كتاب Circuit Systems with MATLAB and PSpice
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Circuit Systems with MATLAB and PSpice

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Circuit Systems with MATLAB and PSpice  Empty
مُساهمةموضوع: كتاب Circuit Systems with MATLAB and PSpice    كتاب Circuit Systems with MATLAB and PSpice  Emptyالجمعة 08 مارس 2024, 12:42 am

أخواني في الله
أحضرت لكم كتاب
Circuit Systems with MATLAB and PSpice
Won Y. Yang and Seung C. Lee
Chung-Ang University, South Korea  

كتاب Circuit Systems with MATLAB and PSpice  M_c_s_12
و المحتوى كما يلي :


Contents
Preface xiii
Limits of Liability and Disclaimer of Warranty of Software xv
1 Basic Concepts on Electric Circuits 1
1.1 Symbols and Units 1
1.2 Network Variables 1
1.2.1 Voltage and Current 1
1.2.2 Electric Power and Energy 3
1.2.3 Reference Polarity and Direction of Voltage/Current 3
1.2.4 Passive Sign Convention 4
1.3 Circuit Elements 5
1.3.1 Passive Elements 5
1.3.2 Active Elements 9
1.3.3 Operational Amplifier 10
1.3.4 Transistor 13
1.4 Kirchhoff’s Laws 13
1.4.1 Nodes, Branches, and Meshes/Loops 14
1.4.2 Kirchhoff’s Current Law (KCL) 15
1.4.3 Kirchhoff’s Voltage Law (KVL) 16
1.4.4 The Number of KCL/KVL Equations 18
1.5 Equivalent Transformation of Sources 19
1.5.1 Combination of Several Sources 19
1.5.2 Voltage–Current Source Transformation 21
1.5.3 Examples of Source Transformation 23
1.6 Series and Parallel Connections 25
Problems 25
2 Resistor Circuits 35
2.1 Combination of Resistors 35
2.1.1 Series Combination of Resistors 35
2.1.2 Parallel Combination of Resistors 36
2.2 Voltage/Current Divider 37
2.2.1 Voltage Divider 37
2.2.2 Current Divider 38
2.3 -Y(-T) Transformation 38
2.3.1 -Y(-T) Conversion Formula 39
2.3.2 Y-(T-) Conversion Formula 39
2.4 Node Analysis 40
2.4.1 Circuits Having No Dependent Sources 422.4.2 Circuits Having Dependent Sources 45
2.5 Mesh (Loop) Analysis 48
2.5.1 Circuits Having No Dependent Sources 49
2.5.2 Circuits Having Dependent Sources 53
2.6 Comparison of Node Analysis and Mesh Analysis 56
2.7 Thevenin/Norton Equivalent Circuits 63
2.8 Superposition Principle and Linearity 71
2.9 OP Amp Circuits with Resistors 72
2.9.1 Inverting OP Amp Circuit 72
2.9.2 Noninverting OP Amp Circuit 74
2.9.3 Voltage Follower 76
2.9.4 More Exact Analysis of OP Amp Circuits 77
2.9.5 OP Amp Circuits with Positive Feedback 78
2.10 Transistor Circuits 81
2.11 Loading Effect and Input/Output Resistance 81
2.12 Load Line Analysis of Nonlinear Resistor Circuits 82
2.13 More Examples of Resistor Circuits 86
Problems 95
3 First-Order Circuits 111
3.1 Characteristics of Inductors and Capacitors 111
3.1.1 Inductor 111
3.1.2 Capacitor 113
3.2 Series–Parallel Combination of Inductors/Capacitors 115
3.2.1 Series–Parallel Combination of Inductors 115
3.2.2 Series–Parallel Combination of Capacitors 116
3.3 Circuit Analysis Using the Laplace Transform 117
3.3.1 The Laplace Transform for a First-Order Differential Equation 118
3.3.2 Transformed Equivalent Circuits for R, L, and C 119
3.4 Analysis of First-Order Circuits 120
3.4.1 DC-Excited RL Circuits 120
3.4.2 DC-Excited RC Circuits 123
3.4.3 Time-Constant and Natural Responses of First-Order Circuits 125
3.4.4 Sequential Switching 133
3.4.5 AC-Excited First-Order Circuits 136
3.5 Analysis of First-Order OP Amp Circuits 138
3.5.1 First-Order OP Amp Circuits with Negative Feedback 138
