and Units 1 1.2 Network Variables 1 1.2.1 Voltage and Current 1 1.2.2 Electric Power and Energy 3 1.2.3 Reference Polarity and Direction of Voltage/Current 3 1.2.4 Passive Sign Convention 4 1.3 Circuit Elements 5 1.3.1 Passive Elements 5 1.3.2 Active Elements 9 1.3.3 Operational Amplifier 10 1.3.4 Transistor 13 1.4 Kirchhoff’s Laws 13 1.4.1 Nodes, Branches, and Meshes/Loops 14 1.4.2 Kirchhoff’s Current Law (KCL) 15 1.4.3 Kirchhoff’s Voltage Law (KVL) 16 1.4.4 The Number of KCL/KVL Equations 18 1.5 Equivalent Transformation of Sources 19 1.5.1 Combination of Several Sources 19 1.5.2 Voltage–Current Source Transformation 21 1.5.3 Examples of Source Transformation 23 1.6 Series and Parallel Connections 25 Problems 25 2 Resistor Circuits 35 2.1 Combination of Resistors 35 2.1.1 Series Combination of Resistors 35 2.1.2 Parallel Combination of Resistors 36 2.2 Voltage/Current Divider 37 2.2.1 Voltage Divider 37 2.2.2 Current Divider 38 2.3 -Y(-T) Transformation 38 2.3.1 -Y(-T) Conversion Formula 39 2.3.2 Y-(T-) Conversion Formula 39 2.4 Node Analysis 40 2.4.1 Circuits Having No Dependent Sources 422.4.2 Circuits Having Dependent Sources 45 2.5 Mesh (Loop) Analysis 48 2.5.1 Circuits Having No Dependent Sources 49 2.5.2 Circuits Having Dependent Sources 53 2.6 Comparison of Node Analysis and Mesh Analysis 56 2.7 Thevenin/Norton Equivalent Circuits 63 2.8 Superposition Principle and Linearity 71 2.9 OP Amp Circuits with Resistors 72 2.9.1 Inverting OP Amp Circuit 72 2.9.2 Noninverting OP Amp Circuit 74 2.9.3 Voltage Follower 76 2.9.4 More Exact Analysis of OP Amp Circuits 77 2.9.5 OP Amp Circuits with Positive Feedback 78 2.10 Transistor Circuits 81 2.11 Loading Effect and Input/Output Resistance 81 2.12 Load Line Analysis of Nonlinear Resistor Circuits 82 2.13 More Examples of Resistor Circuits 86 Problems 95 3 First-Order Circuits 111 3.1 Characteristics of Inductors and Capacitors 111 3.1.1 Inductor 111 3.1.2 Capacitor 113 3.2 Series–Parallel Combination of Inductors/Capacitors 115 3.2.1 Series–Parallel Combination of Inductors 115 3.2.2 Series–Parallel Combination of Capacitors 116 3.3 Circuit Analysis Using the Laplace Transform 117 3.3.1 The Laplace Transform for a First-Order Differential Equation 118 3.3.2 Transformed Equivalent Circuits for R, L, and C 119 3.4 Analysis of First-Order Circuits 120 3.4.1 DC-Excited RL Circuits 120 3.4.2 DC-Excited RC Circuits 123 3.4.3 Time-Constant and Natural Responses of First-Order Circuits 125 3.4.4 Sequential Switching 133 3.4.5 AC-Excited First-Order Circuits 136 3.5 Analysis of First-Order OP Amp Circuits 138 3.5.1 First-Order OP Amp Circuits with Negative Feedback 138 3.5.2 First-Order OP Amp Circuits with Positive Feedback 140 3.6 LRL Circuits and CRC Circuits 144 3.6.1 An LRL Circuit 144 3.6.2 A CRC Circuit 146 3.6.3 Conservation of Flux Linkage and Charge 148 3.6.4 A Measure Against Violation of the Continuity Rule on the Inductor Current 148 3.7 Simulation Using PSpice and MATLAB 149 3.7.1 An RC Circuit with Sequential Switching 149 3.7.2 An AC-Excited RL Circuit 151 3.8 Application and Design of First-Order Circuits 152 Problems 159 viii Contents4 Second-Order Circuits 177 4.1 The