Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب MATLAB Machine Learning Recipes - A Problem-Solution Approach الجمعة 17 مايو 2024, 12:19 am | |
|
أخواني في الله أحضرت لكم كتاب MATLAB Machine Learning Recipes - A Problem-Solution Approach Third Edition Michael Paluszek , Stephanie Thomas
و المحتوى كما يلي :
Contents About the Authors XVII About the Technical Reviewer XIX Introduction XXI 1 An Overview of Machine Learning 1 1.1 Introduction . 1 1.2 Elements of Machine Learning . 2 1.2.1 Data 2 1.2.2 Models 2 1.2.3 Training 3 1.3 The Learning Machine . 4 1.4 Taxonomy of Machine Learning 6 1.5 Control . 8 1.5.1 Kalman Filters 9 1.5.2 Adaptive Control . 9 1.6 Autonomous Learning Methods 10 1.6.1 Regression . 10 1.6.2 Decision Trees 13 1.6.3 Neural Networks . 14 1.6.4 Support Vector Machines (SVMs) 16 1.7 Artificial Intelligence 17 1.7.1 What Is Artificial Intelligence? 17 1.7.2 Intelligent Cars 17 1.7.3 Expert Systems 18 1.8 Summary 19 2 Data for Machine Learning in MATLAB 21 2.1 Introduction to MATLAB Data Types . 21 2.1.1 Matrices 21 2.1.2 Cell Arrays 22 2.1.3 Data Structures 23 2.1.4 Numerics . 25 2.1.5 Images . 25 VCONTENTS 2.1.6 Datastore . 26 2.1.7 Tall Arrays 28 2.1.8 Sparse Matrices 29 2.1.9 Tables and Categoricals 30 2.1.10 Large MAT-Files . 32 2.2 Initializing a Data Structure . 33 2.2.1 Problem 33 2.2.2 Solution 33 2.2.3 How It Works . 33 2.3 mapreduce on an Image Datastore . 36 2.3.1 Problem 36 2.3.2 Solution 36 2.3.3 How It Works . 36 2.4 Processing Table Data 38 2.4.1 Problem 38 2.4.2 Solution 38 2.4.3 How It Works . 39 2.5 String Concatenation 42 2.5.1 Problem 42 2.5.2 Solution 42 2.5.3 How It Works . 42 2.6 Arrays of Strings 42 2.6.1 Problem 42 2.6.2 Solution 42 2.6.3 How It Works . 42 2.7 Substrings 43 2.7.1 Problem 43 2.7.2 Solution 43 2.7.3 How It Works . 43 2.8 Reading an Excel Spreadsheet into a Table . 44 2.8.1 Problem 44 2.8.2 Solution 44 2.8.3 How It Works . 44 2.9 Accessing ChatGPT . 46 2.9.1 Problem 46 2.9.2 Solution 46 2.9.3 How It Works . 46 2.10 Summary 48 VICONTENTS 3 MATLAB Graphics 49 3.1 2D Line Plots 49 3.1.1 Problem 49 3.1.2 Solution 49 3.1.3 How It Works . 50 3.2 General 2D Graphics 52 3.2.1 Problem 52 3.2.2 Solution 52 3.2.3 How It Works . 53 3.3 Custom Two-Dimensional Diagrams 54 3.3.1 Problem 54 3.3.2 Solution 54 3.3.3 How It Works . 55 3.4 Three-Dimensional Box . 56 3.4.1 Problem 56 3.4.2 Solution 56 3.4.3 How It Works . 56 3.5 Draw a 3D Object with a Texture 59 3.5.1 Problem 59 3.5.2 Solution 59 3.5.3 How It Works . 60 3.6 General 3D Graphics 61 3.6.1 Problem 61 3.6.2 Solution 61 3.6.3 How It Works . 62 3.7 Building a GUI . 63 3.7.1 Problem 63 3.7.2 Solution 63 3.7.3 How It Works . 63 3.8 Animating a Bar Chart . 68 3.8.1 Problem 68 3.8.2 Solution 69 3.8.3 How It Works . 69 3.9 Drawing a Robot 73 3.9.1 Problem 73 3.9.2 Solution 73 3.9.3 How It Works . 73 3.10 Importing a Model . 76 3.10.1 Problem 76 3.10.2 Solution 76 3.10.3 How It Works . 76 3.11 Summary 83 VIICONTENTS 4 Kalman Filters 85 4.1 Gaussian Distribution 86 4.2 A State Estimator Using a Linear Kalman Filter 87 4.2.1 Problem 87 4.2.2 Solution 88 4.2.3 How It Works . 89 4.3 Using the Extended Kalman Filter for State Estimation 106 4.3.1 Problem 106 4.3.2 Solution 107 4.3.3 How It Works . 108 4.4 Using the UKF for State Estimation 111 4.4.1 Problem 111 4.4.2 Solution 112 4.4.3 How It Works . 113 4.5 Using the UKF for Parameter Estimation 117 4.5.1 Problem 117 4.5.2 Solution 118 4.5.3 How It Works . 118 4.6 Range to a Car 122 4.6.1 Problem 122 4.6.2 Solution 122 4.6.3 How It Works . 122 4.7 Summary 125 5 Adaptive Control 127 5.1 Self-Tuning: Tuning an Oscillator . 128 5.1.1 Problem 129 5.1.2 Solution 130 5.1.3 How It Works . 130 5.2 Implement MRAC 136 5.2.1 Problem 136 5.2.2 Solution 136 5.2.3 How It Works . 136 5.3 Generating a Square Wave Input 140 5.3.1 Problem 140 5.3.2 Solution 140 5.3.3 How It Works . 140 5.4 Demonstrate MRAC for a Rotor 142 5.4.1 Problem 142 5.4.2 Solution 142 5.4.3 How It Works . 142 VIIICONTENTS 5.5 Ship Steering: Implement Gain Scheduling for Steering Control of a Ship 145 5.5.1 Problem 145 5.5.2 Solution 145 5.5.3 How It Works . 145 5.6 Spacecraft Pointing . 148 5.6.1 Problem 148 5.6.2 Solution 148 5.6.3 How It Works . 148 5.7 Direct Adaptive Control . 153 5.7.1 Problem 153 5.7.2 Solution 153 5.7.3 How It Works . 153 5.8 Summary 155 6 Fuzzy Logic 157 6.1 Building Fuzzy Logic Systems . 158 6.1.1 Problem 158 6.1.2 Solution 158 6.1.3 How It Works . 158 6.2 Implement Fuzzy Logic . 163 6.2.1 Problem 163 6.2.2 Solution 163 6.2.3 How It Works . 163 6.3 Window Wiper Fuzzy Controller 169 6.3.1 Problem 169 6.3.2 Solution 169 6.3.3 How It Works . 169 6.4 Simple Discrete HVAC Fuzzy Controller 174 6.4.1 Problem 174 6.4.2 Solution 174 6.4.3 How It Works . 174 6.5 Variable HVAC Fuzzy Controller 180 6.5.1 Problem 180 6.5.2 Solution 181 6.5.3 How It Works . 181 6.6 Summary 189 7 Neural Aircraft Control 191 7.1 Longitudinal Motion 191 7.1.1 Problem 193 7.1.2 Solution 193 7.1.3 How It Works . 193 IXCONTENTS 7.2 Numerically Finding Equilibrium 198 7.2.1 Problem 198 7.2.2 Solution 199 7.2.3 How It Works . 199 7.3 Numerical Simulation of the Aircraft 200 7.3.1 Problem 200 7.3.2 Solution 200 7.3.3 How It Works . 201 7.4 Activation Function . 202 7.4.1 Problem 202 7.4.2 Solution 203 7.4.3 How It Works . 203 7.5 Neural Net for Learning Control 204 7.5.1 Problem 204 7.5.2 Solution 204 7.5.3 How It Works . 204 7.6 Enumeration of All Sets of Inputs . 208 7.6.1 Problem 208 7.6.2 Solution 208 7.6.3 How It Works . 208 7.7 Write a Sigma-Pi Neural Net Function . 210 7.7.1 Problem 210 7.7.2 Solution 210 7.7.3 How It Works . 210 7.8 Implement PID Control . 213 7.8.1 Problem 213 7.8.2 Solution 213 7.8.3 How It Works . 213 7.9 PID Control of Pitch 218 7.9.1 Problem 218 7.9.2 Solution 218 7.9.3 How It Works . 218 7.10 Neural Net for Pitch Dynamics . 223 7.10.1 Problem 223 7.10.2 Solution 223 7.10.3 How It Works . 224 7.11 Nonlinear Simulation 226 7.11.1 Problem 226 7.11.2 Solution 226 7.11.3 How It Works . 226 7.12 Summary 228 XCONTENTS 8 Introduction to Neural Nets 229 8.1 Daylight Detector 229 8.1.1 Problem 229 8.1.2 Solution 229 8.1.3 How It Works . 230 8.2 Modeling a Pendulum 231 8.2.1 Problem 231 8.2.2 Solution 232 8.2.3 How It Works . 232 8.3 Single Neuron Angle Estimator . 235 8.3.1 Problem 235 8.3.2 Solution 236 8.3.3 How It Works . 236 8.4 Designing a Neural Net for the Pendulum . 240 8.4.1 Problem 240 8.4.2 Solution 240 8.4.3 How It Works . 240 8.5 XOR Example 244 8.6 Training . 253 8.7 Summary 254 9 Classification of Numbers Using Neural Networks 257 9.1 Generate Test Images with Defects . 257 9.1.1 Problem 257 9.1.2 Solution 258 9.1.3 How It Works . 258 9.2 Create the Neural Net Functions 262 9.2.1 Problem 262 9.2.2 Solution 263 9.2.3 How It Works . 263 9.3 Train a Network with One Output Node 267 9.3.1 Problem 267 9.3.2 Solution 267 9.3.3 How It Works . 269 9.4 Testing the Neural Network . 272 9.4.1 Problem 272 9.4.2 Solution 272 9.4.3 How It Works . 273 9.5 Train a Network with Many Outputs 273 9.5.1 Problem 273 9.5.2 Solution 273 9.5.3 How It Works . 274 9.6 Summary 277 XICONTENTS 10 Data Classification with Decision Trees 279 10.1 Generate Test Data . 280 10.1.1 Problem 280 10.1.2 Solution 280 10.1.3 How It Works . 280 10.2 Drawing Trees 283 10.2.1 Problem 283 10.2.2 Solution 283 10.2.3 How It Works . 283 10.3 Implementation . 287 10.3.1 Problem 287 10.3.2 Solution 287 10.3.3 How It Works . 288 10.4 Creating a Tree . 291 10.4.1 Problem 291 10.4.2 Solution 291 10.4.3 How It Works . 291 10.5 Handmade Tree . 295 10.5.1 Problem 295 10.5.2 Solution 295 10.5.3 How It Works . 295 10.6 Training and Testing 298 10.6.1 Problem 298 10.6.2 Solution 298 10.6.3 How It Works . 298 10.7 Summary 301 11 Pattern Recognition with Deep Learning 303 11.1 Obtain Data Online for Training a Neural Net . 305 11.1.1 Problem 305 11.1.2 Solution 305 11.1.3 How It Works . 305 11.2 Generating Training Images of Cats 305 11.2.1 Problem 305 11.2.2 Solution 305 11.2.3 How It Works . 306 11.3 Matrix Convolution . 308 11.3.1 Problem 308 11.3.2 Solution 309 11.3.3 How It Works . 309 11.4 Convolution Layer . 311 11.4.1 Problem 311 XIICONTENTS 11.4.2 Solution 311 11.4.3 How It Works . 311 11.5 Pooling to Outputs of a Layer 312 11.5.1 Problem 312 11.5.2 Solution 312 11.5.3 How It Works . 313 11.6 Fully Connected Layer . 314 11.6.1 Problem 314 11.6.2 Solution 314 11.6.3 How It Works . 314 11.7 Determining the Probability . 316 11.7.1 Problem 316 11.7.2 Solution 316 11.7.3 How It Works . 