3.5.2 First-Order OP Amp Circuits with Positive Feedback 140
3.6 LRL Circuits and CRC Circuits 144
3.6.1 An LRL Circuit 144
3.6.2 A CRC Circuit 146
3.6.3 Conservation of Flux Linkage and Charge 148
3.6.4 A Measure Against Violation of the Continuity Rule on
the Inductor Current 148
3.7 Simulation Using PSpice and MATLAB 149
3.7.1 An RC Circuit with Sequential Switching 149
3.7.2 An AC-Excited RL Circuit 151
3.8 Application and Design of First-Order Circuits 152
Problems 159
viii Contents4 Second-Order Circuits 177
4.1 The Laplace Transform For Second-Order Differential Equations 177
4.1.1 Overdamped Case with Two Distinct Real Characteristic Roots 178
4.1.2 Critically Damped Case with Double Real Characteristic Roots 179
4.1.3 Underdamped Case with Two Distinct Complex
Characteristic Roots 179
4.1.4 Stability of a System and Location of its Characteristic Roots 180
4.2 Analysis of Second-Order Circuits 181
4.2.1 A Series RLC Circuit 181
4.2.2 A Parallel RLC Circuit 192
4.2.3 Two-Mesh/Node Circuit 198
4.2.4 Circuits Having Dependent Sources 200
4.2.5 Thevenin Equivalent Circuit 202
4.3 Second-Order OP Amp Circuits 203
4.4 Analogy and Duality 205
4.4.1 Analogy 205
4.4.2 Duality 206
4.5 Transfer Function, Impulse Response, and Convolution 207
4.5.1 Linear Systems 208
4.5.2 Time-Invariant Systems 208
4.5.3 The Pulse Response of a Linear Time-Invariant System 208
4.5.4 The Input–Output Relationship of a Linear
Time-Invariant System 209
4.6 The Steady-State Response to a Sinusoidal Input 211
4.7 An Example of MATLAB Analysis and PSpice Simulation 213
Problems 214
5 Magnetically Coupled Circuits 223
5.1 Self-Inductance 223
5.2 Mutual Inductance 225
5.3 Relative Polarity of Induced Voltages and Dot Convention 226
5.3.1 Dot Convention and Sign of Mutual Inductance Terms 226
5.3.2 Measurement of the Relative Winding Direction 226
5.3.3 Measurement of Mutual Inductance 227
5.3.4 Energy in Magnetically Coupled Coils 228
5.4 Equivalent Models of Magnetically Coupled Coils 228
5.4.1 T-Equivalent Circuit 229
5.4.2 -Equivalent Circuit 234
5.5 Ideal Transformer 237
5.6 Linear Transformer 240
5.7 Autotransformers 241
Problems 243
6 AC Circuits 255
6.1 Sinusoidal Sources 255
6.2 Phasor and AC Analysis 256
6.3 AC Impedance of Passive Elements 261
6.3.1 Resistor 261
6.3.2 Inductor 261
6.3.3 Capacitor 262
Contents ix6.4 AC Circuit Examples 263
6.5 Instantaneous, Active, Reactive, and Complex Power 275
6.6 Power Factor 278
6.7 Maximum Power Transfer – Impedance Matching 283
6.8 Load Flow Calculation 285
6.9 Design and Simulation for Maximum Power Transfer 286
Problems 289
7 Three-Phase AC Circuits 299
7.1 Balanced Three-Phase Voltages 299
7.2 Power of Balanced Three-Phase Loads 302
7.3 Measurement of Three-Phase Power 303
7.4 Three-Phase Power System 304
7.5 Electric Shock and Grounding 310
Problems 313
8 Frequency Selective Circuit – Filter 319
8.1 Lowpass Filter (LPF) 319
8.1.1 Series LR Circuit 319
8.1.2 Series RC Circuit 320
8.2 Highpass Filter (HPF) 321
8.2.1 Series CR Circuit 321
8.2.2 Series RL Circuit 321
8.3 Bandpass Filter (BPF) 322
8.3.1 Series RLC Circuit and Series Resonance 322
8.3.2 Parallel RLC Circuit and Parallel Resonance 326
8.4 Bandstop Filter (BSF) 329
8.4.1 Series RLC Circuit 329
8.4.2 Parallel RLC Circuit 332
8.5 Active Filter 333
8.5.1 First-Order Active Filter 333