Laplace Transform For Second-Order Differential Equations 177 4.1.1 Overdamped Case with Two Distinct Real Characteristic Roots 178 4.1.2 Critically Damped Case with Double Real Characteristic Roots 179 4.1.3 Underdamped Case with Two Distinct Complex Characteristic Roots 179 4.1.4 Stability of a System and Location of its Characteristic Roots 180 4.2 Analysis of Second-Order Circuits 181 4.2.1 A Series RLC Circuit 181 4.2.2 A Parallel RLC Circuit 192 4.2.3 Two-Mesh/Node Circuit 198 4.2.4 Circuits Having Dependent Sources 200 4.2.5 Thevenin Equivalent Circuit 202 4.3 Second-Order OP Amp Circuits 203 4.4 Analogy and Duality 205 4.4.1 Analogy 205 4.4.2 Duality 206 4.5 Transfer Function, Impulse Response, and Convolution 207 4.5.1 Linear Systems 208 4.5.2 Time-Invariant Systems 208 4.5.3 The Pulse Response of a Linear Time-Invariant System 208 4.5.4 The Input–Output Relationship of a Linear Time-Invariant System 209 4.6 The Steady-State Response to a Sinusoidal Input 211 4.7 An Example of MATLAB Analysis and PSpice Simulation 213 Problems 214 5 Magnetically Coupled Circuits 223 5.1 Self-Inductance 223 5.2 Mutual Inductance 225 5.3 Relative Polarity of Induced Voltages and Dot Convention 226 5.3.1 Dot Convention and Sign of Mutual Inductance Terms 226 5.3.2 Measurement of the Relative Winding Direction 226 5.3.3 Measurement of Mutual Inductance 227 5.3.4 Energy in Magnetically Coupled Coils 228 5.4 Equivalent Models of Magnetically Coupled Coils 228 5.4.1 T-Equivalent Circuit 229 5.4.2 -Equivalent Circuit 234 5.5 Ideal Transformer 237 5.6 Linear Transformer 240 5.7 Autotransformers 241 Problems 243 6 AC Circuits 255 6.1 Sinusoidal Sources 255 6.2 Phasor and AC Analysis 256 6.3 AC Impedance of Passive Elements 261 6.3.1 Resistor 261 6.3.2 Inductor 261 6.3.3 Capacitor 262 Contents ix6.4 AC Circuit Examples 263 6.5 Instantaneous, Active, Reactive, and Complex Power 275 6.6 Power Factor 278 6.7 Maximum Power Transfer – Impedance Matching 283 6.8 Load Flow Calculation 285 6.9 Design and Simulation for Maximum Power Transfer 286 Problems 289 7 Three-Phase AC Circuits 299 7.1 Balanced Three-Phase Voltages 299 7.2 Power of Balanced Three-Phase Loads 302 7.3 Measurement of Three-Phase Power 303 7.4 Three-Phase Power System 304 7.5 Electric Shock and Grounding 310 Problems 313 8 Frequency Selective Circuit – Filter 319 8.1 Lowpass Filter (LPF) 319 8.1.1 Series LR Circuit 319 8.1.2 Series RC Circuit 320 8.2 Highpass Filter (HPF) 321 8.2.1 Series CR Circuit 321 8.2.2 Series RL Circuit 321 8.3 Bandpass Filter (BPF) 322 8.3.1 Series RLC Circuit and Series Resonance 322 8.3.2 Parallel RLC Circuit and Parallel Resonance 326 8.4 Bandstop Filter (BSF) 329 8.4.1 Series RLC Circuit 329 8.4.2 Parallel RLC Circuit 332 8.5 Active Filter 333 8.5.1 First-Order Active Filter 333 8.5.2 Second-Order Active LPF/HPF 334 8.5.3 Second-Order Active BPF 336 8.5.4 Second-Order Active BSF 337 8.6 Analog Filter Design 341 Problems 354 9 Circuits Analysis Using Fourier Series 373 9.1 Fourier Series 373 9.2 Computation of Fourier Coefficients Using Symmetry 375 9.3 Circuit Analysis Using Fourier Series 379 9.4 Fourier Series and Laplace Transform 387 9.5 RMS Value