317 11.8 Test the Neural Network 318 11.8.1 Problem 318 11.8.2 Solution 318 11.8.3 How It Works . 318 11.9 Recognizing an Image . 320 11.9.1 Problem 320 11.9.2 Solution 320 11.9.3 How It Works . 320 11.10 Using AlexNet . 322 11.10.1 Problem 322 11.10.2 Solution 322 11.10.3 How It Works . 322 Summary 326 12 Multiple Hypothesis Testing 327 12.1 Overview 327 12.2 Theory 329 12.2.1 Introduction 329 12.2.2 Example 331 12.2.3 Algorithm . 331 12.2.4 Measurement Assignment and Tracks 333 12.2.5 Hypothesis Formation . 334 12.2.6 Track Pruning . 335 12.3 Billiard Ball Kalman Filter . 335 12.3.1 Problem 335 12.3.2 Solution 336 12.3.3 How It Works . 336 12.4 Billiard Ball MHT 342 XIIICONTENTS 12.4.1 Problem 342 12.4.2 Solution 342 12.4.3 How It Works . 342 12.5 One-Dimensional Motion 345 12.5.1 Problem 345 12.5.2 Solution 346 12.5.3 How It Works . 347 12.6 One-Dimensional MHT . 349 12.6.1 Problem 349 12.6.2 Solution 349 12.6.3 How It Works . 349 12.7 Summary 351 13 Autonomous Driving with MHT 355 13.1 Automobile Dynamics . 356 13.1.1 Problem 356 13.1.2 Solution 356 13.1.3 How It Works . 356 13.2 Automobile Radar 359 13.2.1 Problem 359 13.2.2 Solution 359 13.2.3 How It Works . 359 13.3 Passing Control . 362 13.3.1 Problem 362 13.3.2 Solution 362 13.3.3 How It Works . 362 13.4 Automobile Animation . 363 13.4.1 Problem 363 13.4.2 Solution 364 13.4.3 How It Works . 364 13.4.4 Solution 364 13.5 Automobile Simulation and the Kalman Filter . 367 13.5.1 Problem 367 13.5.2 Solution 368 13.5.3 How It Works . 368 13.6 Automobile Target Tracking 371 13.6.1 Problem 371 13.6.2 Solution 371 13.6.3 How It Works . 371 13.7 Summary 374 XIVCONTENTS 14 Spacecraft Attitude Determination 377 14.1 Star Catalog . 377 14.1.1 Problem 377 14.1.2 Solution 378 14.1.3 How It Works . 378 14.2 Camera Model 381 14.2.1 Problem 381 14.2.2 Solution 381 14.2.3 How It Works . 381 14.3 Celestial Sphere . 383 14.3.1 Problem 383 14.3.2 Solution 383 14.3.3 How It Works . 383 14.4 Attitude Simulation of Camera Views . 384 14.4.1 Problem 384 14.4.2 Solution 384 14.4.3 How It Works . 384 14.5 Yaw Angle Rotation . 387 14.5.1 Problem 387 14.5.2 Solution 387 14.5.3 How It Works . 387 14.6 Yaw Images . 388 14.6.1 Problem 388 14.6.2 Solution 388 14.6.3 How It Works . 388 14.7 Attitude Determination . 391 14.7.1 Problem 391 14.7.2 Solution 391 14.7.3 How It Works . 391 14.8 Summary 399 15 Case-Based Expert Systems 401 15.1 Building Expert Systems 404 15.1.1 Problem 404 15.1.2 Solution 404 15.1.3 How It Works . 404 15.2 Running an Expert System . 406 15.2.1 Problem 406 15.2.2 Solution 407 15.2.3 How It Works . 407 15.3 Summary 410 XVCONTENTS A A Brief History 411 B Software for Machine Learning 419 Bibliography 431 Index 435 Index A Activation functions, 202–203, 236, 237 Adaptive control designed and implemented, 127 learning and adaptive, 127 self-tuning, 128 taxonomy, 127, 128 Adaptive control systems, xiii, 2, 4, 7, 9–10 Adaptive controllers, 416 Adaptive/intelligent control, 415, 416 Advice Taker, 412 Aerodynamic coefficients, 194 Aerodynamic models, 193, 198 Air traffic control radar systems, 327 Aircraft dynamics, 415 AircraftSim, 219–221, 226 AircraftSimOpenLoop, 201–202 AlexNet, 322–325, 421 Artificial intelligence (AI) advances, 414 Advice Taker, 412 Bayesian network, 414 blocks world, 412 ChatGPT, 414 chess, 413, 414 definition, 17 expert systems, 18, 413 GPS, 412 Hanoi Towers, 412 intelligent cars, 17–18 limitations, 413 Lisp, 412 LT, 411 mathematical formulation, 411 neural network, 411 Time-sharing, 412 timeline, 414 Watson, 414 Artificial neural networks, 413 Aspect ratio, 193, 194 AttitudeDetermination function, 391, 399 AttitudeSim function, 384, 386, 387, 399 Automatic control systems, 2 Automobile animation automobile 3D model, 364 AutomobileDemo, 366 cars, 363 DrawComponents, 365, 366 drawnow, 366 graphics window, 366 LoadOBJFile, 364 Macintosh application, 364 mesh, 365 .obj files, 364 OBJ model, 364 passing sequence, 366, 367 patch. patch, 365 updation, 365 Automobile controllers, 374 Automobile dynamics collisions, 356 contact friction, 358 dynamic pressure, 357 dynamical equations, 357 inertial velocity, 359 planar model, 356, 357 RHSAutomobile function, 356 rolling friction, 358 RungeKutta function, 356 steering angle, 359 tire force, 358 transformation, 358 unit vector, 358 vehicle states, 356 velocity derivatives, 356 wheel force and torque, 358 yaw angle and yaw angular rate, 359 Automobile radar AutoRadar function, 360 AutoRadarUKF function, 360–361 built-in radar demo, 361 delta velocity, 360 demos, 360 functions, 359 power, 359 radar model, 359 range, 359, 360 sensor, 361 Automobile simulation automobile positions, 369 automobile track, 369 automobile trajectories, 370 car tracking, 367 demonstration, 368 differential equations, 368 Kalman Filter, 368 MHT distance, 368, 371 MHTDistanceUKF function, 368–369 radar measurements, 367 RHSAutomobileXY function, 368 true states and UKF estimated states, 370 UKFAutomobileDemo, 369 velocity, 368 Automobile target tracking automobile demo, 374 demo car trajectories, 372 demo radar measurement, 373 IMM, 372 maneuvers, 372 MHT system, 371, 372 MHTAutomobileDemo, 371 primary car, 371 radar, 371 tracks, 373 UKF, 372 AutomobileDemo function, 375 AutomobileInitialize function, 375 AutomobileLaneChange function, 375 AutomobilePassing function, 375 Autonomous cars, xiii, 19 Autonomous control systems, 17 Autonomous driving, 417 car, 355 Kalman Filter, 355 measurements, 355 model, tracked automobiles, 355 passing control (see Passing control) Autonomous learning, 6, 418 AutoRadar function, 375 AutoRadarUKF function, 375 B Backpropagation, 266, 413 Batch process, 4 Bayes theorem, 93, 96, 417 Bayesian network, 18, 414 Big data, 419 Binary decision tree, 279, 283, 291 Binary trees, 279, 280, 283, 284, 286, 287 BuildFuzzySystem, 159–160, 169, 181 C Camera model patch, 382 pinhole camera, 381, 382 PinholeCamera function, 381 plot3, 382–383 star identification, 381 catColorMapper, 37 Categorical arrays, 30–31 CelestialSphere function, 383, 399 Cell arrays, 22–23 CFITSIO library, 25 changeFonts boolean, 261 436INDEX Chapman-Kolmogorov equation, 97 ChatGPT, 8, 46–48, 414 Chess programs, 413, 414 C Language Integrated Production System (CLIPS), 413 Classical ballet technique, 3 Classification methods, 420 Clustering algorithms, 3, 420 Combat aircraft, 418 Combinations, 208–210 Content generation systems, 2 Control systems, 8 adaptive, 2, 4, 7, 9–10 automatic, 2 autonomous, 17 definition, 2 feedback, 8 feedforward, 5 optimal, 7 Titan landing, 16 Convolutional neural network (CNN), 391, 392 AlexNet for image classification, 322–325 calculate probability, 316–317 code listing, 326 convolution-connected layer, 311–312 deep learning CNN, 303, 304 generate training images of cats, 305–308 implement fully connected layer, 314–316 matrix convolution, 308–311 online for training cat recognition neural net, 305 pool layer outputs, 312–314 pooling layer, 303, 304 recognize image, 320–321 test neural network, 318–319 types of layers, 303 CreateDigitImage function, 258 Cumulative Probability Density Function (CPDF), 86 Custom two-dimensional diagrams, 54–56 CVX, 425 D Data, 2 mining, 414, 417 structure, 33–36 Data classification code listing, 301 create tree, 291–295 draw binary decision tree, 283–287 generate test data, 280–283 handmade decision tree, 295–298 implement Gini impurity measure, 287–291 training and testing, 298–301 Daylight detector, 231 detector results, 230 light level measure, photocell, 230 problem, 229 solar flux, 230 solution, 229 Decision tree, 13, 409 binary trees, 279, 280, 283, 286, 287, 291 classification, 13–14 classify data using decision tree (see Data classification) MHT tree, 344, 345 Deep learning network GUI, 246 Deep neural network, 15 Defuzzification, 159, 162, 163, 166, 168 Delta acceleration (DA), 224, 226 DI, see Dynamic inversion (DI) Digit0FontsTS, 268 DigitTrainingData, 260, 272 DigitTrainingTS, 269 Direct adaptive control, 153–155 Discrete HVAC fuzzy controller arbitrary mode setting, 179 dynamical model, 174–176 heating system and air conditioning, 174 house model, 174, 175 HVACFuzzyPlot.m, 179–180 HVACSim.m, 176–177 initialize mode, 177–178 437INDEX inputs and outputs, 180 non-fuzzy hysteresis controller performance, 177 set of rules, 174, 175 simulation, 180, 181 temperature categories, 174, 175 variables, 174 Discriminative model, 16 DLXORNoisy.m, 251 Drag polar, 193 DrawComponents function, 375 dRHSL, 224, 