8.5.2 Second-Order Active LPF/HPF 334
8.5.3 Second-Order Active BPF 336
8.5.4 Second-Order Active BSF 337
8.6 Analog Filter Design 341
Problems 354
9 Circuits Analysis Using Fourier Series 373
9.1 Fourier Series 373
9.2 Computation of Fourier Coefficients Using Symmetry 375
9.3 Circuit Analysis Using Fourier Series 379
9.4 Fourier Series and Laplace Transform 387
9.5 RMS Value and Power of a Nonsinusoidal Periodic Signal 393
9.5.1 RMS Value and Distortion Factor of a Nonsinusoidal
Periodic Signal 393
9.5.2 Power and Power Factor of a Nonsinusoidal
Periodic Signal 394
Problems 395
x Contents10 Two-Port Networks 401
10.1 Definitions of Two-Port Parameters 401
10.2 Relationships Among Two-Port Parameters 406
10.2.1 The z-Parameters and a-Parameters 406
10.2.2 The a-Parameters and h-Parameters 407
10.2.3 The z-Parameters and h-Parameters 408
10.3 Reciprocity of a Two-Port Network 411
10.4 Interconnection of Two-Port Networks 413
10.4.1 Series Connection and z-Parameters 413
10.4.2 Parallel (Shunt) Connection and y-Parameters 414
10.4.3 Series–Parallel (Shunt) Connection and h-Parameters 415
10.4.4 Parallel (Shunt)–Series Connection and g-Parameters 415
10.4.5 Cascade Connection and a-Parameters 416
10.4.6 Curse of the Port Condition (Current Requirement) 416
10.5 Two-Port Networks Having Source/Load 420
10.5.1 Input Impedance 422
10.5.2 Voltage Gain 423
10.5.3 Current Gain 423
10.5.4 (Thevenin) Equivalent Impedance Seen from the Output 424
10.5.5 (Thevenin) Equivalent Source Seen from the Output 424
10.5.6 The Parameters of an Overall Two-Port Network 425
10.6 Feedback Amplifiers as Two-Port Networks 430
10.6.1 Series–Parallel (Shunt) Feedback Amplifier 431
10.6.2 Series–Series Feedback Amplifier 431
10.6.3 Parallel–Parallel Feedback Amplifier 432
10.6.4 Parallel (Shunt)–Series Feedback Amplifier 433
10.6.5 General Feedback Structure 434
10.7 Circuit Models with Given Parameters 438
10.7.1 Circuit Model with Given z-Parameters 438
10.7.2 Circuit Model with Given y-Parameters 438
10.7.3 Circuit Model with Given h and g-Parameters 438
10.7.4 Circuit Model with Given a and b-Parameters 438
Problems 440
Appendices 451
Appendix A: Laplace Transform 451
Appendix B: Matrix Operations with MATLAB 461
Appendix C: Complex Number Operations with MATLAB 466
Appendix D: Nonlinear/Differential Equations with MATLAB 468
Appendix E: Symbolic Computations with MATLAB 471
Appendix F: Useful Formulas (Reference [K-2]) 474
Appendix G: The Standard Values of Resistors, Capacitors, and Inductors 476
Appendix H: OrCAD/PSpice (References [K-1] and [R-2]) 481
Appendix I: MATLAB Introduction (Reference [K-2]) 511
Appendix J: Solutions to Problems 514
References 525
Index 527
Index
ABCD parameter, 402
AC (alternating current), 10
AC admittance, 262
AC-excited first-order circuit, 136
AC impedance, 261–262
AC steady-state response, 260
AC sweep analysis, 498, 508
active element, 9
active filter, 336–340
active power, 275, 394
admittance, 41, 120, 262
admittance parameter, 401
admittance triangle, 264–265
all-pass filter, 358
Ampere’s right-hand rule, 225
analog computer, 169
analog filter design, 341–354
analogy, 205
a-parameter, 402, 438
apparent power, 277, 394
arc, 112, 188, 190
astable, 143
autotransformer, 241–242
average power, 275, 394
balanced, 299–300, 302, 305
bandpass filter (BPF), 323, 336, 344, 370
bandstop filter (BSF), 330, 337, 345
