Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide الخميس 01 ديسمبر 2022, 5:00 pm | |
|
أخواني في الله أحضرت لكم كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide 2022 Getting Started
و المحتوى كما يلي :
1 Statistics and Machine Learning Toolbox Product Description . 1-2 Supported Data Types 1-3 Organizing Data 2 Other MATLAB Functions Supporting Nominal and Ordinal Arrays . 2-2 Create Nominal and Ordinal Arrays . 2-3 Create Nominal Arrays . 2-3 Create Ordinal Arrays 2-4 Change Category Labels 2-7 Change Category Labels 2-7 Reorder Category Levels 2-9 Reorder Category Levels in Ordinal Arrays 2-9 Reorder Category Levels in Nominal Arrays 2-10 Categorize Numeric Data 2-13 Categorize Numeric Data 2-13 Merge Category Levels 2-16 Merge Category Levels 2-16 Add and Drop Category Levels 2-18 Plot Data Grouped by Category . 2-21 Plot Data Grouped by Category 2-21 Test Differences Between Category Means 2-25 Summary Statistics Grouped by Category . 2-33 Summary Statistics Grouped by Category 2-33 Sort Ordinal Arrays . 2-35 Sort Ordinal Arrays 2-35 v ContentsNominal and Ordinal Arrays 2-37 What Are Nominal and Ordinal Arrays? . 2-37 Nominal and Ordinal Array Conversion 2-37 Advantages of Using Nominal and Ordinal Arrays 2-39 Manipulate Category Levels 2-39 Analysis Using Nominal and Ordinal Arrays 2-39 Reduce Memory Requirements 2-40 Index and Search Using Nominal and Ordinal Arrays . 2-42 Index By Category . 2-42 Common Indexing and Searching Methods . 2-42 Grouping Variables . 2-46 What Are Grouping Variables? 2-46 Group Definition . 2-46 Analysis Using Grouping Variables . 2-47 Missing Group Values . 2-47 Dummy Variables . 2-49 What Are Dummy Variables? 2-49 Creating Dummy Variables . 2-50 Linear Regression with Categorical Covariates 2-53 Create a Dataset Array from Workspace Variables 2-58 Create a Dataset Array from a Numeric Array . 2-58 Create Dataset Array from Heterogeneous Workspace Variables . 2-60 Create a Dataset Array from a File . 2-63 Create a Dataset Array from a Tab-Delimited Text File 2-63 Create a Dataset Array from a Comma-Separated Text File . 2-65 Create a Dataset Array from an Excel File . 2-67 Add and Delete Observations . 2-69 Add and Delete Variables 2-72 Access Data in Dataset Array Variables . 2-75 Select Subsets of Observations . 2-80 Sort Observations in Dataset Arrays . 2-83 Merge Dataset Arrays . 2-86 Stack or Unstack Dataset Arrays 2-89 Calculations on Dataset Arrays . 2-93 Export Dataset Arrays . 2-96 Clean Messy and Missing Data 2-98 vi ContentsDataset Arrays in the Variables Editor 2-102 Open Dataset Arrays in the Variables Editor . 2-102 Modify Variable and Observation Names 2-103 Reorder or Delete Variables . 2-104 Add New Data . 2-106 Sort Observations . 2-107 Select a Subset of Data . 2-108 Create Plots . 2-110 Dataset Arrays 2-113 What Are Dataset Arrays? . 2-113 Dataset Array Conversion . 2-113 Dataset Array Properties . 2-114 Index and Search Dataset Arrays . 2-115 Ways To Index and Search 2-115 Examples . 2-115 Descriptive Statistics 3 Measures of Central Tendency . 3-2 Measures of Central Tendency . 3-2 Measures of Dispersion . 3-4 Compare Measures of Dispersion . 3-4 Exploratory Analysis of Data . 3-6 Resampling Statistics . 3-10 Bootstrap Resampling . 3-10 Jackknife Resampling . 3-12 Parallel Computing Support for Resampling Methods . 3-13 Statistical Visualization 4 Create Scatter Plots Using Grouped Data 4-2 Compare Grouped Data Using Box Plots . 4-4 Distribution Plots . 4-7 Normal Probability Plots 4-7 Probability Plots 4-9 Quantile-Quantile Plots 4-11 Cumulative Distribution Plots . 4-13 Visualizing Multivariate Data . 4-17 viiProbability Distributions 5 Working with Probability Distributions 5-3 Probability Distribution Objects 5-3 Apps and Interactive User Interfaces 5-6 Distribution-Specific Functions and Generic Distribution Functions 5-10 Supported Distributions . 5-16 Continuous Distributions (Data) . 5-16 Continuous Distributions (Statistics) 5-19 Discrete Distributions . 5-20 Multivariate Distributions 5-21 Nonparametric Distributions . 5-22 Flexible Distribution Families . 5-22 Maximum Likelihood Estimation 5-23 Negative Loglikelihood Functions . 5-25 Find MLEs Using Negative Loglikelihood Function . 5-25 Random Number Generation . 5-28 Nonparametric and Empirical Probability Distributions . 5-31 Overview 5-31 Kernel Distribution . 5-31 Empirical Cumulative Distribution Function 5-32 Piecewise Linear Distribution . 5-33 Pareto Tails 5-34 Triangular Distribution 5-35 Fit Kernel Distribution Object to Data . 5-37 Fit Kernel Distribution Using ksdensity 5-40 Fit Distributions to Grouped Data Using ksdensity . 5-42 Fit a Nonparametric Distribution with Pareto Tails . 5-44 Generate Random Numbers Using the Triangular Distribution . 5-48 Model Data Using the Distribution Fitter App . 5-52 Explore Probability Distributions Interactively 5-52 Create and Manage Data Sets . 5-53 Create a New Fit 5-56 Display Results 5-60 Manage Fits 5-61 Evaluate Fits . 5-63 Exclude Data . 5-65 Save and Load Sessions . 5-69 Generate a File to Fit and Plot Distributions 5-69 Fit a Distribution Using the Distribution Fitter App 5-72 Step 1: Load Sample Data 5-72 viii ContentsStep 2: Import Data 5-72 Step 3: Create a New Fit 5-74 Step 4: Create and Manage Additional Fits . 5-77 Define Custom Distributions Using the Distribution Fitter App . 5-82 Open the Distribution Fitter App . 5-82 Define Custom Distribution . 5-83 Import Custom Distribution 5-84 Explore the Random Number Generation UI 5-86 Compare Multiple Distribution Fits 5-88 Fit Probability Distribution Objects to Grouped Data . 5-93 Three-Parameter Weibull Distribution . 5-96 Multinomial Probability Distribution Objects . 5-103 Multinomial Probability Distribution Functions . 5-106 Generate Random Numbers Using Uniform Distribution Inversion . 5-109 Represent Cauchy Distribution Using t Location-Scale . 5-112 Generate Cauchy Random Numbers Using Student's t . 5-115 Generate Correlated Data Using Rank Correlation 5-116 Create Gaussian Mixture Model 5-120 Fit Gaussian Mixture Model to Data 5-123 Simulate Data from Gaussian Mixture Model . 