226 Dynamic inversion (DI) acceleration, 221 nonlinear, 192 vs. PID, 204, 221, 223 pitch, 218 E Earth-Centered Inertial (ECI), 379, 380 EquilibriumState, 199–200 Excel spreadsheet, 44–45 Expert systems, xiii, 18, 41 AI, 413 case-based, 401, 402 CLIPS, 426 definition, 413 fact-gathering, 403 fully autonomous based reasoning, 403 new rule sets, 403 products, 426 rule-based, 401, 403, 404 Extended Kalman filter AngleMeasurementPartial, 108 conventional, 111 EKFPredict and EKFUpdate functions, 109 EKFSim script implements, 110 nonlinear model, 106 solution, 107 state derivative function, 108 F Face identification system, 3 Face recognition, 3, 5, 15, 25 Fast Fourier Transform (FFT), 9 Feedback control systems, 8 Feedforward control system, 5 feedforwardnet, 251 Flexible Image Transport System (FITS), 25 fminsearch, 199, 200 F-16 data, 198 F-16 model, 196–198 for loop, 260 Fuzzify, 164, 165 Fuzzy logic, 8 build systems BuildFuzzySystem, 159–160 commercial/open source tools, 163 contains, 160 data structure, 158 defuzzification, 159 fuzzy rules, 162 fuzzy sets, 161 inference engine, 158 MATLAB function, 158 membership functions, 161–162 set and rule structure, 159 structure, 162 framework of set theory, 157 functions and scripts, code, 189, 190 helper functions, 189, 190 HVAC fuzzy controller discrete, 174–181 variable, 180–189 implement, 163–168 TRLs, 157 window wiper fuzzy controller, 169–174 Fuzzy rules, 159, 162, 165, 168 Fuzzy sets, 158, 159, 161, 162 FuzzyInference, 164–168 FuzzyPlot, 169 FuzzyRand, 172 438INDEX G Gaussian distribution CPDF and PDF, 86–87 Gaussian membership function, 161 Gaussian variable, 95, 98, 100 General Problem Solver (GPS), 412 Generate test images with defects CreateDigitImage function, 258 digit neural network setup files, 262 DigitTrainingData, 260 digit training sets, 262 helper function, 261 for loop, 260 oneDigitMode, 261 Poisson or shot noise, 257 print, 258 SaveTS, 260 simple Poisson or shot noise, 257, 258 text, 258 Generative deep learning systems, 4 Generative machine learning (ML) models, 16, 418 Geosynchronous communications satellites, 416 GNU Linear Programming Kit (GLPK), xv, 422 H Hessian matrix, 253 HiddenMarkov models, 413, 414 HVAC fuzzy controller discrete, 174–181 variable, 180–189 HVACFuzzyController.m, 181–186 HVACFuzzyPlot.m, 179–180 HVACSim.m, 176–177 HVACSimplestFuzzyController, 174 I, J imagesc, 270 Implement fuzzy logic control flow, 164 defuzzification, 168 defuzzify, 163 function handles, 163 Fuzzify, 165 fuzzy rule logic, 165 FuzzyInference164–168 Inertia matrix, 197 Intelligent cars, 17–18 Interactive Multiple Models (IMM), 372, 422 K Kalman filters, 9, 18, 207, 334, 355 acceleration, 86 application, 86 billiard ball Kalman Filter, 335–342 block diagram, 93 car tracking dynamic model, 122 random walk, 125 state propagation, 124 family tree, 94 Gaussian distribution (see Gaussian distribution) implementation constant acceleration, 102 MATLAB, 101 state space, 101 important, 85 mathematical framework, 85 MHT system, 342 noise matrix, 105–106 one-dimensional MHT, 349 one-dimensional motion, 346, 348 parameters, 85 prediction, 104 script, 105 simulation, 103 unscented, 94 update, 104–105 KFBilliardsDemo, 337–339, 341–342 Knowledge acquisition, 18 Knowledge-based systems, 413 kSigmoid, 211 439INDEX L Labeling, 3 Large MAT file, 32 Learning control, 415–416 Learning machine, 4–5 Levenberg-Marquardt training algorithm, 253, 254 LIBSVM, 423 Linear measurement, 9 Linear regression, 10, 11, 13 Lisp, 412 LoadHipparcos function, 378, 399 Logic Theorist (LT), 412 Longitudinal control, 191 Longitudinal motion aerodynamic coefficients, 194 aerodynamic models, 198 aircraft dynamics symbols, 193, 194 differential equations, 193 dynamical equations, 194–195 F-16 data, 198 F-16 model, 196–197 inertia matrix, 197 learning control, 191–192 neural network, 192 PID controller, 192 pitch equation, 195 RHSAircraft, 195–196 LOQO, 424 M Machine learning, 1, 411, 414, 417 autonomous driving, 417 autonomous learning software, 419 Bayes’ theorem, 417 data mining, 417 definition, 1 elements data, 2 models, 2 training, 3–4 engineering, xiii fusion reactors, xiii GLPK, xv machine vision, 417 MATLAB, xiii MATLAB software (see MATLAB software) MATLAB