and Power of a Nonsinusoidal Periodic Signal 393 9.5.1 RMS Value and Distortion Factor of a Nonsinusoidal Periodic Signal 393 9.5.2 Power and Power Factor of a Nonsinusoidal Periodic Signal 394 Problems 395 x Contents10 Two-Port Networks 401 10.1 Definitions of Two-Port Parameters 401 10.2 Relationships Among Two-Port Parameters 406 10.2.1 The z-Parameters and a-Parameters 406 10.2.2 The a-Parameters and h-Parameters 407 10.2.3 The z-Parameters and h-Parameters 408 10.3 Reciprocity of a Two-Port Network 411 10.4 Interconnection of Two-Port Networks 413 10.4.1 Series Connection and z-Parameters 413 10.4.2 Parallel (Shunt) Connection and y-Parameters 414 10.4.3 Series–Parallel (Shunt) Connection and h-Parameters 415 10.4.4 Parallel (Shunt)–Series Connection and g-Parameters 415 10.4.5 Cascade Connection and a-Parameters 416 10.4.6 Curse of the Port Condition (Current Requirement) 416 10.5 Two-Port Networks Having Source/Load 420 10.5.1 Input Impedance 422 10.5.2 Voltage Gain 423 10.5.3 Current Gain 423 10.5.4 (Thevenin) Equivalent Impedance Seen from the Output 424 10.5.5 (Thevenin) Equivalent Source Seen from the Output 424 10.5.6 The Parameters of an Overall Two-Port Network 425 10.6 Feedback Amplifiers as Two-Port Networks 430 10.6.1 Series–Parallel (Shunt) Feedback Amplifier 431 10.6.2 Series–Series Feedback Amplifier 431 10.6.3 Parallel–Parallel Feedback Amplifier 432 10.6.4 Parallel (Shunt)–Series Feedback Amplifier 433 10.6.5 General Feedback Structure 434 10.7 Circuit Models with Given Parameters 438 10.7.1 Circuit Model with Given z-Parameters 438 10.7.2 Circuit Model with Given y-Parameters 438 10.7.3 Circuit Model with Given h and g-Parameters 438 10.7.4 Circuit Model with Given a and b-Parameters 438 Problems 440 Appendices 451 Appendix A: Laplace Transform 451 Appendix B: Matrix Operations with MATLAB 461 Appendix C: Complex Number Operations with MATLAB 466 Appendix D: Nonlinear/Differential Equations with MATLAB 468 Appendix E: Symbolic Computations with MATLAB 471 Appendix F: Useful Formulas (Reference [K-2]) 474 Appendix G: The Standard Values of Resistors, Capacitors, and Inductors 476 Appendix H: OrCAD/PSpice (References [K-1] and [R-2]) 481 Appendix I: MATLAB Introduction (Reference [K-2]) 511 Appendix J: Solutions to Problems 514 References 525 Index 527 Index ABCD parameter, 402 AC (alternating current), 10 AC admittance, 262 AC-excited first-order circuit, 136 AC impedance, 261–262 AC steady-state response, 260 AC sweep analysis, 498, 508 active element, 9 active filter, 336–340 active power, 275, 394 admittance, 41, 120, 262 admittance parameter, 401 admittance triangle, 264–265 all-pass filter, 358 Ampere’s right-hand rule, 225 analog computer, 169 analog filter design, 341–354 analogy, 205 a-parameter, 402, 438 apparent power, 277, 394 arc, 112, 188, 190 astable, 143 autotransformer, 241–242 average power, 275, 394 balanced, 299–300, 302, 305 bandpass filter (BPF), 323, 336, 344, 370 bandstop filter (BSF), 330, 337, 345 bandwidth, 320, 324, 331 bias point, 493, 504 biquad circuit, 362 bistable multivibrator, 80 bode( ), 357, 366 Bode diagram, 357 bouncing, 163 b-parameter, 402, 438 Branch, 14, 18 bridge balance condition, 274 bridge circuit, 65, 267, 274, 292, 363, 440 butter( ), 342–344, 368 Butterworth filter, 343, 347 capacitance, 7–8, 116–117 capacitance multiplier, 171 capacitive, 264, 265 capacitive reactance, 264 capacitor, 7–8, 113, 116–117, 262 Capture (CIS) window, 481 cascade, 343, 369 cascade connection, 416, 448 causal, 212 CCCS (current-controlled current source), 9–10 CCVS (current-controlled voltage source), 9–10 center frequency, 323, 324, 330 characteristic equation, 178, 182 characteristic root, 178 charge conservation, 114, 147, 148 cheby1( ), 342, 344 cheby2( ), 342, 345 Chebyshev filter, 342, 244, 245, 370 closed-loop gain, 74, 75, 435 coefficient of coupling, 225, 236 complex power, 277 conductance, 5, 36 continuity rule of capacitor voltage, 114, 124 continuity rule of inductor current, 111–112, 121, 252 controlled source, 9 controlling variable, 9 convolution, 210, 455 convolution property, 210, 452, 455 coupled coils, 225–236, 243–254 coupling, 225, 236 CRC circuit, 146 critically damped, 178, 179, 184, 194 CtFS_trigonometric( ), 380 current, 2 current divider, 38, 97 current gain, 82, 241, 243, 423, 425 current magnification ratio, 326 current source, 9 current transformer, 252 Cursor, 490 Circuit Systems with MATLAB1 and PSpice1 Won Y. Yang and Seung C. Lee # 2007 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82232-6cutoff frequency, 320, 321, 322 cutset, 15, 18 DAC, see Digital-to-Analog converter damped frequency, 180 damping constant, 180 damping ratio, 180 DC (direct current), 10 DC path to ground, 485 DC sensitivity analysis, 504 DC steady state, 113, 114, 115 DC sweep analysis, 494 deactivation (removal) of sources, 21 debounce, 95, 163 degenerate circuit, 144 (delta)-Y (-T) conversion, 40, 266 dependent source, 9 design_combiner( ), 104 destabilization effect of positive feedback, 80 diff( ), 473 difference amplifier, 91, 102, 103 differential equation, 459, 469, 472 differential input voltage, 11 differentiation property, 122, 184, 452–454 differentiator, 139, 170 Digital-to-Analog converter (DAC), 102 distortion factor, 394 dot convention, 226 driving-point impedance, 411 dsolve( ), 175, 472 dual circuit, 206 duality, 206 dy_conversion( ), 266 dynamic resistance, 85–86 effective value, 256, 393 electric field energy (of capacitor), 8, 147 electric potential, 2 electric power, 3 electric shock, 310 electromotive force (emf), 2 ellip( ), 342, 346 emf, see electromotive force equivalent, 21–22 555 timer/oscillator, 152–155, 173 Faraday’s law, 6, 224 feedback amplifier, 430–434 filter, 319 filter design, 341, 343, 367, 370 final state, 113, 114, 115 final value theorem, 452, 457 first-order circuit, 111 first-order OP Amp circuit, 138–143 flux, 6, 225 flux linkage, 6, 224–225 flux linkage conservation, 112, 145, 148, 252 forced response, 124 Fourier_analysis( ), 384–385, 399 Fourier analysis using Pspice, 381–384, 501 Fourier series, 373–375 Fourier series and Laplace transform, 387–390 free-wheeling diode, 149 frequency response, 211–212, 263, 319, 338–341, 347, 379 frequency response scaling, 338 frequency scaling, 338 frequency selective circuit, 319 fsolve( ), 157, 162, 174, 175, 468 full-wave rectified cosine wave, 385 fundamental frequency, 373 geometric series, 474 GFI, see ground fault interrupter g-parameter, 402, 438 ground fault interrupter (GFI), 311–313 ground (node), 40, 484, 485 grounding, 310–312 half-power frequency, see cutoff frequency half-wave rectified cosine wave, 378 half-wave rectifier, 161 half-wave (symmetric), 375 highpass filter (HPF), 321, 335, 336, 346 highpass notch filter (HPNF), 358 Howland circuit, 107 h-parameter, 402, 438 hybrid parameter, 402 hysteresis charcteristic, 80 ideal OP Amp, 12 ideal source, 10 ideal transformer, 237–239 ilaplace( ), 187, 234, 459–460 ilaplace_my( ), 249, 446 immittance parameter, 401 impedance, 49, 120, 262 impedance angle, 265 impedance matching, 283–284, 296, 444, 448 impedance parameter, 401 impedance scaling (transformation), 238 impedance transformation (scaling), 238 impedance triangle, 263, 265 impulse function, 453 impulse response, 207–210 independent source, 9 inductance, 6–7, 116, 224 inductance emulator, 172 inductive, 264, 265 inductive reactance, 264 inductor, 6–7, 111, 115–116, 261–262 528 Indexinitial state, 113, 114, 115 initial transient bias point, 493 initial value theorem, 452, 456 in phase, 265, 323 input impedance, 11, 77, 82, 422, 424, 425 input resistance, 82, 100 input resistance of OP Amp, 12 instantaneous power, 275, 303 int( ), 473 integration property, 452, 454 integrator, 138–139, 169, 170, 219 inverse Laplace transform, 457–460 inverse matrix, 462–463 inverse phasor transform, 259 inverting OP Amp circuit, 72–73 inverting positive-feedback OP Amp, 78–79 jacob( ), 469 KCL (Kirchhoff’s current law), 15–16, 27–30, 40, 75–76 KCL equation, 18 Kerwin-Huelsman-Newcomb (KHN) circuit, 362 KVL (Kirchhoff’s voltage law) 16–17, 27–30, 48 KVL equation, 18 ladder network, 27, 87 lagging PF, 278 Laplace transform, 118, 260, 390, 451–460 Laplace transform table, 452 LC tank, 327 leading PF, 278 Lenz’s law, 224 limit on output current of OP Amp, 109 limit on output voltage of OP Amp, 109 linear, 5, 8, 71, 208 linear region, 11 linear time-invariant, 208–209 linear transformer, 240 line voltage, 301 load current controller, 107 load flow, 285 loading effect, 38, 77, 81–82 load line analysis, 82–86, 110 loop, 14–18 loop analysis, see mesh analysis lowpass filter (LPF), 320, 334, 336 lowpass notch filter (LPNF), 358 LRL circuit, 144–145 magnetically coupled, 225–236, 243–254 magnetic field energy (of inductor), 7, 145 magnetic reluctance, 7, 223 magnetomotive force (mmf), 6, 223 magnitude scaling, 338 marginally stable, 181 Marker, 486 maximum output voltage of OP Amp, 11, 78–80 maximum power transfer, 283–284, 296 mesh, 14, 17 mesh (loop) analysis, 48–56 mesh equation, 49 mesh impedance matrix, 49 MFB (multiple feedback) circuit, 335–337, 353 Millman’s theorem, 98 missing DC path to ground, 504 mmf, see magnetomotive force multi-scale ammeter, 96 multi-scale voltmeter, 96 mutual inductance, 225–230, 246 natural frequency, 125 natural response, 124–125 negative feedback, 12–13, 73–75, 138–143 negative resistance, 108 netlist file, 493 neutral, 301 neutrally stable, 181 newtons( ), 157, 469 node, 14, 18 node admittance matrix, 41 node analysis, 40–48, 56 node equation, 41 non-inverting OP Amp circuit, 74–75 non-inverting positive-feedback OP Amp, 79–80 nonlinear equation, 468 nonlinear resistor circuit, 82–86, 110 nonlinear RL circuit, 175 Norton equivalent, 63–64 notch frequency, 330 OP Amp (operational amplifier), 10–12, 77–78 OP Amp circuit, 72–80, 91–94, 138–143, 168–174, 204, 333–340 open-loop gain, 11–12, 435 operating point, 83–86, 175, 493 output impedance, 11, 77, 78, 82, 424, 429 output resistance, 82, 100 output resistance of OP Amp, 12 overdamped, 178, 183 parallel_comb( ), 36, 266 parallel, 25, 116, 117, 343, 369, 414, 432 parallel(-parallel) connection, 414, 432 parallel combination of capacitors, 117 parallel combination of inductors, 116 parallel combination of resistors, 36–37, 95 parallel duplication of voltage source, 19, 22 parallel resonance, 326, 327 parallel RLC circuit, 192, 197, 215, 264, 326, 332 Index 529parallel-series, 415, 433 PARAMETERS, 287–288, 500–501 parameter conversion, 406–410 Parametric Sweep, 287–288, 500–501 Passband, 324, 341 passive element, 5 passive sign convention, 4 peak frequency, 323, 326 periodic switching, 165 permeability, 7, 223 permeance, 6–7, 223, 237 PF_correction( ), 282 PF (power factor) correction, 279–282, 295 phase, 256, 466 phase lag, 265 phase lead, 265 phase voltage, 301 phasor, 256 phasor diagram, 263–264, 280, 293, 301, 303 phasor method, see phasor transform phasor transform, 259–260 (pi)-equivalent, 229 port condition, 401, 416, 444 port_conversion( ), 410, 419, 439, 449 port current requirement, see port condition port_property( ), 427, 439, 449 positive feedback, 13, 78–80, 95, 140–143 potential, 2 power, 3, 228, 275–278, 303, 394 power conservation, 277 power factor (PF), 278–286, 302–303, 394 power factor (PF) angle, 265, 278 power transmission, 240, 317 power triangle, 277–278 practical analysis rule of OP Amp circuit, 76 practical source, 10 Property Editor spreadsheet, 94, 152, 237, 288, 484, 497, 500 pulse response, 208 quality factor, 324, 326, 331 RC circuit, 123, 134, 150, 156, 160, 164–167, 381 RC OP Amp circuit, 139, 169, 173 reactance, 262, 263 reactive power, 276 real power, 275 reciprocal, 412 rectangular (or square) wave, 142, 376, 381 rectangular wave generator, 140–143, 167–168, 174 reference direction, 4 reference node, 40 reference polarity, 3 reflected impedance, 239, 297 rejection frequency, 330 relative winding direction, 226, 230, 235 relaxation oscillator, 143 relay, 159 removal (deactivation) of sources, 21 residue( ), 458–460 resistance, 5, 35 resistivity, 5, 25 resistor, 5, 119, 261 resonance, 325, 326, 329 resonance condition, 329 resonant frequency, 323, 326 RL circuit, 121, 134, 152, 156, 159, 166, 173, 176 rms (root-mean-square), 256, 393 Sallen-Key circuit, 334, 353 saturation output voltage of OP Amp, 11, 78, 108, 220, 291 saturation (nonlinear) region, 11 saw-tooth function, 395 Schmitt trigger, 80, 94–95, 163 s-domain (transformed) equivalent, 119–120 second-order active filter, 334–338 second-order circuit, 177 second-order OP Amp circuit, 204, 213, 222 selectivity, 324, 331 self inductance, 224 sequential switching, 133, 166–167 series, 25, 116, 117, 414 series combination of capacitors, 117 series combination of inductors, 116 series combination of resistors, 36–37, 95 series duplication of current source, 20, 23 series-parallel, 415, 431 series resonance, 325 series RLC circuit, 181, 187, 214, 263, 323, 330 series(-series), 414, 432 simulation profile, 486–487 Simulation Settings dialog box, 237, 288, 487–488 singular circuit, 144 SKIPBP, 236, 248, 250 solve( ), 472 source transformation, 21–24, 31 source transformation method, 43, 45, 47, 52, 55, 56 square wave, see rectangular wave stable, 180–181, 212 stabilization effect of negative feedback, 12 standard values of capacitors, 477 standard values of inductors, 478 standard values of resistors, 476 state equation, 470 static resistance, 85–86 steady-state response, 125, 211–212 step function, 451 step response, 327 stopband, 331, 341 530 Indexsumming amplifier, 91 supermesh, 14, 17 supermesh method, 50, 51, 54 supernode, 14, 16 supernode method, 42, 44, 46, 59, 61 superposition principle, 71, 208 susceptance, 262, 264 symbolic computation, 471 symmetrical, 412 3dB frequency, 320, 326, 331 Tellegen’s theorem, 28 T-equivalent, 229, 245, 248, 250 tf2par_s( ), 349 tf2sos( ), 344 THD, see total harmonic distortion Thevenin equivalent, 63–70, 99–102, 203, 239, 270, 273, 424 three-phase power, 303–308 time constant, 125–128, 180, 321 time differentiation property, 452, 454 time-invariant, 208 time shifting property, 452, 455 total harmonic distortion (THD), 394 Tow-Thomas circuit, 362 Trace, 490 transfer function, 178, 205, 207, 210 transfer function analysis, 504 transfer impedance, 411 transformed (s-domain) equivalent, 119–120 transformer, 237–243, 246, 284, 294 transient response, 125 transmission loss, 280 transmission parameter, 402 tree, 18 triangular wave, 376, 399 triangular wave generator, 140–143, 167–168 trigonometric formulas, 474 tuning, 339 two-port network, 401, 420 two-port network property, 427 undamped, 186, 195 undamped resonant frequency, 180, 181 underdamped, 179, 185 unit impulse function, 453 units, 1 unit step function, 451 unbalanced three-phase power system, 314 unstable, 143, 180, 181 VA (Volt-Ampere), 277 VAC (AC voltage source), 483 VAR (Volt-Ampere Reactive), 277 VCCS (voltage-controlled current source), 9–10 VCR (voltage-current relationship), 41, 48 VCVS (voltage-controlled voltage source), 9–10 virtual ground, 73 virtual open principle, 13, 76 virtual short principle, 12–13, 76 voltage, 2 voltage divider, 37, 88, 97 voltage follower, 76–77 voltage gain, 81, 241, 243, 423, 425 voltage magnification ratio, 324 voltage source, 9 voltage-to-current converter, 107 VPULSE, 382, 484 VPWL, 484 VSIN, 483, 484 War of Currents, 223 wC_for_PF_correction( ), 282 Wien bridge oscillator, 221 window defroster, 90 y-parameter, 401, 438 yd_conversion( ), 266 Y- (T-) conversion, 40, 266 Y-/Y connection, 307 y_d( ), 316 y_dy( ), 307, 314 Y-Y connection, 304 y_y( ), 305, 314 zero-input response, 124 zero-state response, 124 z-parameter, 401, 438 #ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Circuit Systems with MATLAB and PSpice رابط مباشر لتنزيل كتاب Circuit Systems with MATLAB and PSpice
|
|