5-127 Copulas: Generate Correlated Samples 5-129 Determining Dependence Between Simulation Inputs 5-129 Constructing Dependent Bivariate Distributions 5-132 Using Rank Correlation Coefficients . 5-136 Using Bivariate Copulas 5-138 Higher Dimension Copulas 5-145 Archimedean Copulas 5-146 Simulating Dependent Multivariate Data Using Copulas 5-147 Fitting Copulas to Data . 5-151 Simulating Dependent Random Variables Using Copulas . 5-155 Fit Custom Distributions . 5-173 Avoid Numerical Issues When Fitting Custom Distributions 5-186 Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses . 5-192 ixModelling Tail Data with the Generalized Pareto Distribution . 5-207 Modelling Data with the Generalized Extreme Value Distribution 5-215 Curve Fitting and Distribution Fitting . 5-226 Fitting a Univariate Distribution Using Cumulative Probabilities 5-234 Gaussian Processes 6 Gaussian Process Regression Models . 6-2 Compare Prediction Intervals of GPR Models 6-3 Kernel (Covariance) Function Options 6-6 Exact GPR Method 6-10 Parameter Estimation . 6-10 Prediction 6-11 Computational Complexity of Exact Parameter Estimation and Prediction . 6-13 Subset of Data Approximation for GPR Models 6-14 Subset of Regressors Approximation for GPR Models . 6-15 Approximating the Kernel Function 6-15 Parameter Estimation . 6-16 Prediction 6-16 Predictive Variance Problem 6-17 Fully Independent Conditional Approximation for GPR Models . 6-19 Approximating the Kernel Function 6-19 Parameter Estimation . 6-19 Prediction 6-20 Block Coordinate Descent Approximation for GPR Models . 6-22 Fit GPR Models Using BCD Approximation . 6-22 Predict Battery State of Charge Using Machine Learning 6-27 Random Number Generation 7 Generating Pseudorandom Numbers 7-2 Common Pseudorandom Number Generation Methods . 7-2 Representing Sampling Distributions Using Markov Chain Samplers . 7-9 Using the Metropolis-Hastings Algorithm . 7-9 Using Slice Sampling 7-9 x ContentsUsing Hamiltonian Monte Carlo . 7-10 Generating Quasi-Random Numbers . 7-12 Quasi-Random Sequences 7-12 Quasi-Random Point Sets 7-13 Quasi-Random Streams . 7-18 Generating Data Using Flexible Families of Distributions 7-20 Bayesian Linear Regression Using Hamiltonian Monte Carlo . 7-26 Bayesian Analysis for a Logistic Regression Model . 7-35 Hypothesis Tests 8 Hypothesis Test Terminology 8-2 Hypothesis Test Assumptions 8-4 Hypothesis Testing 8-5 Available Hypothesis Tests . 8-10 Selecting a Sample Size . 8-12 Analysis of Variance 9 One-Way ANOVA . 9-2 Introduction to One-Way ANOVA 9-2 Prepare Data for One-Way ANOVA 9-3 Perform One-Way ANOVA . 9-4 Mathematical Details 9-8 Two-Way ANOVA 9-11 Introduction to Two-Way ANOVA . 9-11 Prepare Data for Balanced Two-Way ANOVA 9-12 Perform Two-Way ANOVA 9-13 Mathematical Details . 9-15 Multiple Comparisons . 9-18 Multiple Comparisons Using One-Way ANOVA 9-18 Multiple Comparisons for Three-Way ANOVA . 9-20 Multiple Comparison Procedures 9-22 N-Way ANOVA 9-26 Introduction to N-Way ANOVA 9-26 Prepare Data for N-Way ANOVA . 9-28 xiPerform N-Way ANOVA 9-28 ANOVA with Random Effects . 9-33 Other ANOVA Models . 9-38 Analysis of Covariance 9-39 Introduction to Analysis of Covariance 9-39 Analysis of Covariance Tool 9-39 Confidence Bounds . 9-43 Multiple Comparisons . 9-45 Nonparametric Methods . 9-47 Introduction to Nonparametric Methods . 9-47 Kruskal-Wallis Test . 9-47 Friedman's Test . 9-47 MANOVA 9-49 Introduction to MANOVA 9-49 ANOVA with Multiple Responses . 9-49 Model Specification for Repeated Measures Models 9-54 Wilkinson Notation . 9-54 Compound Symmetry Assumption and Epsilon Corrections 9-55 Mauchly’s Test of Sphericity 9-57 Multivariate Analysis of Variance for Repeated Measures 9-59 Bayesian Optimization 10 Bayesian Optimization Algorithm . 10-2 Algorithm Outline 10-2 Gaussian Process Regression for Fitting the Model . 10-3 Acquisition Function Types . 10-3 Acquisition Function Maximization . 10-5 Parallel Bayesian Optimization . 10-7 Optimize in Parallel 10-7 Parallel Bayesian Algorithm 10-7 Settings for Best Parallel Performance 10-8 Differences in Parallel Bayesian Optimization Output . 10-9 Bayesian Optimization Plot Functions . 10-11 Built-In Plot Functions . 10-11 Custom Plot Function Syntax 10-12 Create a Custom Plot Function . 10-12 Bayesian Optimization Output Functions 10-19 What Is a Bayesian Optimization Output Function? 10-19 xii ContentsBuilt-In Output Functions . 10-19 Custom Output Functions . 10-19 Bayesian Optimization Output Function 10-20 Bayesian Optimization Workflow . 10-25 What Is Bayesian Optimization? 10-25 Ways to Perform Bayesian Optimization 10-25 Bayesian Optimization Using a Fit Function . 10-26 Bayesian Optimization Using bayesopt . 10-26 Bayesian Optimization Characteristics . 10-27 Parameters Available for Fit Functions . 10-28 Hyperparameter Optimization Options for Fit Functions 10-30 Variables for a Bayesian Optimization . 10-34 Syntax for Creating Optimization Variables 10-34 Variables for Optimization Examples . 10-35 Bayesian Optimization Objective Functions 10-37 Objective Function Syntax 10-37 Objective Function Example . 10-37 Objective Function Errors . 10-37 Constraints in Bayesian Optimization . 10-39 Bounds . 10-39 Deterministic Constraints — XConstraintFcn 10-39 Conditional Constraints — ConditionalVariableFcn 10-40 Coupled Constraints . 10-41 Bayesian Optimization with Coupled Constraints . 10-42 Optimize Cross-Validated Classifier Using bayesopt 10-46 Optimize Classifier Fit Using Bayesian Optimization . 10-56 Optimize a Boosted Regression Ensemble . 10-67 Parametric Regression Analysis 11 Choose a Regression Function 11-2 Update Legacy Code with New Fitting Methods . 11-2 What Is a Linear Regression Model? . 11-6 Linear Regression 11-9 Prepare Data . 11-9 Choose a Fitting Method . 11-10 Choose a Model or Range of Models . 11-11 Fit Model to Data . 11-13 Examine Quality and Adjust Fitted Model . 11-14 Predict or Simulate Responses to New Data . 11-31 Share Fitted Models . 11-33 xiiiLinear Regression Workflow . 11-35 Regression Using Dataset Arrays . 11-40 Linear Regression Using Tables 11-43 Linear Regression with Interaction Effects . 11-46 Interpret Linear Regression Results 11-52 Cook’s Distance . 