strings (see MATLAB stringdata type) Non-MATLAB products, 422–423 optimization tools CVX, 424 GLPK, 424 LOQO, 424 SeDuMi, 424 SNOPT, 424 uses, 423 YALMIP, 424 packages, xiii PlotSet function, xiv–xv SVMs, 417 taxonomy, 6–8 traditional, 6 two-dimensional arrays, 68 mapreduce, 36–38 Mathworks, 322 Statistics and Machine Learning Toolbox, 420 MATLAB dat string arrays of strings, 42–43 categorical arrays, 30–31 large MAT file, 32 string concatenation, 42 substrings, 43 MATLAB function, 158 MATLAB graphics animating a bar chart, 68–73 building GUI, 62–68 custom two-dimensional diagrams, 54–56 drawing a robot, 73–76 importing a model, 76–83 three-dimensional box, 56–59 3D graphics, 61–62 440INDEX 3D object with texture, 59–61 2D graphics, 52–54 2D line plots, 49–52 MATLAB mex files cbkFunction, 428 Clang, 428 CLIPS, 426–429 facts, 428, 429 libCLIPS.dylib, 428 MEXTest.c., 427 MEXTest.h, 427–428 MEXTest.m, 428 Rules.CLP, 428 XCode, 428 MATLAB software MathWorks products, 420 deep learning toolbox, 421 global optimization toolbox, 421 optimization toolbox, 421 statistics and machine learning toolbox, 420 text analytics toolbox, 421 Princeton Satellite Systems products Core Control toolbox, 421 target tracking, 422 MATLAB stringdata type cell arrays, 22–23 data structures, 22–25 datastores, 26–28 images, 25–26 matrices, 21–22 numerics, 25 sparse matrices, 28–29 tables, 30 tall arrays, 28–29 MATLAB toolbox, xiv Membership functions bell function, 161 Gaussian, 161 sigmoidal, 161 trapezoid, 161 triangular, 161 MHTAutomobileDemo function, 375 MHTBilliardsDemo, 342–343 Mixed-integer linear program (MILP), 422 Model Reference Adaptive Control (MRAC) adaptation parameters, 137 closed-loop system, 136 differential equations, 139 disturbance angular acceleration, 136 function, 139–140 gain convergence, 144 implementation, 138 MIT rule, 136 parameters, 137 problem, 136 for rotor, 136, 142–143 RotorSim, 140 RungeKutta, 139 solution, 136 Models, 2, 360, 364, 368, 381, 415 multiple model filters, 331 Monte-Carlo methods, 95 Multilayer feedforward (MLFF) neural networks, 15, 240, 263 Multiple hypothesis testing (MHT), 355, 374 code listing, 353 GLPKMEX program, 329 terms, 328 track management software, 329 track-oriented approach (see Track-oriented MHT) N Neural aircraft control activation function, 202–203 enumeration, all sets of inputs, 208–210 functions and scripts, 228 longitudinal dynamics, 191, 192 longitudinal motion, 191–198 neural net for learning control, 204–208 for pitch dynamics, 223–226 sigma-pi, 210–213 441INDEX nonlinear simulation, 226–228 numerical simulation, 200–202 numerically finding equilibrium, 198–200 PID control implement, 213–218 of pitch, 218–223 Neural net designing, pendulum neural estimated angles, different magnitude oscillation, 243, 244 neural net results, 243 NeuralNetMLFF, 240, 242 NeuralNetTraining, 241 NNPendulumDemo, 240 training data structure, 242 training error, 242 Neural net functions, creation backpropagation, 266 identify digits, 262 NeuralNetMLFF, 265 NeuralNetTraining function, 266 neuron activation functions, 263 Neuron function, 263, 264 sigmoid logistic function, 263, 264 Neural Net Trainer GUI, 269 Neural networks, 14, 388, 404, 411, 420 cat images, 320 CNN (see Convolutional neural network (CNN)) deep learning neural net, 303, 304 definition, 14 general neural net, 303 image processing, 318 for learning control aircraft control system, 204 pinv function, 206 pitch angular acceleration, 204 recursive training/learning, 207–208 RecursiveLearning, 206–207 sigma-pi, 204 for pitch dynamics, 223–226 sigma-pi (see Sigma-pi neural network) NeuralNetDeveloper tool, 262, 267 NeuralNetMLFF, 240, 242, 265, 266 NeuralNetTrainer, 271 NeuralNetTraining function, 266 Neurons, 264, 265 NNPendulumDemo, 240 Non-fuzzy bang-bang controller, 187 Nonlinear measurement, 9 Nonlinear simulation acceleration magnitude and angles, 226, 227 addLearning, 226 aircraft accelerations, 226, 228 aircraft pitch angle change, 226, 227 AircraftSim, 226 Nonzero elements, 29 Numerical simulation of aircraft AircraftSimOpenLoop, 201 open-loop response to pulse, 202 RHSAircraft, 200 RungeKutta, 201 Numerically finding equilibrium CostFun, 199–200 EquilibriumState, 199–200 fminsearch, 200 forces and torques balance, 198 Jacobian, 199 vertical velocity and thrust, 200 O Object recognition, 420 oneDigitMode, 261 OneNeuron, 237, 238 Online learning, 4 Optimal control systems, 7 Optimization, 6, 419, 423 CVX, 425 GLPK, 424 LOQO, 424 SeDuMi, 425 SNOPT, 424 YALMIP, 425 442INDEX P, Q Parallel Computing Toolbox, 36 Parameter pairs, 49 Passing control algorithms, 362 AutomobilePassing function, 362–363 maneuvers, 362 passState variable, 362 Pattern recognition, 7–8 PD controller/proportional derivative, 214 PDF, see Probability density function (PDF) Pendulum, 231 dynamics, 231 linear and nonlinear equations, 235 PendulumSim, 234 results, models, 235 rigid body rotation, 231 rigid connection, 231 RungeKutta function, MATLAB integrator, 233 solution, 231 torque, 232 PinholeCamera function, 399 pinv function, 206 Pitch angle error, 213 Pitch dynamics, 191, 192, 223–226 PitchDynamicInversion, 224, 226 PitchNeuralNetTraining, 224–225 Princeton Plasma Physics Laboratory (PPPL), xiii Princeton Satellite Systems, 341, 361 Core Control toolbox, 421 target tracking, 422 PrintFuzzyRules, 169 Probabilistic graphical model, 18 Probability density function (PDF), 86 Proportional integral differential (PID) controller implement closed-loop transfer function, 215 code for, 215–218 derivative operator, 214 double integrator equations, 213, 217 feedback controller, 214 PD controller/proportional derivative, 214 pitch angle error, 213 unit input, 217 and neural network, 204 of pitch acceleration magnitude in aircraft pitch and elevator angle, 221, 222 PID vs. DI, 221, 223 aircraft lift and drag, 221, 222 aircraft states during pitch angle change, 221 AircraftSim, 219–221 dynamic inversion function, 218–219 elevator movement, 218 simulation setup, 219–221 R Radar systems, 327, 330, 355 RandomYawAngles function, 399 Recursive training/learning, 207–208 RecursiveLearning, 206–207 Regression, 10–13, 391, 417, 420, 423 Reinforcement learning, 418 RHSAircraft, 195–196, 200 RHSAutomobile function, 375 RHSAutomobileXY function, 375 RMS error, 270 Robocalling systems, 17 RungeKutta function, 201, 233 S SaveTS, 260 Scikit-learn, 423 Security system, 5 SeDuMi, 425 Self-tuning damping ratio, 132 equations, 129 443INDEX Fast Fourier Transform, 128, 131 frequency, 130 frequency spectrum, 132–133 parameter identification, 128 RHSOscillator dynamical model, 130 Spring-mass-damper system, 129 TuningSim calls FFTEnergy, 133 Semi-supervised learning, 4 Set theory framework, 157 Ship steering dynamical equations, 145 nonlinear problem, 145 parameters, 146 quadratic regulator generator code, 147 simulation, 146, 148, 149 Sigma-pi neural network, 204, 205, 208, 210, 223 actions, 210 data structure format, 210 default data structure, 211 kSigmoid, 211 recursive learning/training, 212–213 SigmaPiNeuralNet, 210–212 switch statement, 210 truth model, 212 SigmaPiNeuralNet, 210–212, 226 Sigmoidal membership function, 161 Sigmoid function, 203, 267 Sigmoid logistic function, 263, 264 Sigmoid magnitude function, 273 SimpleClassifierDemo, 295–298 Single-digit network, 271, 272 Single-digit training error, 270 Single neuron angle estimator activation functions, 236, 237 linear pendulum equation, 237 neuron outputs, 239 one-neuron function, linear activation function, 239 OneNeuron, 237, 238 pendulum dynamics comparison, linear and tanh neuron output, 239 problem, 235 real neuron, 236 solution, 236 two-input neuron, 236 Smart wiper control system, 169–170 SmartWipers, 160–161, 169 SmartWipersDemo, 169 SmartWipersSystem, 169 SmartWipersTest, 172–174 SNOPT, 424 Spacecraft attitude determination AttitudeDetermination function, 391 averagePooling2dLayer, 393 batchNormalizationLayer, 392 CNN, 391, 392 convolution2dLayer, 392 deep learning, 391 dropoutLayer, 394 fullyConnectedLayer, 393 maxPooling2dLayer, 393 regressionLayer, 394 reluLayer, 392–393 scatter plot, 397 star images, 395 star pattern, 377 testing, 397–398 training and validation sets, 395 training interface, 397 training setup, 395–396 yaw angle histogram, 395, 396 YawToImages, 394 autonomous control, 416 boolean logic, 402 camera model (see Camera model) camera views, attitude simulation AttitudeSim function, 384, 386–387 conventions, 385 notation, 385 quaternions, 384–386 rotation, 386 444INDEX scalar/vector components, 384, 385 transformation, 385 celestial sphere, 383–384 jet select logic, 401–402 rules, 402 Space Shuttle Orbiter thruster locations, 402, 403 star camera, 377 thrusters, 401, 402 yaw angle rotation, 387–388 yaw images grayscale, 388 Label.mat file, 388–390 transformed pixels/figure, 388 YawPixelTransform function, 388–390 YawToImages function, 388, 390 Spacecraft pointing estimated and actual inertia, 152 spacecraft model, 148, 150 states and control outputs, 151, 152 Sparse matrices, 28–29 Spring-mass-damper system acceleration, 89 damping ratios, 89, 90 default data structure, 91 differential equations modeling, 89 dynamical equations, 90 simulation, 91–92 Square wave input, 140–143 Star catalog ECI, 379, 380 Greenwich, 380 Hipparcos, 378, 380 LoadHipparcos function, 378–379 pinhole camera, 381 precession and nutation, 381 sprintf, 379 star image, 378 State estimator, linear Kalman filter, 87 angle measurement geometry, 87, 88 solution, 88 spring-mass-damper system, 87, 88 Statistical methods, 420 Supervised learning, 3 Support vector machines (SVMs), 16, 417, 420, 423 switch statement, 210 Synonym set, 305 System identification, 5, 7, 416, 419 T Table Data, 38–41 tanh activation function, 238 Taxonomy, 6–8, 355, 401, 420 Technology readiness levels (TRLs), 157 Testing, neural network DigitTrainingData, 272 neural net results with sigmoid/step activation functions, 273 Time-sharing, 412 Titan landing control systems, 16 Track-oriented MHT, 18 algorithm, 331–333 billiard ball Kalman Filter, 335–342 MHT, 342–345 covariance, 331 hypothesis formation, 334–335 measurement assignment and tracks, 333–334 measurements, 330, 331 one-dimensional MHT, 349–351 motion, 345–349 track pruning, 335 tracking problem, 329, 330 uncertainty ellipsoids, 329–330 Track pruning, 329, 335, 336, 422 Traditional machine learning, 6 Training data, 404 online, 4, 305 semi-supervised, 4 445INDEX sets, 3 supervised, 3 unsupervised, 3 Training, neural network with multiple outputs multiple-digit neural net weights, 276, 277 NeuralNetMLFF, 276 training RMS, 274, 275 with one output node DigitTrainingTS, 269 inputs, 268 layer 2 node weights and evolution, biases, 270 Neural Net Trainer GUI, 269 NeuralNetTrainer, 271 RMS error, 270 single-digit training error, 270 10 node hidden layer weights, 272 30 node hidden layer weights, 270, 271 Trapezoid membership function, 161 Triangular membership function, 161 TRLs, see Technology readiness levels (TRLs) Tuning simulation results, 135 TurboSquid, 364 Two-dimensional line graphs (2D line plots), 49–52 U UKFAutomobileDemo function, 375 Unscented Kalman Filter (UKF), 9, 372 for parameter estimation covariance, 118 outcomes, 122 problem, 117 RHSOscillator, 120 RHSOscillatorUKF, 121 solution, 118 UKFPSim, 119 UKFPWeight, 121 for state estimation Cholesky factorization, 116 Gaussian processes, 112 KFInitialize, 116 measurements, 113 nonlinear, 111 outcomes, 117, 118 solution, 112 UKFPredict, 114–115 UKFWeight, 113 Unscented Kalman Filters (UKF), 421 Unsupervised learning, 3 V Variable HVAC fuzzy controller AC/heat setting, 188 demo function, 181 inputs and outputs, 181, 186 mode output, 187 mode value, 184 non-fuzzy bang-bang controller, 187 sign function, 184 simulation, 187–189 string values, 181 W Watson, 414 Window wiper fuzzy controller BuildFuzzySystem, 169 data structure, 169 fuzzy inference, 169 FuzzyPlot, 169 FuzzyRand, 172 printed rules, 170–171 PrintFuzzyRules, 169 rotate3d, 171–172 smart wiper control system, 169–170 SmartWipersDemo, 169 SmartWipersSystem, 169 SmartWipersTest, 172–174 X XOR data division, 245 deep learning network GUI, 246 446INDEX two hidden layers, 251, 252 DLXOR.m script, 244 GUI progress, 246–247 MATLAB GUI, 245 network training histogram, 247, 249 performance, 247 state, 247, 248 performance, 245 plots, 247 regression, 247, 250 training, 245 Y, Z YALMIP, 425 YawPixelTransform function, 387–388, 399 YawToImages function, 388, 394, 399 YawToPixelsDemo function, 399 #ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب MATLAB Machine Learning Recipes - A Problem-Solution Approach رابط مباشر لتنزيل كتاب MATLAB Machine Learning Recipes - A Problem-Solution Approach
|
|