bandwidth, 320, 324, 331
bias point, 493, 504
biquad circuit, 362
bistable multivibrator, 80
bode( ), 357, 366
Bode diagram, 357
bouncing, 163
b-parameter, 402, 438
Branch, 14, 18
bridge balance condition, 274
bridge circuit, 65, 267, 274, 292, 363, 440
butter( ), 342–344, 368
Butterworth filter, 343, 347
capacitance, 7–8, 116–117
capacitance multiplier, 171
capacitive, 264, 265
capacitive reactance, 264
capacitor, 7–8, 113, 116–117, 262
Capture (CIS) window, 481
cascade, 343, 369
cascade connection, 416, 448
causal, 212
CCCS (current-controlled current source), 9–10
CCVS (current-controlled voltage source), 9–10
center frequency, 323, 324, 330
characteristic equation, 178, 182
characteristic root, 178
charge conservation, 114, 147, 148
cheby1( ), 342, 344
cheby2( ), 342, 345
Chebyshev filter, 342, 244, 245, 370
closed-loop gain, 74, 75, 435
coefficient of coupling, 225, 236
complex power, 277
conductance, 5, 36
continuity rule of capacitor voltage, 114, 124
continuity rule of inductor current, 111–112,
121, 252
controlled source, 9
controlling variable, 9
convolution, 210, 455
convolution property, 210, 452, 455
coupled coils, 225–236, 243–254
coupling, 225, 236
CRC circuit, 146
critically damped, 178, 179, 184, 194
CtFS_trigonometric( ), 380
current, 2
current divider, 38, 97
current gain, 82, 241, 243, 423, 425
current magnification ratio, 326
current source, 9
current transformer, 252
Cursor, 490
Circuit Systems with MATLAB1 and PSpice1 Won Y. Yang and Seung C. Lee
# 2007 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82232-6cutoff frequency, 320, 321, 322
cutset, 15, 18
DAC, see Digital-to-Analog converter
damped frequency, 180
damping constant, 180
damping ratio, 180
DC (direct current), 10
DC path to ground, 485
DC sensitivity analysis, 504
DC steady state, 113, 114, 115
DC sweep analysis, 494
deactivation (removal) of sources, 21
debounce, 95, 163
degenerate circuit, 144
 (delta)-Y (-T) conversion, 40, 266
dependent source, 9
design_combiner( ), 104
destabilization effect of positive feedback, 80
diff( ), 473
difference amplifier, 91, 102, 103
differential equation, 459, 469, 472
differential input voltage, 11
differentiation property, 122, 184, 452–454
differentiator, 139, 170
Digital-to-Analog converter (DAC), 102
distortion factor, 394
dot convention, 226
driving-point impedance, 411
dsolve( ), 175, 472
dual circuit, 206
duality, 206
dy_conversion( ), 266
dynamic resistance, 85–86
effective value, 256, 393
electric field energy (of capacitor), 8, 147
electric potential, 2
electric power, 3
electric shock, 310
electromotive force (emf), 2
ellip( ), 342, 346
emf, see electromotive force
equivalent, 21–22
555 timer/oscillator, 152–155, 173
Faraday’s law, 6, 224
feedback amplifier, 430–434
filter, 319
filter design, 341, 343, 367, 370
final state, 113, 114, 115
final value theorem, 452, 457
first-order circuit, 111
first-order OP Amp circuit, 138–143
flux, 6, 225
flux linkage, 6, 224–225
flux linkage conservation, 112, 145, 148, 252
forced response, 124
Fourier_analysis( ), 384–385, 399
Fourier analysis using Pspice, 381–384, 501
Fourier series, 373–375
Fourier series and Laplace transform, 387–390
free-wheeling diode, 149
frequency response, 211–212, 263, 319, 338–341,
347, 379
frequency response scaling, 338
frequency scaling, 338
frequency selective circuit, 319