11-57 Purpose 11-57 Definition . 11-57 How To . 11-57 Determine Outliers Using Cook's Distance 11-57 Coefficient Standard Errors and Confidence Intervals 11-60 Coefficient Covariance and Standard Errors . 11-60 Coefficient Confidence Intervals 11-61 Coefficient of Determination (R-Squared) . 11-63 Purpose 11-63 Definition . 11-63 How To . 11-63 Display Coefficient of Determination . 11-63 Delete-1 Statistics . 11-65 Delete-1 Change in Covariance (CovRatio) 11-65 Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas) 11-67 Delete-1 Scaled Change in Fitted Values (Dffits) 11-68 Delete-1 Variance (S2_i) 11-70 Durbin-Watson Test 11-72 Purpose 11-72 Definition . 11-72 How To . 11-72 Test for Autocorrelation Among Residuals . 11-72 F-statistic and t-statistic 11-74 F-statistic . 11-74 Assess Fit of Model Using F-statistic . 11-74 t-statistic . 11-76 Assess Significance of Regression Coefficients Using t-statistic . 11-77 Hat Matrix and Leverage . 11-79 Hat Matrix 11-79 Leverage . 11-80 Determine High Leverage Observations 11-80 Residuals 11-82 Purpose 11-82 Definition . 11-82 How To . 11-83 Assess Model Assumptions Using Residuals . 11-83 xiv ContentsSummary of Output and Diagnostic Statistics 11-91 Wilkinson Notation 11-93 Overview . 11-93 Formula Specification 11-93 Linear Model Examples 11-96 Linear Mixed-Effects Model Examples . 11-97 Generalized Linear Model Examples . 11-98 Generalized Linear Mixed-Effects Model Examples 11-99 Repeated Measures Model Examples . 11-100 Stepwise Regression 11-101 Stepwise Regression to Select Appropriate Models . 11-101 Compare large and small stepwise models . 11-101 Reduce Outlier Effects Using Robust Regression . 11-106 Why Use Robust Regression? . 11-106 Iteratively Reweighted Least Squares . 11-106 Compare Results of Standard and Robust Least-Squares Fit 11-107 Steps for Iteratively Reweighted Least Squares . 11-109 Ridge Regression . 11-111 Introduction to Ridge Regression 11-111 Ridge Regression 11-111 Lasso and Elastic Net . 11-114 What Are Lasso and Elastic Net? 11-114 Lasso and Elastic Net Details . 11-114 References . 11-115 Wide Data via Lasso and Parallel Computing 11-117 Lasso Regularization 11-122 Lasso and Elastic Net with Cross Validation . 11-125 Partial Least Squares . 11-128 Introduction to Partial Least Squares . 11-128 Perform Partial Least-Squares Regression . 11-128 Linear Mixed-Effects Models . 11-133 Prepare Data for Linear Mixed-Effects Models . 11-136 Tables and Dataset Arrays . 11-136 Design Matrices . 11-137 Relation of Matrix Form to Tables and Dataset Arrays . 11-139 Relationship Between Formula and Design Matrices 11-140 Formula . 11-140 Design Matrices for Fixed and Random Effects 11-141 Grouping Variables . 11-143 Estimating Parameters in Linear Mixed-Effects Models . 11-145 Maximum Likelihood (ML) . 11-145 Restricted Maximum Likelihood (REML) . 11-146 xvLinear Mixed-Effects Model Workflow 11-148 Fit Mixed-Effects Spline Regression . 11-160 Train Linear Regression Model . 11-163 Analyze Time Series Data 11-181 Partial Least Squares Regression and Principal Components Regression . 11-190 Generalized Linear Models 12 Multinomial Models for Nominal Responses 12-2 Multinomial Models for Ordinal Responses . 12-4 Hierarchical Multinomial Models . 12-7 Generalized Linear Models . 12-9 What Are Generalized Linear Models? 12-9 Prepare Data . 12-9 Choose Generalized Linear Model and Link Function 12-11 Choose Fitting Method and Model 12-13 Fit Model to Data . 12-15 Examine Quality and Adjust the Fitted Model 12-16 Predict or Simulate Responses to New Data . 12-23 Share Fitted Models . 12-26 Generalized Linear Model Workflow 12-28 Lasso Regularization of Generalized Linear Models . 12-32 What is Generalized Linear Model Lasso Regularization? . 12-32 Generalized Linear Model Lasso and Elastic Net 12-32 References 12-33 Regularize Poisson Regression 12-34 Regularize Logistic Regression 12-36 Regularize Wide Data in Parallel . 12-43 Generalized Linear Mixed-Effects Models 12-48 What Are Generalized Linear Mixed-Effects Models? 12-48 GLME Model Equations 12-48 Prepare Data for Model Fitting . 12-49 Choose a Distribution Type for the Model . 12-50 Choose a Link Function for the Model 12-50 Specify the Model Formula 12-51 Display the Model . 12-53 Work with the Model 12-55 xvi ContentsFit a Generalized Linear Mixed-Effects Model 12-57 Fitting Data with Generalized Linear Models . 12-65 Train Generalized Additive Model for Binary Classification . 12-77 Train Generalized Additive Model for Regression . 12-86 Nonlinear Regression 13 Nonlinear Regression . 13-2 What Are Parametric Nonlinear Regression Models? 13-2 Prepare Data . 13-2 Represent the Nonlinear Model . 13-3 Choose Initial Vector beta0 . 13-5 Fit Nonlinear Model to Data 13-6 Examine Quality and Adjust the Fitted Nonlinear Model . 13-6 Predict or Simulate Responses Using a Nonlinear Model 13-9 Nonlinear Regression Workflow 13-13 Mixed-Effects Models 13-18 Introduction to Mixed-Effects Models 13-18 Mixed-Effects Model Hierarchy 13-18 Specifying Mixed-Effects Models . 13-19 Specifying Covariate Models 13-21 Choosing nlmefit or nlmefitsa 13-22 Using Output Functions with Mixed-Effects Models . 13-24 Examining Residuals for Model Verification 13-28 Mixed-Effects Models Using nlmefit and nlmefitsa 13-33 Weighted Nonlinear Regression 13-45 Pitfalls in Fitting Nonlinear Models by Transforming to Linearity 13-53 Nonlinear Logistic Regression . 13-59 Time Series Forecasting 14 Time Series Forecasting Using Ensemble of Boosted Regression Trees . 14-2 xviiSurvival Analysis 15 What Is Survival Analysis? . 15-2 Introduction 15-2 Censoring 15-2 Data 15-2 Survivor Function 15-4 Hazard Function . 15-6 Kaplan-Meier Method 15-10 Hazard and Survivor Functions for Different Groups . 15-16 Survivor Functions for Two Groups . 15-22 Cox Proportional Hazards Model . 15-26 Introduction . 15-26 Hazard Ratio 15-26 Extension of Cox Proportional Hazards Model . 15-27 Partial Likelihood Function 15-27 Partial Likelihood Function for Tied Events 15-28 Frequency or Weights of Observations . 15-29 Cox Proportional Hazards Model for Censored Data . 15-31 Cox Proportional Hazards Model with Time-Dependent Covariates . 15-35 Cox Proportional Hazards Model Object . 15-39 Analyzing Survival or Reliability Data . 15-47 Multivariate Methods 16 Multivariate Linear Regression . 16-2 Introduction to Multivariate Methods . 16-2 Multivariate Linear Regression Model 16-2 Solving Multivariate Regression Problems . 16-3 Estimation of Multivariate Regression Models . 16-5 Least Squares Estimation 16-5 Maximum Likelihood Estimation . 16-7 Missing Response Data 16-9 Set Up Multivariate Regression Problems . 16-11 Response Matrix 16-11 Design Matrices 16-14 Common Multivariate Regression Problems . 16-14 Multivariate General Linear Model . 16-20 xviii ContentsFixed Effects Panel Model with Concurrent Correlation 16-24 Longitudinal Analysis 16-30 Multidimensional Scaling . 16-35 Nonclassical and Nonmetric Multidimensional Scaling 16-36 Nonclassical Multidimensional Scaling . 16-36 Nonmetric Multidimensional Scaling 16-37 Classical Multidimensional Scaling . 16-40 Compare Handwritten Shapes Using Procrustes Analysis . 16-42 Introduction to Feature Selection 16-47 Feature Selection Algorithms 16-47 Feature Selection Functions . 16-48 Sequential Feature Selection 16-59 Introduction to Sequential Feature Selection 16-59 Select Subset of Features with Comparative Predictive Power . 16-59 Nonnegative Matrix Factorization 16-63 Perform Nonnegative Matrix Factorization . 16-64 Principal Component Analysis (PCA) 16-66 Analyze Quality of Life in U.S. Cities Using PCA . 16-67 Factor Analysis 16-76 Analyze Stock Prices Using Factor Analysis 16-77 Robust Feature Selection Using NCA for Regression . 16-83 Neighborhood Component Analysis (NCA) Feature Selection 16-97 NCA Feature Selection for Classification 16-97 NCA Feature Selection for Regression . 16-99 Impact of Standardization . 16-100 Choosing the Regularization Parameter Value . 16-100 t-SNE 16-102 What Is t-SNE? 16-102 t-SNE Algorithm . 16-102 Barnes-Hut Variation of t-SNE 16-105 Characteristics of t-SNE . 16-105 t-SNE Output Function 16-108 t-SNE Output Function Description 16-108 tsne optimValues Structure . 16-108 t-SNE Custom Output Function . 16-109 Visualize High-Dimensional Data Using t-SNE . 16-111 xixtsne Settings 16-115 Feature Extraction 16-127 What Is Feature Extraction? 16-127 Sparse Filtering Algorithm . 16-127 Reconstruction ICA Algorithm 16-129 Feature Extraction Workflow . 16-132 Extract Mixed Signals . 16-161 Select Features for Classifying High-Dimensional Data . 16-168 Perform Factor Analysis on Exam Grades . 16-177 Classical Multidimensional Scaling Applied to Nonspatial Distances 16-186 Nonclassical Multidimensional Scaling 16-194 Fitting an Orthogonal Regression Using Principal Components Analysis . 16-202 Tune Regularization Parameter to Detect Features Using NCA for Classification 16-207 Cluster Analysis 17 Choose Cluster Analysis Method 17-2 Clustering Methods 17-2 Comparison of Clustering Methods . 17-4 Hierarchical Clustering . 17-6 Introduction to Hierarchical Clustering . 17-6 Algorithm Description 17-6 Similarity Measures 17-7 Linkages . 17-8 Dendrograms . 17-9 Verify the Cluster Tree . 17-10 Create Clusters 17-15 DBSCAN . 17-19 Introduction to DBSCAN 17-19 Algorithm Description . 17-19 Determine Values for DBSCAN Parameters 17-20 Partition Data Using Spectral Clustering 17-26 Introduction to Spectral Clustering 17-26 Algorithm Description . 17-26 Estimate Number of Clusters and Perform Spectral Clustering . 17-27 xx Contentsk-Means Clustering 17-33 Introduction to k-Means Clustering . 17-33 Compare k-Means Clustering Solutions 17-33 Cluster Using Gaussian Mixture Model 17-39 How Gaussian Mixture Models Cluster Data . 17-39 Fit GMM with Different Covariance Options and Initial Conditions 17-39 When to Regularize . 17-44 Model Fit Statistics . 17-45 Cluster Gaussian Mixture Data Using Hard Clustering . 17-46 Cluster Gaussian Mixture Data Using Soft Clustering 17-52 Tune Gaussian Mixture Models 17-57 Cluster Evaluation . 17-63 Cluster Analysis . 17-66 Anomaly Detection with Isolation Forest 17-81 Introduction to Isolation Forest 17-81 Parameters for Isolation Forests 17-81 Anomaly Scores 17-81 Anomaly Indicators 17-82 Detect Outliers and Plot Contours of Anomaly Scores 17-82 Examine NumObservationsPerLearner for Small Data . 17-85 Unsupervised Anomaly Detection 17-91 Outlier Detection . 17-91 Novelty Detection . 17-99 Model-Specific Anomaly Detection 17-107 Detect Outliers After Training Random Forest 17-107 Detect Outliers After Training Discriminant Analysis Classifier 17-110 Parametric Classification 18 Parametric Classification 18-2 ROC Curve and Performance Metrics 18-3 Introduction to ROC Curve . 18-3 Performance Curve with MATLAB 18-4 ROC Curve for Multiclass Classification . 18-9 Performance Metrics 18-11 Classification Scores and Thresholds 18-13 Pointwise Confidence Intervals . 18-17 Performance Curves by perfcurve 18-19 Input Scores and Labels for perfcurve . 18-19 Computation of Performance Metrics 18-20 xxiMulticlass Classification Problems 18-22 Confidence Intervals . 18-22 Observation Weights . 18-22 Classification . 18-24 Nonparametric Supervised Learning 19 Supervised Learning Workflow and Algorithms 19-2 What Is Supervised Learning? 19-2 Steps in Supervised Learning . 19-3 Characteristics of Classification Algorithms 19-6 Misclassification Cost Matrix, Prior Probabilities, and Observation Weights . 19-8 Visualize Decision Surfaces of Different Classifiers 19-11 Classification Using Nearest Neighbors . 19-14 Pairwise Distance Metrics 19-14 k-Nearest Neighbor Search and Radius Search . 19-16 Classify Query Data . 19-20 Find Nearest Neighbors Using a Custom Distance Metric . 19-26 K-Nearest Neighbor Classification for Supervised Learning . 19-29 Construct KNN Classifier . 19-30 Examine Quality of KNN Classifier 19-30 Predict Classification Using KNN Classifier . 19-31 Modify KNN Classifier . 19-31 Framework for Ensemble Learning . 19-33 Prepare the Predictor Data 19-34 Prepare the Response Data 19-34 Choose an Applicable Ensemble Aggregation Method 19-34 Set the Number of Ensemble Members . 19-37 Prepare the Weak Learners . 19-37 Call fitcensemble or fitrensemble . 