fsolve( ), 157, 162, 174, 175, 468
full-wave rectified cosine wave, 385
fundamental frequency, 373
geometric series, 474
GFI, see ground fault interrupter g-parameter, 402, 438
ground fault interrupter (GFI), 311–313
ground (node), 40, 484, 485
grounding, 310–312
half-power frequency, see cutoff frequency
half-wave rectified cosine wave, 378
half-wave rectifier, 161
half-wave (symmetric), 375
highpass filter (HPF), 321, 335, 336, 346
highpass notch filter (HPNF), 358
Howland circuit, 107
h-parameter, 402, 438
hybrid parameter, 402
hysteresis charcteristic, 80
ideal OP Amp, 12
ideal source, 10
ideal transformer, 237–239
ilaplace( ), 187, 234, 459–460
ilaplace_my( ), 249, 446
immittance parameter, 401
impedance, 49, 120, 262
impedance angle, 265
impedance matching, 283–284, 296, 444, 448
impedance parameter, 401
impedance scaling (transformation), 238
impedance transformation (scaling), 238
impedance triangle, 263, 265
impulse function, 453
impulse response, 207–210
independent source, 9
inductance, 6–7, 116, 224
inductance emulator, 172
inductive, 264, 265
inductive reactance, 264
inductor, 6–7, 111, 115–116, 261–262
528 Indexinitial state, 113, 114, 115
initial transient bias point, 493
initial value theorem, 452, 456
in phase, 265, 323
input impedance, 11, 77, 82, 422, 424, 425
input resistance, 82, 100
input resistance of OP Amp, 12
instantaneous power, 275, 303
int( ), 473
integration property, 452, 454
integrator, 138–139, 169, 170, 219
inverse Laplace transform, 457–460
inverse matrix, 462–463
inverse phasor transform, 259
inverting OP Amp circuit, 72–73
inverting positive-feedback OP Amp, 78–79
jacob( ), 469
KCL (Kirchhoff’s current law), 15–16, 27–30, 40,
75–76
KCL equation, 18
Kerwin-Huelsman-Newcomb (KHN) circuit, 362
KVL (Kirchhoff’s voltage law) 16–17, 27–30, 48
KVL equation, 18
ladder network, 27, 87
lagging PF, 278
Laplace transform, 118, 260, 390, 451–460
Laplace transform table, 452
LC tank, 327
leading PF, 278
Lenz’s law, 224
limit on output current of OP Amp, 109
limit on output voltage of OP Amp, 109
linear, 5, 8, 71, 208
linear region, 11
linear time-invariant, 208–209
linear transformer, 240
line voltage, 301
load current controller, 107
load flow, 285
loading effect, 38, 77, 81–82
load line analysis, 82–86, 110
loop, 14–18
loop analysis, see mesh analysis
lowpass filter (LPF), 320, 334, 336
lowpass notch filter (LPNF), 358
LRL circuit, 144–145
magnetically coupled, 225–236, 243–254
magnetic field energy (of inductor), 7, 145
magnetic reluctance, 7, 223
magnetomotive force (mmf), 6, 223
magnitude scaling, 338
marginally stable, 181
Marker, 486
maximum output voltage of OP Amp, 11, 78–80
maximum power transfer, 283–284, 296
mesh, 14, 17
mesh (loop) analysis, 48–56
mesh equation, 49
mesh impedance matrix, 49
MFB (multiple feedback) circuit, 335–337, 353
Millman’s theorem, 98
missing DC path to ground, 504
mmf, see magnetomotive force
multi-scale ammeter, 96
multi-scale voltmeter, 96
mutual inductance, 225–230, 246
natural frequency, 125
natural response, 124–125
negative feedback, 12–13, 73–75, 138–143
negative resistance, 108
netlist file, 493
neutral, 301
neutrally stable, 181
newtons( ), 157, 469
node, 14, 18
node admittance matrix, 41
node analysis, 40–48, 56
node equation, 41
non-inverting OP Amp circuit, 74–75
non-inverting positive-feedback OP Amp, 79–80
nonlinear equation, 468