19-39 Ensemble Algorithms 19-41 Bootstrap Aggregation (Bagging) and Random Forest 19-44 Random Subspace 19-47 Boosting Algorithms . 19-48 Train Classification Ensemble . 19-56 Train Regression Ensemble . 19-59 Select Predictors for Random Forests . 19-62 Test Ensemble Quality 19-68 Ensemble Regularization . 19-72 Regularize a Regression Ensemble 19-72 xxii ContentsClassification with Imbalanced Data 19-81 Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles . 19-86 Train Ensemble With Unequal Classification Costs 19-87 Surrogate Splits . 19-92 LPBoost and TotalBoost for Small Ensembles 19-97 Tune RobustBoost 19-102 Random Subspace Classification 19-105 Train Classification Ensemble in Parallel . 19-110 Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger . 19-114 Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger 19-125 Detect Outliers Using Quantile Regression . 19-138 Conditional Quantile Estimation Using Kernel Smoothing . 19-143 Tune Random Forest Using Quantile Error and Bayesian Optimization . 19-146 Support Vector Machines for Binary Classification . 19-151 Understanding Support Vector Machines 19-151 Using Support Vector Machines . 19-155 Train SVM Classifiers Using a Gaussian Kernel 19-157 Train SVM Classifier Using Custom Kernel . 19-160 Optimize Classifier Fit Using Bayesian Optimization 19-164 Plot Posterior Probability Regions for SVM Classification Models 19-174 Analyze Images Using Linear Support Vector Machines . 19-176 Assess Neural Network Classifier Performance 19-181 Assess Regression Neural Network Performance . 19-188 Automated Feature Engineering for Classification . 19-194 Interpret Linear Model with Generated Features 19-194 Generate New Features to Improve Bagged Ensemble Accuracy . 19-197 Automated Feature Engineering for Regression . 19-201 Interpret Linear Model with Generated Features 19-201 Generate New Features to Improve Bagged Ensemble Performance 19-204 Moving Towards Automating Model Selection Using Bayesian Optimization 19-208 xxiiiAutomated Classifier Selection with Bayesian and ASHA Optimization . 19-216 Automated Regression Model Selection with Bayesian and ASHA Optimization 19-235 Credit Rating by Bagging Decision Trees . 19-256 Combine Heterogeneous Models into Stacked Ensemble 19-272 Label Data Using Semi-Supervised Learning Techniques 19-279 Bibliography 19-285 Decision Trees 20 Decision Trees . 20-2 Train Classification Tree . 20-2 Train Regression Tree 20-2 View Decision Tree . 20-4 Growing Decision Trees . 20-7 Prediction Using Classification and Regression Trees . 20-9 Predict Out-of-Sample Responses of Subtrees 20-10 Improving Classification Trees and Regression Trees 20-13 Examining Resubstitution Error 20-13 Cross Validation 20-13 Choose Split Predictor Selection Technique . 20-14 Control Depth or “Leafiness” 20-15 Pruning 20-19 Splitting Categorical Predictors in Classification Trees 20-25 Challenges in Splitting Multilevel Predictors 20-25 Algorithms for Categorical Predictor Split 20-25 Inspect Data with Multilevel Categorical Predictors . 20-26 Discriminant Analysis 21 Discriminant Analysis Classification . 21-2 Create Discriminant Analysis Classifiers . 21-2 xxiv ContentsCreating Discriminant Analysis Model . 21-4 Weighted Observations 21-4 Prediction Using Discriminant Analysis Models 21-6 Posterior Probability 21-6 Prior Probability . 21-6 Cost 21-7 Create and Visualize Discriminant Analysis Classifier . 21-9 Improving Discriminant Analysis Models 21-15 Deal with Singular Data 21-15 Choose a Discriminant Type . 21-15 Examine the Resubstitution Error and Confusion Matrix 21-16 Cross Validation 21-17 Change Costs and Priors . 21-18 Regularize Discriminant Analysis Classifier 21-21 Examine the Gaussian Mixture Assumption 21-27 Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis 21-27 Q-Q Plot 21-29 Mardia Kurtosis Test of Multivariate Normality . 21-31 Naive Bayes 22 Naive Bayes Classification . 22-2 Supported Distributions . 22-2 Plot Posterior Classification Probabilities . 22-5 Classification Learner 23 Machine Learning in MATLAB 23-2 What Is Machine Learning? 23-2 Selecting the Right Algorithm . 23-3 Train Classification Models in Classification Learner App 23-6 Train Regression Models in Regression Learner App . 23-7 Train Neural Networks for Deep Learning . 23-8 Train Classification Models in Classification Learner App . 23-10 Automated Classifier Training . 23-10 Manual Classifier Training 23-13 Parallel Classifier Training 23-14 Compare and Improve Classification Models . 23-14 xxvSelect Data for Classification or Open Saved App Session . 23-18 Select Data from Workspace . 23-18 Import Data from File 23-19 Example Data for Classification 23-19 Choose Validation Scheme 23-20 (optional) Reserve Data for Testing 23-22 Save and Open App Session . 23-22 Choose Classifier Options . 23-23 Choose Classifier Type . 23-23 Decision Trees . 23-27 Discriminant Analysis 23-29 Logistic Regression . 23-30 Naive Bayes Classifiers . 23-30 Support Vector Machines . 23-31 Nearest Neighbor Classifiers 23-34 Kernel Approximation Classifiers . 23-36 Ensemble Classifiers 23-37 Neural Network Classifiers 23-40 Feature Selection and Feature Transformation Using Classification Learner App 23-42 Investigate Features in the Scatter Plot 23-42 Select Features to Include 23-44 Transform Features with PCA in Classification Learner . 23-46 Investigate Features in the Parallel Coordinates Plot 23-46 Misclassification Costs in Classification Learner App 23-49 Specify Misclassification Costs . 23-49 Assess Model Performance 23-52 Misclassification Costs in Exported Model and Generated Code 23-53 Hyperparameter Optimization in Classification Learner App 23-54 Select Hyperparameters to Optimize 23-54 Optimization Options 23-59 Minimum Classification Error Plot 23-61 Optimization Results 23-63 Visualize and Assess Classifier Performance in Classification Learner 23-66 Check Performance in the Models Pane 23-66 View Model Metrics in Summary Tab and Models Pane . 23-67 Compare Model Information and Results in Table View . 23-68 Plot Classifier Results 23-69 Check Performance Per Class in the Confusion Matrix . 23-70 Check ROC Curve . 23-72 Interpret Model Using Partial Dependence Plots 23-74 Compare Model Plots by Changing Layout 23-76 Evaluate Test Set Model Performance 23-76 Export Plots in Classification Learner App . 23-78 Export Classification Model to Predict New Data 23-83 Export the Model to the Workspace to Make Predictions for New Data 23-83 xxvi ContentsMake Predictions for New Data 23-83 Generate MATLAB Code to Train the Model with New Data . 23-84 Generate C Code for Prediction 23-85 Deploy Predictions Using MATLAB Compiler 23-87 Export Model for Deployment to MATLAB Production Server 23-88 Train Decision Trees Using Classification Learner App . 23-89 Train Discriminant Analysis Classifiers Using Classification Learner App 23-99 Train Logistic Regression Classifiers Using Classification Learner App . 23-103 Train Support Vector Machines Using Classification Learner App . 23-107 Train Nearest Neighbor Classifiers Using Classification Learner App 23-111 Train Kernel Approximation Classifiers Using Classification Learner App . 23-115 Train Ensemble Classifiers Using Classification Learner App . 23-120 Train Naive Bayes Classifiers Using Classification Learner App . 23-124 Train Neural Network Classifiers Using Classification Learner App 23-133 Train and Compare Classifiers Using Misclassification Costs in Classification Learner App . 23-137 Train Classifier Using Hyperparameter Optimization in Classification Learner App . 23-145 Check Classifier Performance Using Test Set in Classification Learner App . 23-152 Interpret Classifiers Trained in Classification Learner App . 23-157 Deploy Model Trained in Classification Learner to MATLAB Production Server 23-167 Choose Trained Model to Deploy 23-167 Export Model for Deployment . 23-168 (Optional) Simulate Model Deployment 23-169 Package Code . 23-170 Build Condition Model for Industrial Machinery and Manufacturing Processes . 23-171 Load Data . 23-171 Import Data into App and Partition Data . 23-172 Train Models Using All Features . 23-173 Assess Model Performance . 23-174 Export Model to the Workspace and Save App Session 23-177 Check Model Size 23-178 Resume App Session . 23-178 Select Features Using Feature Ranking . 23-178 xxviiInvestigate Important Features in Scatter Plot 23-180 Further Experimentation 23-181 Assess Model Accuracy on Test Set . 23-184 Export Final Model . 23-186 Regression Learner 24 Train Regression Models in Regression Learner App 24-2 Automated Regression Model Training 24-2 Manual Regression Model Training . 24-4 Parallel Regression Model Training 24-5 Compare and Improve Regression Models . 24-6 Select Data for Regression or Open Saved App Session 24-9 Select Data from Workspace 24-9 Import Data from File 24-10 Example Data for Regression 24-10 Choose Validation Scheme 24-11 (optional) Reserve Data for Testing 24-12 Save and Open App Session . 24-12 Choose Regression Model Options 24-14 Choose Regression Model Type 24-14 Linear Regression Models 24-16 Regression Trees . 24-18 Support Vector Machines . 24-20 Gaussian Process Regression Models 24-22 Kernel Approximation Models 24-24 Ensembles of Trees . 24-26 Neural Networks . 24-27 Feature Selection and Feature Transformation Using Regression Learner App . 24-30 Investigate Features in the Response Plot . 24-30 Select Features to Include 24-31 Transform Features with PCA in Regression Learner 24-33 Hyperparameter Optimization in Regression Learner App 24-35 Select Hyperparameters to Optimize 24-35 Optimization Options 24-41 Minimum MSE Plot . 24-43 Optimization Results 24-45 Visualize and Assess Model Performance in Regression Learner . 24-48 Check Performance in Models Pane . 24-48 View Model Statistics in Summary Tab and Models Pane . 24-49 Compare Model Information and Results in Table View . 24-50 Explore Data and Results in Response Plot 24-52 Plot Predicted vs. Actual Response 24-54 Evaluate Model Using Residuals Plot 24-55 Interpret Model Using Partial Dependence Plots 24-56 xxviii ContentsCompare Model Plots by Changing Layout 24-58 Evaluate Test Set Model Performance 24-59 Export Plots in Regression Learner App . 24-61 Export Regression Model to Predict New Data 24-65 Export Model to Workspace . 24-65 Make Predictions for New Data 24-65 Generate MATLAB Code to Train Model with New Data 24-66 Generate C Code for Prediction 24-67 Deploy Predictions Using MATLAB Compiler 24-69 Export Model for Deployment to MATLAB Production Server 24-69 Train Regression Trees Using Regression Learner App . 24-71 Train Regression Neural Networks Using Regression Learner App . 24-82 Train Kernel Approximation Model Using Regression Learner App . 24-89 Train Regression Model Using Hyperparameter Optimization in Regression Learner App 24-97 Check Model Performance Using Test Set in Regression Learner App . 24-103 Interpret Regression Models Trained in Regression Learner App . 24-108 Deploy Model Trained in Regression Learner to MATLAB Production Server 24-119 Choose Trained Model to Deploy 24-119 Export Model for Deployment . 24-120 (Optional) Simulate Model Deployment 24-120 Package Code . 24-121 Support Vector Machines 25 Understanding Support Vector Machine Regression 25-2 Mathematical Formulation of SVM Regression 25-2 Solving the SVM Regression Optimization Problem . 25-5 Fairness 26 Introduction to Fairness in Binary Classification . 26-2 Reduce Statistical Parity Difference Using Fairness Weights 26-2 Reduce Disparate Impact of Predictions . 26-5 xxixInterpretability 27 Interpret Machine Learning Models . 27-2 Features for Model Interpretation 27-2 Interpret Classification Model . 27-3 Interpret Regression Model . 27-10 Shapley Values for Machine Learning Model . 27-18 What Is a Shapley Value? . 27-18 Shapley Value with MATLAB . 27-18 Algorithms 27-18 Specify Computation Algorithm 27-20 Computational Cost . 27-23 Reduce Computational Cost . 27-23 Incremental Learning 28 Incremental Learning Overview . 28-2 What Is Incremental Learning? 28-2 Incremental Learning with MATLAB 28-3 Configure Incremental Learning Model 28-9 Call Object Directly . 28-11 Convert Traditionally Trained Model 28-15 Implement Incremental Learning for Regression Using Succinct Workflow 28-19 Implement Incremental Learning for Classification Using Succinct Workflow . 28-22 Implement Incremental Learning for Regression Using Flexible Workflow 28-25 Implement Incremental Learning for Classification Using Flexible Workflow . 28-29 Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner . 28-33 Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification Learner . 28-40 Perform Conditional Training During Incremental Learning 28-45 Perform Text Classification Incrementally . 28-49 Incremental Learning with Naive Bayes and Heterogeneous Data 28-52 xxx ContentsMarkov Models 29 Markov Chains . 29-2 Hidden Markov Models (HMM) . 29-4 Introduction to Hidden Markov Models (HMM) 29-4 Analyzing Hidden Markov Models 29-5 Design of Experiments 30 Design of Experiments 30-2 Full Factorial Designs . 30-3 Multilevel Designs . 30-3 Two-Level Designs . 30-3 Fractional Factorial Designs 30-5 Introduction to Fractional Factorial Designs 30-5 Plackett-Burman Designs 30-5 General Fractional Designs . 30-5 Response Surface Designs . 30-8 Introduction to Response Surface Designs . 30-8 Central Composite Designs . 30-8 Box-Behnken Designs 30-10 D-Optimal Designs 30-12 Introduction to D-Optimal Designs 30-12 Generate D-Optimal Designs . 30-13 Augment D-Optimal Designs . 30-14 Specify Fixed Covariate Factors 30-15 Specify Categorical Factors . 30-16 Specify Candidate Sets . 30-16 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques 30-19 Statistical Process Control 31 Control Charts . 31-2 Capability Studies 31-4 xxxiTall Arrays 32 Logistic Regression with Tall Arrays . 32-2 Bayesian Optimization with Tall Arrays . 32-9 Statistics and Machine Learning with Big Data Using Tall Arrays 32-24 Parallel Statistics 33 Quick Start Parallel Computing for Statistics and Machine Learning Toolbox . 33-2 Parallel Statistics and Machine Learning Toolbox Functionality 33-2 How to Compute in Parallel 33-2 Use Parallel Processing for Regression TreeBagger Workflow 33-4 Concepts of Parallel Computing in Statistics and Machine Learning Toolbox . 33-6 Subtleties in Parallel Computing . 33-6 Vocabulary for Parallel Computation 33-6 When to Run Statistical Functions in Parallel . 33-7 Why Run in Parallel? 33-7 Factors Affecting Speed . 33-7 Factors Affecting Results 33-7 Analyze and Model Data on GPU 33-9 Working with parfor . 33-14 How Statistical Functions Use parfor 33-14 Characteristics of parfor 33-14 Reproducibility in Parallel Statistical Computations . 33-16 Issues and Considerations in Reproducing Parallel Computations . 33-16 Running Reproducible Parallel Computations 33-16 Parallel Statistical Computation Using Random Numbers . 33-17 Implement Jackknife Using Parallel Computing 33-20 Implement Cross-Validation Using Parallel Computing . 33-21 Simple Parallel Cross Validation 33-21 Reproducible Parallel Cross Validation . 33-21 Implement Bootstrap Using Parallel Computing 33-23 Bootstrap in Serial and Parallel 33-23 Reproducible Parallel Bootstrap 33-24 xxxii ContentsCode Generation 34 Introduction to Code Generation 34-2 Code Generation Workflows 34-2 Code Generation Applications . 34-4 General Code Generation Workflow 34-5 Define Entry-Point Function 34-5 Generate Code 34-5 Verify Generated Code 34-7 Code Generation for Prediction of Machine Learning Model at Command Line 34-9 Code Generation for Incremental Learning 34-13 Code Generation for Nearest Neighbor Searcher 34-20 Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App 34-23 Code Generation and Classification Learner App 34-32 Load Sample Data 34-32 Enable PCA . 34-33 Train Models 34-34 Export Model to Workspace . 34-36 Generate C Code for Prediction 34-37 Deploy Neural Network Regression Model to FPGA/ASIC Platform . 34-40 Predict Class Labels Using MATLAB Function Block . 34-51 Specify Variable-Size Arguments for Code Generation . 34-56 Create Dummy Variables for Categorical Predictors and Generate C/C++ Code 34-61 System Objects for Classification and Code Generation 34-65 Predict Class Labels Using Stateflow 34-73 Human Activity Recognition Simulink Model for Smartphone Deployment 34-77 Human Activity Recognition Simulink Model for Fixed-Point Deployment 34-86 Code Generation for Prediction and Update Using Coder Configurer . 34-92 Code Generation for Probability Distribution Objects 34-94 Fixed-Point Code Generation for Prediction of SVM . 34-99 xxxiiiGenerate Code to Classify Data in Table 34-112 Code Generation for Image Classification . 34-115 Predict Class Labels Using ClassificationSVM Predict Block . 34-123 Predict Responses Using RegressionSVM Predict Block . 34-127 Predict Class Labels Using ClassificationTree Predict Block . 34-133 Predict Responses Using RegressionTree Predict Block . 34-139 Predict Class Labels Using ClassificationEnsemble Predict Block . 34-142 Predict Responses Using RegressionEnsemble Predict Block 34-149 Predict Class Labels Using ClassificationNeuralNetwork Predict Block . 34-156 Predict Responses Using RegressionNeuralNetwork Predict Block 34-160 Predict Responses Using RegressionGP Predict Block 34-164 Predict Class Labels Using ClassificationKNN Predict Block . 34-170 Code Generation for Logistic Regression Model Trained in Classification Learner . 34-176 Code Generation for Anomaly Detection 34-179 Compress Machine Learning Model for Memory-Limited Hardware . 34-185 Functions 35 Sample Data Sets A Sample Data Sets A-2 Probability Distributions B Bernoulli Distribution . B-2 Overview . B-2 xxxiv ContentsParameters . B-2 Probability Density Function B-2 Cumulative Distribution Function . B-2 Descriptive Statistics B-2 Examples . B-3 Related Distributions B-4 Beta Distribution B-6 Overview . B-6 Parameters . B-6 Probability Density Function B-6 Cumulative Distribution Function . B-7 Examples . B-7 Related Distributions B-9 Binomial Distribution . B-10 Overview B-10 Parameters B-10 Probability Density Function . B-10 Cumulative Distribution Function B-11 Descriptive Statistics . B-11 Example . B-11 Related Distributions . B-16 Birnbaum-Saunders Distribution . B-18 Definition B-18 Background B-18 Parameters B-18 Burr Type XII Distribution . B-19 Definition B-19 Background B-19 Parameters B-20 Fit a Burr Distribution and Draw the cdf B-21 Compare Lognormal and Burr Distribution pdfs . B-23 Burr pdf for Various Parameters . B-24 Survival and Hazard Functions of Burr Distribution B-26 Divergence of Parameter Estimates B-27 Chi-Square Distribution . B-29 Overview B-29 Parameters B-29 Probability Density Function . B-29 Cumulative Distribution Function B-30 Inverse Cumulative Distribution Function . B-30 Descriptive Statistics . B-30 Examples B-30 Related Distributions . B-32 Exponential Distribution B-34 Overview B-34 Parameters B-34 Probability Density Function . B-35 Cumulative Distribution Function B-35 Inverse Cumulative Distribution Function . B-35 xxxvHazard Function B-35 Examples B-36 Related Distributions . B-39 Extreme Value Distribution B-41 Definition B-41 Background B-41 Parameters B-43 Examples B-44 F Distribution . B-46 Definition B-46 Background B-46 Examples B-46 Gamma Distribution B-48 Overview B-48 Parameters B-48 Probability Density Function . B-49 Cumulative Distribution Function B-49 Inverse Cumulative Distribution Function . B-50 Descriptive Statistics . B-50 Examples B-50 Related Distributions . B-54 Generalized Extreme Value Distribution B-56 Definition B-56 Background B-56 Parameters B-57 Examples B-58 Generalized Pareto Distribution B-60 Definition B-60 Background B-60 Parameters B-61 Examples B-62 Geometric Distribution B-64 Overview B-64 Parameters B-64 Probability Density Function . B-64 Cumulative Distribution Function B-65 Descriptive Statistics . B-65 Hazard Function B-65 Examples B-65 Related Distributions . B-67 Half-Normal Distribution B-69 Overview B-69 Parameters B-69 Probability Density Function . B-69 Cumulative Distribution Function B-71 Descriptive Statistics . B-73 Relationship to Other Distributions B-73 xxxvi ContentsHypergeometric Distribution . B-74 Definition B-74 Background B-74 Examples B-74 Inverse Gaussian Distribution B-76 Definition B-76 Background B-76 Parameters B-76 Inverse Wishart Distribution . B-77 Definition B-77 Background B-77 Example . B-77 Kernel Distribution . B-79 Overview B-79 Kernel Density Estimator B-79 Kernel Smoothing Function B-79 Bandwidth . B-83 Logistic Distribution B-86 Overview B-86 Parameters B-86 Probability Density Function . B-86 Relationship to Other Distributions B-86 Loglogistic Distribution . B-87 Overview B-87 Parameters B-87 Probability Density Function . B-87 Relationship to Other Distributions B-87 Lognormal Distribution . B-89 Overview B-89 Parameters B-89 Probability Density Function . B-90 Cumulative Distribution Function B-90 Examples B-90 Related Distributions . B-95 Loguniform Distribution B-97 Overview B-97 Parameters B-97 Probability Density Function . B-97 Cumulative Distribution Function B-97 Descriptive Statistics . B-98 Examples B-98 Related Distributions B-101 Multinomial Distribution . B-102 Overview . B-102 Parameter B-102 Probability Density Function B-102 Descriptive Statistics B-102 xxxviiRelationship to Other Distributions . B-103 Multivariate Normal Distribution B-104 Overview . B-104 Parameters . B-104 Probability Density Function B-104 Cumulative Distribution Function . B-105 Examples . B-105 Multivariate t Distribution B-110 Definition . B-110 Background . B-110 Example . B-110 Nakagami Distribution . B-114 Definition . B-114 Background . B-114 Parameters . B-114 Negative Binomial Distribution B-115 Definition . B-115 Background . B-115 Parameters . B-115 Example . B-117 Noncentral Chi-Square Distribution B-119 Definition . B-119 Background . B-119 Examples . B-119 Noncentral F Distribution B-121 Definition . B-121 Background . B-121 Examples . B-121 Noncentral t Distribution . B-123 Definition . B-123 Background . B-123 Examples . B-123 Normal Distribution . B-125 Overview . B-125 Parameters . B-125 Probability Density Function B-126 Cumulative Distribution Function . B-126 Examples . B-127 Related Distributions B-133 Piecewise Linear Distribution . B-136 Overview . B-136 Parameters . B-136 Cumulative Distribution Function . B-136 Relationship to Other Distributions . B-136 xxxviii ContentsPoisson Distribution . B-137 Overview . B-137 Parameters . B-137 Probability Density Function B-137 Cumulative Distribution Function . B-138 Examples . B-138 Related Distributions B-141 Rayleigh Distribution B-143 Definition . B-143 Background . B-143 Parameters . B-143 Examples . B-143 Rician Distribution B-145 Definition . B-145 Background . B-145 Parameters . B-145 Stable Distribution B-147 Overview . B-147 Parameters . B-147 Probability Density Function B-148 Cumulative Distribution Function . B-150 Descriptive Statistics B-152 Relationship to Other Distributions . B-153 Student's t Distribution B-156 Overview . B-156 Parameters . B-156 Probability Density Function B-156 Cumulative Distribution Function . B-157 Inverse Cumulative Distribution Function B-157 Descriptive Statistics B-157 Examples . B-157 Related Distributions B-161 t Location-Scale Distribution B-163 Overview . B-163 Parameters . B-163 Probability Density Function B-163 Cumulative Distribution Function . B-164 Descriptive Statistics B-164 Relationship to Other Distributions . B-164 Triangular Distribution B-165 Overview . B-165 Parameters . B-165 Probability Density Function B-165 Cumulative Distribution Function . B-166 Examples . B-166 Uniform Distribution (Continuous) . B-170 Overview . B-170 Parameters . B-170 xxxixProbability Density Function B-171 Cumulative Distribution Function . B-171 Descriptive Statistics B-171 Random Number Generation B-171 Examples . B-171 Related Distributions B-174 Uniform Distribution (Discrete) . B-175 Definition . B-175 Background . B-175 Examples . B-175 Weibull Distribution . B-177 Overview . B-177 Parameters . B-177 Probability Density Function B-178 Cumulative Distribution Function . B-178 Inverse Cumulative Distribution Function B-178 Hazard Function . B-179 Examples . B-179 Related Distributions B-182 Wishart Distribution . B-184 Overview . B-184 Parameters . B-184 Probability Density Function B-184 Example . B-184 Bibliography C Bibliography . C-2 xl Contents #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide رابط مباشر لتنزيل كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide
|
|