nonlinear resistor circuit, 82–86, 110
nonlinear RL circuit, 175
Norton equivalent, 63–64
notch frequency, 330
OP Amp (operational amplifier), 10–12, 77–78
OP Amp circuit, 72–80, 91–94, 138–143, 168–174,
204, 333–340
open-loop gain, 11–12, 435
operating point, 83–86, 175, 493
output impedance, 11, 77, 78, 82, 424, 429
output resistance, 82, 100
output resistance of OP Amp, 12
overdamped, 178, 183
parallel_comb( ), 36, 266
parallel, 25, 116, 117, 343, 369, 414, 432
parallel(-parallel) connection, 414, 432
parallel combination of capacitors, 117
parallel combination of inductors, 116
parallel combination of resistors, 36–37, 95
parallel duplication of voltage source, 19, 22
parallel resonance, 326, 327
parallel RLC circuit, 192, 197, 215, 264, 326, 332
Index 529parallel-series, 415, 433
PARAMETERS, 287–288, 500–501
parameter conversion, 406–410
Parametric Sweep, 287–288, 500–501
Passband, 324, 341
passive element, 5
passive sign convention, 4
peak frequency, 323, 326
periodic switching, 165
permeability, 7, 223
permeance, 6–7, 223, 237
PF_correction( ), 282
PF (power factor) correction, 279–282, 295
phase, 256, 466
phase lag, 265
phase lead, 265
phase voltage, 301
phasor, 256
phasor diagram, 263–264, 280, 293, 301, 303
phasor method, see phasor transform
phasor transform, 259–260
(pi)-equivalent, 229
port condition, 401, 416, 444
port_conversion( ), 410, 419, 439, 449
port current requirement, see port condition
port_property( ), 427, 439, 449
positive feedback, 13, 78–80, 95, 140–143
potential, 2
power, 3, 228, 275–278, 303, 394
power conservation, 277
power factor (PF), 278–286, 302–303, 394
power factor (PF) angle, 265, 278
power transmission, 240, 317
power triangle, 277–278
practical analysis rule of OP Amp circuit, 76
practical source, 10
Property Editor spreadsheet, 94, 152, 237, 288, 484,
497, 500
pulse response, 208
quality factor, 324, 326, 331
RC circuit, 123, 134, 150, 156, 160, 164–167, 381
RC OP Amp circuit, 139, 169, 173
reactance, 262, 263
reactive power, 276
real power, 275
reciprocal, 412
rectangular (or square) wave, 142, 376, 381
rectangular wave generator, 140–143, 167–168, 174
reference direction, 4
reference node, 40
reference polarity, 3
reflected impedance, 239, 297
rejection frequency, 330
relative winding direction, 226, 230, 235
relaxation oscillator, 143
relay, 159
removal (deactivation) of sources, 21
residue( ), 458–460
resistance, 5, 35
resistivity, 5, 25
resistor, 5, 119, 261
resonance, 325, 326, 329
resonance condition, 329
resonant frequency, 323, 326
RL circuit, 121, 134, 152, 156, 159, 166, 173, 176
rms (root-mean-square), 256, 393
Sallen-Key circuit, 334, 353
saturation output voltage of OP Amp, 11, 78, 108,
220, 291
saturation (nonlinear) region, 11
saw-tooth function, 395
Schmitt trigger, 80, 94–95, 163
s-domain (transformed) equivalent, 119–120
second-order active filter, 334–338
second-order circuit, 177
second-order OP Amp circuit, 204, 213, 222
selectivity, 324, 331
self inductance, 224
sequential switching, 133, 166–167
series, 25, 116, 117, 414
series combination of capacitors, 117
series combination of inductors, 116
series combination of resistors, 36–37, 95
series duplication of current source, 20, 23
series-parallel, 415, 431
series resonance, 325
series RLC circuit, 181, 187, 214, 263, 323, 330
series(-series), 414, 432
simulation profile, 486–487
Simulation Settings dialog box, 237, 288, 487–488
singular circuit, 144
SKIPBP, 236, 248, 250
solve( ), 472
source transformation, 21–24, 31
source transformation method, 43, 45, 47, 52, 55, 56
square wave, see rectangular wave
stable, 180–181, 212
stabilization effect of negative feedback, 12
standard values of capacitors, 477
standard values of inductors, 478
standard values of resistors, 476
state equation, 470
static resistance, 85–86
steady-state response, 125, 211–212
step function, 451
step response, 327
stopband, 331, 341
530 Indexsumming amplifier, 91
supermesh, 14, 17
supermesh method, 50, 51, 54
supernode, 14, 16
supernode method, 42, 44, 46, 59, 61
superposition principle, 71, 208
susceptance, 262, 264
symbolic computation, 471
symmetrical, 412
3dB frequency, 320, 326, 331
Tellegen’s theorem, 28
T-equivalent, 229, 245, 248, 250
tf2par_s( ), 349
tf2sos( ), 344
THD, see total harmonic distortion
Thevenin equivalent, 63–70, 99–102, 203, 239, 270,
273, 424
three-phase power, 303–308
time constant, 125–128, 180, 321
time differentiation property, 452, 454
time-invariant, 208
time shifting property, 452, 455
total harmonic distortion (THD), 394
Tow-Thomas circuit, 362
Trace, 490
transfer function, 178, 205, 207, 210
transfer function analysis, 504
transfer impedance, 411
transformed (s-domain) equivalent, 119–120
transformer, 237–243, 246, 284, 294
transient response, 125
transmission loss, 280
transmission parameter, 402
tree, 18
triangular wave, 376, 399
triangular wave generator, 140–143, 167–168
trigonometric formulas, 474
tuning, 339
two-port network, 401, 420
two-port network property, 427
undamped, 186, 195
undamped resonant frequency, 180, 181
underdamped, 179, 185
unit impulse function, 453
units, 1
unit step function, 451
unbalanced three-phase power system, 314
unstable, 143, 180, 181
VA (Volt-Ampere), 277
VAC (AC voltage source), 483
VAR (Volt-Ampere Reactive), 277
VCCS (voltage-controlled current source), 9–10
VCR (voltage-current relationship), 41, 48
VCVS (voltage-controlled voltage source), 9–10
virtual ground, 73
virtual open principle, 13, 76
virtual short principle, 12–13, 76
voltage, 2
voltage divider, 37, 88, 97
voltage follower, 76–77
voltage gain, 81, 241, 243, 423, 425
voltage magnification ratio, 324
voltage source, 9
voltage-to-current converter, 107
VPULSE, 382, 484
VPWL, 484
VSIN, 483, 484
War of Currents, 223
wC_for_PF_correction( ), 282
Wien bridge oscillator, 221
window defroster, 90
y-parameter, 401, 438
yd_conversion( ), 266
Y- (T-) conversion, 40, 266
Y-/Y connection, 307
y_d( ), 316
y_dy( ), 307, 314
Y-Y connection, 304
y_y( ), 305, 314
zero-input response, 124
zero-state response, 124
z-parameter, 401, 438

#ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,

كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Circuit Systems with MATLAB and PSpice
رابط مباشر لتنزيل كتاب Circuit Systems with MATLAB and PSpice
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Circuit Systems with MATLAB and PSpice
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Signals and Systems Using MATLAB
» كتاب Signals and Systems with MATLAB
» كتاب Signals and Systems Using MATLAB - Third Edition
» كتاب Signals and Systems. A Primer with MatLAB
» كتاب Signals and Systems Laboratory with MATLAB

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى شروحات البرامج الهندسية-
انتقل الى: