كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition Empty
مُساهمةموضوع: كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition   كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition Emptyالسبت 13 يوليو 2024, 2:36 am

أخواني في الله
أحضرت لكم كتاب
Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
William D. Callister, Jr.
Department of Metallurgical Engineering
The University of Utah
David G. Rethwisch
Department of Chemical and Biochemical Engineering
The University of Iowa

كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition F_o_m_30
و المحتوى كما يلي :


Contents
LIST OF SYMBOLS xxiii
1 Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 3
1.3 Why Study Materials Science and Engineering? 5
1.4 Classification of Materials 5
1.5 Advanced Materials 10
1.6 Modern Materials Needs 13
References 14
Questions 14
2 Atomic Structure and Interatomic Bonding 15
Learning Objectives 16
2.1 Introduction 16
ATOMIC STRUCTURE 16
2.2 Fundamental Concepts 16
2.3 Electrons in Atoms 17
2.4 The Periodic Table 23
ATOMIC BONDING IN SOLIDS 24
2.5 Bonding Forces and Energies 24
2.6 Primary Interatomic Bonds 27
2.7 Secondary Bonding or van der Waals Bonding 31
2.8 Molecules 34
Summary 34
Important Terms and Concepts 35
References 35
Questions and Problems 35
3 Structures of Metals and Ceramics 37
Learning Objectives 38
3.1 Introduction 38
3.2 Fundamental Concepts 38
• xvxvi • Contents
CRYSTAL STRUCTURES 38
3.3 Unit Cells 39
3.4 Metallic Crystal Structures 40
3.5 Density Computations—
Metals 44
3.6 Ceramic Crystal Structures 45
3.7 Density Computations—
Ceramics 52
3.8 Silicate Ceramics 54
3.9 Carbon 58
3.10 Polymorphism and
Allotropy 61
3.11 Crystal Systems 61
CRYSTALLOGRAPHIC POINTS,
DIRECTIONS, AND PLANES 64
3.12 Point Coordinates 64
3.13 Crystallographic Directions 66
3.14 Crystallographic Planes 70
3.15 Linear and Planar Densities 75
3.16 Close-Packed Crystal
Structures 77
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 80
3.17 Single Crystals 80
3.18 Polycrystalline Materials 80
3.19 Anisotropy 82
3.20 X-Ray Diffraction:
Determination of Crystal
Structures 83
3.21 Noncrystalline Solids 87
Summary 89
Important Terms and Concepts 91
References 92
Questions and Problems 92
4 Polymer Structures 97
Learning Objectives 98
4.1 Introduction 98
4.2 Hydrocarbon Molecules 98
4.3 Polymer Molecules 100
4.4 The Chemistry of Polymer
Molecules 101
4.5 Molecular Weight 106
4.6 Molecular Shape 108
4.7 Molecular Structure 109
4.8 Molecular Configurations 111
4.9 Thermoplastic and
Thermosetting Polymers 115
4.10 Copolymers 116
4.11 Polymer Crystallinity 117
4.12 Polymer Crystals 121
Summary 123
Important Terms and Concepts 124
References 124
Questions and Problems 125
5 Imperfections in Solids 127
Learning Objectives 128
5.1 Introduction 128
POINT DEFECTS 128
5.2 Point Defects in Metals 128
5.3 Point Defects in Ceramics 130
5.4 Impurities in Solids 133
5.5 Point Defects in Polymers 136
5.6 Specification of
Composition 136
MISCELLANEOUS IMPERFECTIONS 140
5.7 Dislocations—Linear
Defects 140
5.8 Interfacial Defects 144
5.9 Bulk or Volume Defects 147
5.10 Atomic Vibrations 147
MICROSCOPIC EXAMINATION 149
5.11 General 149
5.12 Microscopic Techniques 150
5.13 Grain Size Determination 155
Summary 156
Important Terms and Concepts 158
References 158
Questions and Problems 158
6 Diffusion 161
Learning Objectives 162
6.1 Introduction 162
6.2 Diffusion Mechanisms 163
6.3 Steady-State Diffusion 165
6.4 Nonsteady-State Diffusion 167
6.5 Factors That Influence
Diffusion 171
6.6 Other Diffusion Paths 177
6.7 Diffusion in Ionic and Polymeric
Materials 177
Summary 181
Important Terms and Concepts 182
References 182
Questions and Problems 182Contents • xvii
7 Mechanical Properties 186
Learning Objectives 187
7.1 Introduction 187
7.2 Concepts of Stress and
Strain 188
ELASTIC DEFORMATION 192
7.3 Stress–Strain Behavior 192
7.4 Anelasticity 196
7.5 Elastic Properties
of Materials 196
MECHANICAL BEHAVIOR—METALS 199
7.6 Tensile Properties 200
7.7 True Stress and Strain 207
7.8 Elastic Recovery After Plastic
Deformation 210
7.9 Compressive, Shear, and
Torsional Deformation 211
MECHANICAL BEHAVIOR—
CERAMICS 211
7.10 Flexural Strength 211
7.11 Elastic Behavior 213
7.12 Influence of Porosity on the
Mechanical Properties of
Ceramics 213
MECHANICAL BEHAVIOR—
POLYMERS 214
7.13 Stress–Strain Behavior 215
7.14 Macroscopic Deformation 217
7.15 Viscoelastic Deformation 218
HARDNESS AND OTHER
MECHANICAL PROPERTY
CONSIDERATIONS 222
7.16 Hardness 222
7.17 Hardness of Ceramic
Materials 228
7.18 Tear Strength and Hardness
of Polymers 228
PROPERTY VARIABILITY AND
DESIGN/SAFETY FACTORS 229
7.19 Variability of Material
Properties 229
7.20 Design/Safety Factors 232
Summary 233
Important Terms
and Concepts 235
References 235
Questions and Problems 236
8 Deformation and
Strengthening
Mechanisms 242
Learning Objectives 243
8.1 Introduction 243
DEFORMATION MECHANISMS FOR
METALS 243
8.2 Historical 244
8.3 Basic Concepts of
Dislocations 244
8.4 Characteristics of
Dislocations 246
8.5 Slip Systems 248
8.6 Slip in Single Crystals 250
8.7 Plastic Deformation of
Polycrystalline Metals 253
8.8 Deformation by Twinning 255
MECHANISMS OF STRENGTHENING IN
METALS 256
8.9 Strengthening by Grain Size
Reduction 257
8.10 Solid-Solution
Strengthening 259
8.11 Strain Hardening 260
RECOVERY, RECRYSTALLIZATION, AND
GRAIN GROWTH 263
8.12 Recovery 264
8.13 Recrystallization 264
8.14 Grain Growth 269
DEFORMATION MECHANISMS FOR
CERAMIC MATERIALS 270
8.15 Crystalline Ceramics 271
8.16 Noncrystalline Ceramics 271
MECHANISMS OF DEFORMATION
AND FOR STRENGTHENING OF
POLYMERS 272
8.17 Deformation of Semicrystalline
Polymers 272
8.18 Factors That Influence the
Mechanical Properties of
Semicrystalline Polymers 274
8.19 Deformation of
Elastomers 278
Summary 281
Important Terms and
Concepts 283
References 283
Questions and Problems 284xviii • Contents
9 Failure 288
Learning Objectives 289
9.1 Introduction 289
FRACTURE 289
9.2 Fundamentals of Fracture 289
9.3 Ductile Fracture 290
9.4 Brittle Fracture 293
9.5 Principles of Fracture
Mechanics 293
9.6 Brittle Fracture of
Ceramics 304
9.7 Fracture of Polymers 308
9.8 Impact Fracture
Testing 309
FATIGUE 314
9.9 Cyclic Stresses 315
9.10 The S–N Curve 317
9.11 Fatigue in Polymeric
Materials 319
9.12 Crack Initiation and
Propagation 320
9.13 Factors that Affect Fatigue
Life 322
9.14 Environmental Effects 325
CREEP 326
9.15 Generalized Creep
Behavior 326
9.16 Stress and Temperature
Effects 328
9.17 Data Extrapolation
Methods 329
9.18 Alloys for High-Temperature
Use 331
9.19 Creep in Ceramic and Polymeric
Materials 331
Summary 332
Important Terms and Concepts 334
References 334
Questions and Problems 335
10 Phase Diagrams 339
Learning Objectives 340
10.1 Introduction 340
DEFINITIONS AND BASIC
CONCEPTS 340
10.2 Solubility Limit 341
10.3 Phases 341
10.4 Microstructure 342
10.5 Phase Equilibria 342
10.6 One-Component (or Unary)
Phase Diagrams 343
BINARY PHASE DIAGRAMS 345
10.7 Binary Isomorphous
Systems 345
10.8 Interpretation of Phase
Diagrams 347
10.9 Development of Microstructure
in Isomorphous Alloys 351
10.10 Mechanical Properties of
Isomorphous Alloys 355
10.11 Binary Eutectic Systems 356
10.12 Development of Microstructure
in Eutectic Alloys 361
10.13 Equilibrium Diagrams Having
Intermediate Phases or
Compounds 369
10.14 Eutectoid and Peritectic
Reactions 371
10.15 Congruent Phase
Transformations 372
10.16 Ceramic Phase Diagrams 373
10.17 Ternary Phase Diagrams 378
10.18 The Gibbs Phase Rule 378
THE IRON–CARBON SYSTEM 380
10.19 The Iron–Iron Carbide
(Fe–Fe3C) Phase Diagram 380
10.20 Development of Microstructure
in Iron–Carbon Alloys 384
10.21 The Influence of Other Alloying
Elements 391
Summary 392
Important Terms and Concepts 394
References 394
Questions and Problems 394
11 Phase Transformations 400
Learning Objectives 401
11.1 Introduction 401
PHASE TRANSFORMATIONS
IN METALS 401
11.2 Basic Concepts 402
11.3 The Kinetics of Phase
Transformations 402
11.4 Metastable Versus Equilibrium
States 413Contents • xix
MICROSTRUCTURAL AND PROPERTY
CHANGES IN IRON–CARBON
ALLOYS 414
11.5 Isothermal Transformation
Diagrams 414
11.6 Continuous Cooling
Transformation Diagrams 426
11.7 Mechanical Behavior of
Iron–Carbon Alloys 430
11.8 Tempered Martensite 434
11.9 Review of Phase
Transformations and Mechanical
Properties for Iron–Carbon
Alloys 437
PRECIPITATION HARDENING 438
11.10 Heat Treatments 441
11.11 Mechanism of Hardening 443
11.12 Miscellaneous
Considerations 446
CRYSTALLIZATION, MELTING, AND GLASS
TRANSITION PHENOMENA IN POLYMERS
447
11.13 Crystallization 447
11.14 Melting 448
11.15 The Glass Transition 448
11.16 Melting and Glass Transition
Temperatures 449
11.17 Factors That Influence Melting
and Glass Transition
Temperatures 450
Summary 452
Important Terms and Concepts 454
References 454
Questions and Problems 454
12 Electrical Properties 460
Learning Objectives 461
12.1 Introduction 461
ELECTRICAL CONDUCTION 461
12.2 Ohm’s Law 461
12.3 Electrical Conductivity 462
12.4 Electronic and Ionic
Conduction 463
12.5 Energy Band Structures in
Solids 463
12.6 Conduction in Terms of Band
and Atomic Bonding
Models 466
12.7 Electron Mobility 467
12.8 Electrical Resistivity of
Metals 469
12.9 Electrical Characteristics of
Commercial Alloys 471
SEMICONDUCTIVITY 474
12.10 Intrinsic Semiconduction 474
12.11 Extrinsic Semiconduction 477
12.12 The Temperature Dependence
of Carrier Concentration 481
12.13 Factors That Affect Carrier
Mobility 483
12.14 The Hall Effect 488
12.15 Semiconductor Devices 489
ELECTRICAL CONDUCTION IN IONIC
CERAMICS AND IN POLYMERS 496
12.16 Conduction in Ionic
Materials 497
12.17 Electrical Properties of
Polymers 497
DIELECTRIC BEHAVIOR 498
12.18 Capacitance 498
12.19 Field Vectors and
Polarization 500
12.20 Types of Polarization 504
12.21 Frequency Dependence of the
Dielectric Constant 505
12.22 Dielectric Strength 506
12.23 Dielectric Materials 507
OTHER ELECTRICAL CHARACTERISTICS
OF MATERIALS 507
12.24 Ferroelectricity 507
12.25 Piezoelectricity 508
Summary 509
Important Terms and Concepts 511
References 511
Questions and Problems 512
13 Types and Applications of
Materials 516
Learning Objectives 517
13.1 Introduction 517
TYPES OF METAL ALLOYS 517
13.2 Ferrous Alloys 517
13.3 Nonferrous Alloys 530
TYPES OF CERAMICS 540
13.4 Glasses 541
13.5 Glass–Ceramics 541xx • Contents
13.6 Clay Products 543
13.7 Refractories 543
13.8 Abrasives 545
13.9 Cements 546
13.10 Advanced Ceramics 547
13.11 Diamond and Graphite 550
TYPES OF POLYMERS 552
13.12 Plastics 552
13.13 Elastomers 552
13.14 Fibers 557
13.15 Miscellaneous
Applications 557
13.16 Advanced Polymeric
Materials 559
Summary 563
Important Terms and Concepts 565
References 565
Questions and Problems 566
14 Synthesis, Fabrication, and
Processing of Materials 568
Learning Objectives 569
14.1 Introduction 569
FABRICATION OF METALS 569
14.2 Forming Operations 569
14.3 Casting 571
14.4 Miscellaneous Techniques 573
THERMAL PROCESSING OF METALS 574
14.5 Annealing Processes 575
14.6 Heat Treatment of Steels 577
FABRICATION OF CERAMIC
MATERIALS 589
14.7 Fabrication and Processing
of Glasses and Glass–
Ceramics 589
14.8 Fabrication and Processing
of Clay Products 594
14.9 Powder Pressing 600
14.10 Tape Casting 602
SYNTHESIS AND FABRICATION OF
POLYMERS 603
14.11 Polymerization 603
14.12 Polymer Additives 606
14.13 Forming Techniques for
Plastics 607
14.14 Fabrication of Elastomers 610
14.15 Fabrication of Fibers and
Films 610
Summary 612
Important Terms and Concepts 613
References 614
Questions and Problems 614
15 Composites 617
Learning Objectives 618
15.1 Introduction 618
PARTICLE-REINFORCED
COMPOSITES 620
15.2 Large–Particle Composites 620
15.3 Dispersion-Strengthened
Composites 624
FIBER-REINFORCED COMPOSITES 625
15.4 Influence of Fiber Length 625
15.5 Influence of Fiber Orientation
and Concentration 626
15.6 The Fiber Phase 635
15.7 The Matrix Phase 637
15.8 Polymer-Matrix
Composites 637
15.9 Metal-Matrix Composites 644
15.10 Ceramic-Matrix
Composites 645
15.11 Carbon–Carbon
Composites 646
15.12 Hybrid Composites 647
15.13 Processing of Fiber-Reinforced
Composites 648
STRUCTURAL COMPOSITES 650
15.14 Laminar Composites 651
15.15 Sandwich Panels 651
Summary 654
Important Terms and Concepts 656
References 656
Questions and Problems 656
16 Corrosion and Degradation
of Materials 660
Learning Objectives 661
16.1 Introduction 661
CORROSION OF METALS 661
16.2 Electrochemical
Considerations 662
16.3 Corrosion Rates 670
16.4 Prediction of Corrosion
Rates 671
16.5 Passivity 678Contents • xxi
16.6 Environmental Effects 680
16.7 Forms of Corrosion 680
16.8 Corrosion Environments 688
16.9 Corrosion Prevention 689
16.10 Oxidation 691
CORROSION OF CERAMIC
MATERIALS 694
16.11 Swelling and Dissolution 695
16.12 Bond Rupture 697
16.13 Weathering 699
Summary 699
Important Terms and Concepts 701
References 701
Questions and Problems 701
17 Thermal Properties 705
Learning Objectives 706
17.1 Introduction 706
17.2 Heat Capacity 706
17.3 Thermal Expansion 708
17.4 Thermal Conductivity 711
17.5 Thermal Stresses 716
Summary 718
Important Terms and Concepts 719
References 719
Questions and Problems 719
18 Magnetic Properties 722
Learning Objectives 723
18.1 Introduction 723
18.2 Basic Concepts 723
18.3 Diamagnetism and
Paramagnetism 727
18.4 Ferromagnetism 729
18.5 Antiferromagnetism and
Ferrimagnetism 731
18.6 The Influence of Temperature
on Magnetic Behavior 735
18.7 Domains and Hysteresis 736
18.8 Magnetic Anisotropy 740
18.9 Soft Magnetic Materials 741
18.10 Hard Magnetic Materials 744
18.11 Magnetic Storage 747
18.12 Superconductivity 750
Summary 753
Important Terms and
Concepts 755
References 755
Questions and Problems 755
19 Optical Properties 759
Learning Objectives 760
19.1 Introduction 760
BASIC CONCEPTS 760
19.2 Electromagnetic Radiation 760
19.3 Light Interactions With
Solids 762
19.4 Atomic and Electronic
Interactions 763
OPTICAL PROPERTIES OF METALS 764
OPTICAL PROPERTIES OF
NONMETALS 765
19.5 Refraction 765
19.6 Reflection 767
19.7 Absorption 768
19.8 Transmission 771
19.9 Color 772
19.10 Opacity and Translucency in
Insulators 774
APPLICATIONS OF OPTICAL
PHENOMENA 775
19.11 Luminescence 775
19.12 Photoconductivity 775
19.13 Lasers 778
19.14 Optical Fibers in
Communications 781
Summary 785
Important Terms and Concepts 787
References 787
Questions and Problems 787
20 Economic, Environmental,
and Societal Issues in
Materials Science and
Engineering 789
Learning Objectives 790
20.1 Introduction 790
ECONOMIC CONSIDERATIONS 790
20.2 Component Design 791
20.3 Materials 791
20.4 Manufacturing Techniques 791
ENVIRONMENTAL AND SOCIETAL
CONSIDERATIONS 792
20.5 Recycling Issues in Materials
Science and Engineering 794
Summary 797
References 798
Design Questions 798xxii • Contents
Appendix A The International
System of Units (SI) 799
Appendix B Properties of Selected
Engineering Materials 801
B.1 Density 801
B.2 Modulus of Elasticity 804
B.3 Poisson’s Ratio 808
B.4 Strength and Ductility 809
B.5 Plane Strain Fracture
Toughness 814
B.6 Linear Coefficient of Thermal
Expansion 815
B.7 Thermal Conductivity 819
B.8 Specific Heat 822
B.9 Electrical Resistivity 824
B.10 Metal Alloy
Compositions 827
Appendix C Costs and Relative
Costs for Selected Engineering
Materials 829
Appendix D Repeat Unit
Structures for Common
Polymers 834
Appendix E Glass Transition
and Melting Temperatures for
Common Polymeric
Materials 838
Glossary 839
Answers to Selected
Problems 855
Index 859List of Symbols
The number of the section in which a symbol is introduced or explained is given in
parentheses.
A = area
◦A
= angstrom unit
Ai = atomic weight of element i (2.2)
APF = atomic packing factor (3.4)
a = lattice parameter: unit cell x-axial
length (3.4)
a = crack length of a surface crack (9.5)
at% = atom percent (5.6)
B = magnetic flux density (induction) (18.2)
Br = magnetic remanence (18.7)
BCC = body-centered cubic crystal structure
(3.4)
b = lattice parameter: unit cell y-axial
length (3.11)
b = Burgers vector (5.7)
C = capacitance (12.18)
C i = concentration (composition) of
component i in wt% (5.6)
C ′
i = concentration (composition) of
component i in at% (5.6)
Cv, Cp = heat capacity at constant volume,
pressure (17.2)
CPR = corrosion penetration rate (16.3)
CVN = Charpy V-notch (9.8)
%CW = percent cold work (8.11)
c = lattice parameter: unit cell z-axial
length (3.11)
cv, cp = specific heat at constant volume,
pressure (17.2)
D = diffusion coefficient (6.3)
D = dielectric displacement (12.19)
DP = degree of polymerization (4.5)
d = diameter
d = average grain diameter (8.9)
dhkl = interplanar spacing for planes of
Miller indices h, k, and l (3.20)
E = energy (2.5)
E = modulus of elasticity or Young’s
modulus (7.3)
e = electric field intensity (12.3)
Ef = Fermi energy (12.5)
E
g = band gap energy (12.6)
Er(t) = relaxation modulus (7.15)
%EL = ductility, in percent elongation (7.6)
e = electric charge per electron (12.7)
e– = electron (16.2)
erf = Gaussian error function (6.4)
exp = e, the base for natural logarithms
F = force, interatomic or mechanical
(2.5, 7.2)
f = Faraday constant (16.2)
FCC = face-centered cubic crystal
structure (3.4)
G = shear modulus (7.3)
H = magnetic field strength (18.2)
Hc = magnetic coercivity (18.7)
HB = Brinell hardness (7.16)
HCP = hexagonal close-packed crystal
structure (3.4)
HK = Knoop hardness (7.16)
HRB, HRF = Rockwell hardness: B and F scales
(7.16)
• xxiiixxiv • List of Symbols
HR15N, HR45W = superficial Rockwell
hardness: 15N and 45W scales
(7.16)
HV = Vickers hardness (7.16)
h = Planck’s constant (19.2)
(hkl ) = Miller indices for a
crystallographic plane (3.14)
I = electric current (12.2)
I = intensity of electromagnetic
radiation (19.3)
i = current density (16.3)
iC = corrosion current density
(16.4)
J = diffusion flux (6.3)
J = electric current density (12.3)
Kc = fracture toughness (9.5)
KIc = plane strain fracture
toughness for mode I crack
surface displacement (9.5)
k = Boltzmann’s constant (5.2)
k = thermal conductivity (17.4)
l = length
lc = critical fiber length (15.4)
ln = natural logarithm
log = logarithm taken to base 10
M = magnetization (18.2)
Mn = polymer number-average
molecular weight (4.5)
Mw = polymer weight-average
molecular weight (4.5)
mol% = mole percent
N = number of fatigue cycles
(9.10)
NA = Avogadro’s number (3.5)
Nf = fatigue life (9.10)
n = principal quantum number
(2.3)
n = number of atoms per unit cell
(3.5)
n = strain-hardening exponent
(7.7)
n = number of electrons in an
electrochemical reaction
(16.2)
n = number of conducting
electrons per cubic meter
(12.7)
n = index of refraction (19.5)
n′ = for ceramics, the number of
formula units per unit cell
(3.7)
ni = intrinsic carrier (electron and
hole) concentration (12.10)
P = dielectric polarization (12.19)
P–B ratio = Pilling–Bedworth ratio (16.10)
p = number of holes per cubic
meter (12.10)
Q = activation energy
Q = magnitude of charge stored
(12.18)
R = atomic radius (3.4)
R = gas constant
%RA = ductility, in percent reduction
in area (7.6)
r = interatomic distance (2.5)
r = reaction rate (16.3)
rA, rC = anion and cation ionic radii
(3.6)
S = fatigue stress amplitude (9.10)
SEM = scanning electron microscopy
or microscope
T = temperature
Tc = Curie temperature (18.6)
TC = superconducting critical
temperature (18.12)
Tg
= glass transition temperature
(11.15)
Tm = melting temperature
TEM = transmission electron
microscopy or microscope
TS = tensile strength (7.6)
t = time
tr
= rupture lifetime (9.15)
Ur = modulus of resilience (7.6)
[uvw] = indices for a crystallographic
direction (3.13)
V = electrical potential difference
(voltage) (12.2)
VC = unit cell volume (3.4)
VC = corrosion potential (16.4)
VH = Hall voltage (12.14)
Vi = volume fraction of phase i
(10.8)
v = velocity
vol% = volume percent
Wi = mass fraction of phase i (10.8)
wt% = weight percent (5.6)
x = length
x = space coordinate
Y = dimensionless parameter or
function in fracture toughness
expres​sion(9.5)List of Symbols • xxv
y = space coordinate
z = space coordinate
α = lattice parameter: unit cell y–z
interaxial angle (3.11)
α, β, γ = phase designations
αl = linear coefficient of thermal
expansion (17.3)
β = lattice parameter: unit cell x–z
interaxial angle (3.11)
γ = lattice parameter: unit cell x–y
interaxial angle (3.11)
γ = shear strain (7.2)
1 = precedes the symbol of a parameter
to denote finite change
² = engineering strain (7.2)
² = dielectric permittivity (12.18)
²r = dielectric constant or relative
permittivity (12.18)
²s = steady-state creep rate (9.16)
²T = true strain (7.7)
η = viscosity (8.16)
η = overvoltage (16.4)
θ = Bragg diffraction angle (3.20)
θD = Debye temperature (17.2)
λ = wavelength of electromagnetic
radiation (3.20)
μ = magnetic
permeability (18.2)
μB = Bohr magneton (18.2)
μr = relative magnetic permeability
(18.2)
μe = electron mobility (12.7)
μh = hole mobility (12.10)
ν = Poisson’s ratio (7.5)
ν = frequency of electromagnetic
radiation (19.2)
ρ = density (3.5)
ρ = electrical resistivity (12.2)
ρt = radius of curvature at the tip of a
crack (9.5)
σ = engineering stress, tensile or
compressive (7.2)
σ = electrical conductivity (12.3)
σ* = longitudinal strength (composite)
(15.5)
σ c = critical stress for crack propagation
(9.5)
σf s = flexural strength (7.10)
σm = maximum stress (9.5)
σm = mean stress (9.9)
σ ′
m = stress in matrix at composite failure
(15.5)
σT = true stress (7.7)
σw = safe or working stress (7.20)
σy
= yield strength (7.6)
τ = shear stress (7.2)
τ c = fiber–matrix bond strength/matrix
shear yield strength (15.4)
τcrss = critical resolved shear stress (8.6)
χm = magnetic susceptibility (18.2)
SUBSCRIPTS
c = composite
cd = discontinuous fibrous composite
cl = longitudinal direction (aligned
fibrous composite)
ct = transverse direction (aligned
fibrous composite)
f = final
f = at fracture
f = fiber
i = instantaneous
m = matrix
m, max = maximum
min = minimum
0 = original
0 = at equilibrium
0 = in a vacuum
Index
Page numbers in italics refer to the glossary.
A
Abrasive ceramics, 540, 545
Abrasives, 839
Absorption coefficient, 770
Absorption of light:
in metals, 764–765
in nonmetals, 765–775
Absorptivity, 763
ABS polymer, 553
AmBnXp crystal structures, 51
Acceptors, 480, 839
Acetic acid, 101
Acetylene, 99
Acid rain, as corrosion
environment, 688
Acids (organic), 101
Acid slags, 544
Acrylics, see Poly(methyl
methacrylate)
Acrylonitrile, see Polyacrylonitrile
(PAN)
Acrylonitrile-butadiene rubber,
556
Acrylonitrile-butadiene-styrene
(ABS), 553
Activation energy, 839
for creep, 329
for diffusion, 172, 406
free, 404, 409
for viscous flow, 615
Activation polarization, 671–673,
839
Actuator, 12, 547
Addition polymerization, 603–604,
839
Additives, polymer, 606–607
Adhesives, 538, 839
Adipic acid (structure), 605
Adsorption, 148
Advanced ceramics, 540, 547–550
Advanced materials, 10
Advanced polymers, 559–563
Age hardening, see Precipitation
hardening
Air, as quenching medium, 581
AISI/SAE steel designation
scheme, 520
Akermanite, 55
Alcohols, 101
Aldehydes, 101
Alkali metals, 23–24
Alkaline earth metals, 23–24
Allotropic transformation
(tin), 63
Allotropy, 61, 839
Alloys, 5, 839. See also Solid
solutions; specific alloys
atomic weight equations, 139
cast, 530
composition specification,
136–137
compositions for various, 827–828
costs, 829–831
defined, 133
density equations, 139
density values, 801–803
ductility values, 809–811
electrical resistivity values,
824–825
fracture toughness values, 300,
814
heat treatable, 531
high-temperature, 331
linear coefficient of thermal
expansion values, 815–816
low expansion, 712
modulus of elasticity values,
804–806
Poisson’s ratio values, 808
specific heat values, 822–823
strengthening, see Strengthening
of metals
tensile strength values, 809–811
thermal conductivity values,
819–820
wrought, 530
yield strength values, 809–811
Alloy steels, 423, 518, 839. See also
Steels
Alnico, 745
α Iron, see Ferrite (α)
Alternating copolymers, 116, 117,
839
Alumina, see Aluminum oxide
Aluminosilicates, 595
Aluminum:
atomic radius and crystal
structure, 40
bonding energy and melting
temperature, 28
elastic and shear moduli, 193
electrical conductivity, 469, 471
electrical wires, 472–473
for integrated circuit
interconnects, 178–179
Poisson’s ratio, 193
recrystallization temperature,
268
slip systems, 249
superconducting critical
temperature, 752
thermal properties, 709
yield and tensile strengths,
ductility, 205
Aluminum alloys, 532–534
fatigue behavior, 336
plane strain fracture toughness,
300, 814
precipitation hardening, 443–445
properties and applications, 534
• 859860 • Index
Aluminum-copper alloys, phase
diagram, 444
Aluminum-lithium alloys, 533, 534
Aluminum oxide:
electrical conductivity, 496
flexural strength, 205, 812
hardness, 229
index of refraction, 767
modulus of elasticity, 193, 806
plane strain fracture toughness,
300, 814
Poisson’s ratio, 193, 808
sintered microstructure, 602
stress-strain behavior, 213
thermal properties, 709
translucency, 4, 774
as whiskers and fibers, 636
Aluminum oxide-chromium oxide
phase diagram, 375
Ammonia, bonding energy and
melting temperature, 28
Amorphous materials, 38, 87–88,
839
Anelasticity, 196, 839
Angle computation between two
crystallographic directions, 252
Anions, 45, 839
Anisotropy, 82, 839
of elastic modulus, 197, 822
magnetic, 740–741, 743
Annealing, 575, 576–577, 839
ferrous alloys, 576–577
glass, 593
Annealing point, glass, 590, 839
Annealing twins, 147
Anodes, 662, 839
area effect, galvanic corrosion,
681
sacrificial, 690, 850
Antiferromagnetism, 731, 839
temperature dependence, 735
Aramid:
fiber-reinforced polymer-matrix
composites, 639–640
melting and glass transition
temperatures, 838
properties as fiber, 636
repeat unit structure, 639, 836
Argon, bonding energy and
melting temperature, 28
Aromatic hydrocarbons (chain
groups), 101, 450, 451
Arrhenius equation, 411
Artificial aging, 446, 839
Asphaltic concrete, 623
ASTM standards, 187
Atactic configuration, 113, 839
Athermal transformation, 423, 839
Atomic bonding, see Bonding
Atomic mass, 16
Atomic mass unit (amu), 16–17,
839
Atomic models:
Bohr, 17–18, 19, 840
wave-mechanical, 18, 19, 853
Atomic number, 16, 839
Atomic packing factor, 41, 839
Atomic point defects, 128, 130–131
Atomic radii, of selected metals, 40
Atomic structure, 16–24
Atomic vibrations, 147, 149,
706–707, 839
Atomic weight, 16, 839
metal alloys, equations for, 139
Atom percent, 138, 840
Austenite, 381, 840
shape-memory phase
transformations, 439–440
transformations, 414–429
summary, 437–438
Austenitic stainless steels, 522, 523
Austenitizing, 576, 840
Average value, 230
Avogadro’s number, 17
Avrami equation, 412, 447
AX crystal structures, 49–50
A
mXp crystal structures, 50–51
B
Bainite, 417–419, 426, 437, 840
mechanical properties, 432–433
Bakelite, see Phenol-formaldehyde
(Bakelite)
Ball bearings, ceramic, 549
Band gap, 466–467
Band gap energy, 840
selected semiconductors, 474
Bands, see Energy bands
Barcol hardness, 229
Barium titanate:
crystal structure, 51, 508
as dielectric, 507
as ferroelectric, 507–508
as piezoelectric, 509, 550
Base (transistor), 492
Basic refractories, 545
Basic slags, 544
Beachmarks (fatigue), 320
Bend strength, 212. See also
Flexural strength
Beryllia, 545
Beryllium-copper alloys, 531
Beverage containers, 1, 789
corrosion of, 789
diffusion rate of CO2 through,
180–181
stages of production, 568
Bifunctional repeat units, 105, 840
Billiard balls, 516, 555
Bimetallic strips, 720
Binary eutectic alloys, 356–369
Binary isomorphous alloys,
345–355
mechanical properties, 355
microstructure development,
equilibrium cooling, 351–353
microstructure development,
nonequilibrium cooling,
353–355
Biodegradable beverage can, 789
Biomaterials, 11
Block copolymers, 116, 117, 840
Blowing, of glass, 591
Blow molding, plastics, 610
Body-centered cubic structure,
41–42, 840
Burgers vector for, 249
slip systems, 249
twinning in, 255–256
Bohr atomic model, 17–18, 19,
840
Bohr magneton, 727, 840
Boltzmann’s constant, 129, 840
Bonding:
carbon-carbon, 103
cementitious, 546–547
covalent, 28–29, 45, 841
hybrid sp, 22
hydrogen, 31, 32–33, 845
ionic, 27–28, 45, 845
metallic, 30, 847
van der Waals, see van der Waals
bonding
Bonding energy, 26, 840
and melting temperature for
selected materials, 28
Bonding forces, 24–25
Bond rupture, in polymers,
697–698
Bone, as composite, 618
Boron carbide:
hardness, 229
Boron:
boron-doped silicon
semiconductors, 479Index • 861
fiber-reinforced composites, 640,
644
properties as a fiber, 636
Borosilicate glass:
composition, 541
electrical conductivity, 496
viscosity, 591
Borsic fiber-reinforced composites,
644
Bottom-up science, 12
Bragg’s law, 84–85, 840
Branched polymers, 110, 111, 840
Brass, 531, 532, 840
annealing behavior, 267
elastic and shear moduli, 193
electrical conductivity, 469
fatigue behavior, 336
phase diagram, 369, 370
Poisson’s ratio, 193
recrystallization temperature, 268
stress corrosion, 686
stress-strain behavior, 202
thermal properties, 709
yield and tensile strengths,
ductility, 205
Brazing, 573, 840
Breakdown, dielectric, 491, 507
Brinell hardness tests, 224, 225
Brittle fracture, 203, 288, 290,
293–296, 840
ceramics, 304–308
Brittle materials, thermal shock,
717–718
Bronze, 531, 532, 840
Bronze age, 2
Buckminsterfullerene, 59
Burgers vector, 141, 840
for FCC, BCC, and HCP, 249
magnitude computation, 284
Butadiene:
degradation resistance, 696
melting and glass transition
temperatures, 838
repeat unit structure, 118,
835
Butane, 99–100
C
Cadmium sulfide:
color, 772
electrical characteristics, 474
Calcination, 546, 840
Calendering, 649
Capacitance, 498–500, 840
Capacitors, 499–504
Carbon:
vs. graphite, 636, 639
polymorphism, 61
Carbon black, as reinforcement in
rubbers, 552, 554, 621–622
Carbon-carbon composites,
646–647, 840
Carbon diffusion, in steels, 385, 435
Carbon fiber-reinforced
polymer-matrix composites,
638–639, 640
Carbon fibers, 638–639
properties as fiber, 636
Carbon nanotubes, 13, 60
Carburizing, 166, 169, 840
Case-hardened gear, 161
Case hardening, 161, 324–325,
840
Cast alloys, 530
Casting techniques:
metals, 571–573
plastics, 610
slip, 596–597
tape, 602
Cast irons, 383, 518, 523–530, 840
annealing, 577
compositions, mechanical
properties, and applications,
527
graphite formation in, 524
heat treatment effect on
microstructure, 528
phase diagram, 524, 528
Catalysts, 148
Catalytic converters (automobiles),
148
Cathodes, 663, 840
Cathodic protection, 682, 689–691,
840
Cations, 45, 840
Cemented carbide, 621, 622
Cementite, 381–383, 840
decomposition, 524, 528
proeutectoid, 388–389
in white iron, 526, 528
Cementitious bond, 546–547
Cements, 540, 546–547, 840
Ceramic ball bearings, 549
Ceramic-matrix composites,
645–646, 840
Ceramics, 7–8, 840. See also Glass
advanced, 547–550
application-classification scheme,
540
brittle fracture, 304–308
coefficient of thermal expansion
values, 709, 817
color, 772–773
corrosion, 694
costs, 831–832
crystal structures, 45–52
summary, 51
defects, 130–133
defined, 7–8
density computation, 52–53
density values, 803
elastic modulus values, 193, 806
electrical conductivity values for
selected, 496
electrical resistivity values, 826
fabrication techniques
classification, 589
flexural strength values, 205, 812
fractography of, 305–308
fracture toughness values, 300,
814–815
impurities in, 135–136
indices of refraction, 767
as electrical insulators, 496, 507
magnetic, 731–735
mechanical properties of, 211–214
in MEMS, 548
phase diagrams, 373–377
piezoelectric, 12, 550
plastic deformation, 270–272
Poisson’s ratio values, 193, 808
porosity, 213–214, 601–602
porosity, influence on properties,
213–214
silicates, 54–57
specific heat values, 709, 823
as superconductors, 753
thermal conductivity values, 709,
820
thermal properties, 709, 711,
714–715, 717–718
traditional, 547
translucency and opacity, 774
Cercor (glass ceramic), 542
Cermets, 621, 840
Cesium chloride structure, 49
Chain-folded model, 121, 122, 840
Chain-reaction polymerization, see
Addition polymerization
Chain stiffening/stiffness, 109, 450,
451
Charge carriers:
majority vs. minority, 479
temperature dependence,
481–483862 • Index
Charpy impact test, 310–311, 841
Chevron markings, 293
Chips, semiconductor, 495
Chlorine, bonding energy and
melting temperature, 28
Chloroprene, repeat unit structure,
118, 835
Chloroprene rubber:
characteristics and applications,
556
melting and glass transition
temperatures, 838
Cis, 114, 841
Clay, characteristics, 594–595
Clay products, 540, 543
drying and firing, 543, 597–599
fabrication, 594–597
Cleavage (brittle fracture), 293
Clinker, 546
Close-packed ceramic crystal
structures, 79–80
Close-packed metal crystal
structures, 77–78
Coarse pearlite, 417–418, 428, 841
Coatings (polymer), 557
Cobalt:
atomic radius and crystal
structure, 40
Curie temperature, 735
as ferromagnetic material, 729
magnetization curves (single
crystal), 741
Coercivity (coercive force), 738,
841
Cold work, percent, 260
Cold working, 841. See also Strain
hardening
Collector, 492–493
Color, 841
metals, 764–765
nonmetals, 772–773
Colorants, 607, 841
Compacted graphite iron, 518, 526,
529–530
Compliance, creep, 222
Component, 340, 378, 841
Composites:
aramid fiber-reinforced polymer,
639–640
carbon-carbon, 646–647, 840
carbon fiber-reinforced polymer,
638–639
ceramic-matrix, 645–646
classification scheme, 619–620
costs, 833
definition, 9, 618
dispersion-strengthened, 624
elastic behavior:
longitudinal, 628–629
transverse, 631
fiber-reinforced, see
Fiber-reinforced composites
glass fiber-reinforced polymer,
637–638
hybrid, 647, 845
laminar, 619, 635, 651, 846
large-particle, 619, 620–624
metal-matrix, 644–645
particle-reinforced, 620–625
production processes, 648–650
properties, glass-, carbon-,
aramid-fiber reinforced, 640
rule of mixtures expressions, 620,
629, 631, 632, 633, 634, 643
strength:
longitudinal, 632
transverse, 633
stress-strain behavior, 627–628
structural, 650–652
Composition, 841
conversion equations, 138, 160
specification of, 136–137
Compression molding, plastics, 608
Compression tests, 190
Compressive deformation, 189, 211
Computers, semiconductors in,
494–496
Concentration, 136, 841. See also
Composition
Concentration cells, 682
Concentration gradient, 166, 841
Concentration polarization,
673–674, 841
Concentration profile, 165, 841
Concrete, 622–624, 841
electrical conductivity, 496
plane strain fracture toughness,
300, 814
Condensation polymerization, 605,
841
Conducting polymers, 497–498
Conduction:
electronic, 463
ionic, 463, 497
Conduction band, 465, 841
Conductivity, see Electrical
conductivity; Thermal
conductivity
Configuration, molecular, 111–113
Conformation, molecular, 109
Congruent phase transformations,
372–373, 841
Constitutional diagrams, see Phase
diagrams
Continuous casting, 572–573
Continuous cooling transformation
diagrams, 426–429, 841
4340 steel, 429
0.35 wt% C steel, 457
0.76 wt% C steel, 427
for glass-ceramic, 542
Continuous fibers, 626
Conventional hard magnetic
materials, 745
Conversion factors, magnetic units,
726
Cooling rate, of cylindrical rounds,
583
Coordinates, point, 64–66
Coordination numbers, 41, 43,
46–47, 54, 841
Copolymers, 105, 116–117, 841
styrenic block, 562–563
Copper:
atomic radius and crystal
structure, 40
elastic and shear moduli, 193
electrical conductivity, 469
OFHC, 471
Poisson’s ratio, 193
recrystallization, 268, 413
slip systems, 249
thermal properties, 709
yield and tensile strengths,
ductility, 205
Copper alloys, 531–532
properties and applications of,
532
Copper-aluminum phase diagram,
444
Copper-beryllium alloys, 472, 531
phase diagram, 458
Copper-nickel alloys:
ductility vs. composition, 259, 355
electrical conductivity, 470
phase diagram, 345–346
tensile strength vs. composition,
259, 355
yield strength vs. composition,
259
Copper-silver phase diagram, 356,
379
Coring, 355
Corningware (glass ceramic), 542
Corrosion, 841Index • 863
of beverage cans, 789
ceramic materials, 694
electrochemistry of, 662–668
environmental effects, 680
environments, 688–689
forms of, 680–688
galvanic series, 669–670
overview of, 661
passivity, 678–679, 848
rates, 670
prediction of, 671–678
Corrosion fatigue, 325–326, 841
Corrosion inhibitors, 689
Corrosion penetration rate, 670,
841
Corrosion prevention, 689–691
Corundum, 545. See also
Aluminum oxide
crystal structure, 96
Cost of various materials, 829–833
Coulombic force, 27, 841
Covalency, degree of, 29
Covalent bonding, 28–29, 45–46,
98, 841
Crack configurations in ceramics,
306
Crack critical velocity, 306
Crack formation, 290
in ceramics, 306
fatigue and, 320
glass, 593
Crack propagation, 290. See also
Fracture mechanics
in brittle fracture, 293
in ceramics, 304–308
in ductile fracture, 290–291
fatigue and, 320–322
Cracks:
stable vs. unstable, 290
Crack surface displacement modes,
299, 300
Crazing, 309
Creep, 326–331, 841
ceramics, 331
influence of temperature and
stress on, 328–329
mechanisms, 329
in polymers, 221–222, 331
stages of, 326–327
steady-state rate, 327
viscoelastic, 221–222
Creep compliance, 222
Creep modulus, 222
Creep rupture tests, 327
data extrapolation, 329–330
Crevice corrosion, 682–683, 841
Cristobalite, 54, 377
Critical cooling rate:
ferrous alloys, 427–429
glass-ceramics, 542
Critical fiber length, 625–626
Critical resolved shear stress, 250,
841
as related to dislocation density,
285
Critical stress (fracture), 297
Critical temperature,
superconductivity, 750, 752
Critical velocity (crack), 306, 308
Crosslinking, 110–111, 841
elastomers, 278–279
influence on viscoelastic
behavior, 221
thermosetting polymers, 116
Crystalline materials, 38, 80, 841
defects, 128–149
single crystals, 80–81, 850
Crystallinity, polymers, 117–121,
841
influence on mechanical
properties, 276
Crystallites, 121, 841
Crystallization, polymers, 447–448
Crystallographic directions, 66–70
easy and hard magnetization, 741
families, 68
Crystallographic planes, 70–75
atomic arrangements, 73–74
close-packed, ceramics, 79–80
close-packed, metals, 77–78
diffraction by, 83–85
families, 74
Crystallographic point coordinates,
64–66
Crystal structures, 38–44, 842.
See also Body-centered cubic
structure; Close-packed crystal
structures; Face-centered
cubic structure; Hexagonal
close-packed structure
ceramics, 45–52
close-packed, ceramics, 79–80
close-packed, metals, 77–78
determination by x-ray
diffraction, 83–87
selected metals, 40
types, ceramics, 45–52, 79–80
types, metals, 40–43, 77–78
Crystallization (ceramics), 541, 594,
841
Crystal systems, 61–62, 842
Cubic crystal system, 61, 62
Cubic ferrites, 731–735
Cunife, 745, 746
Cup-and-cone fracture, 291
Curie temperature, 735, 842
ferroelectric, 507
ferromagnetic, 708
Curing, plastics, 608
Current density, 462
Cyclic stresses, 315–316
D
Damping capacity, steel vs. cast
iron, 525, 528
Data scatter, 229–230
Debye temperature, 707, 708
Decarburization, 166
Defects, see also Dislocations
atomic vibrations and, 147, 149
dependence of properties on, 127
in ceramics, 130–133, 135
interfacial, 144–147
point, 128–133, 848
in polymers, 136, 137
surface, 148
volume, 147
Defect structure, 130, 842
Deformation:
elastic, see Elastic deformation
elastomers, 278–279
plastic, see Plastic deformation
Deformation mechanism maps
(creep), 329
Deformation mechanisms
(semicrystalline polymers),
elastic deformation, 272–273
plastic deformations, 274, 275
Degradation of polymers, 695–699,
842
Degree of polymerization, 107, 842
Degrees of freedom, 378
Delayed fracture, 304
Density:
computation for ceramics, 52–53
computation for metal alloys,
139
computation for metals, 44–45
computation for polymers, 120
of dislocations, 246
linear atomic, 75–76
planar atomic, 76
polymers (values for), 803–804
ranges for material types (bar
chart), 6864 • Index
Density (continued)
relation to percent crystallinity
for polymers, 119
values for various materials,
801–804
Design, component, 791
Design examples:
cold work and recrystallization,
268–269
conductivity of a p-type
semiconductor, 486–487
cubic mixed-ferrite magnet,
734–735
creep rupture lifetime for an
S-590 steel, 330–331
nonsteady-state diffusion,
176–177
spherical pressure vessel, failure
of, 301–304
steel shaft, alloy/heat treatment
of, 586–587
tensile-testing apparatus, 232–233
tubular composite shaft, 641–644
Design factor, 232
Design stress, 232, 842
Dezincification, of brass, 685
Diamagnetism, 727–728, 842
Diamond, 58, 550–551
as abrasive, 545
bonding energy and melting
temperature, 28
cost, 831
films, 550–551
hardness, 229
thermal conductivity, 820
Diamond cubic structure, 58
Die casting, 572
Dielectric breakdown, 491, 507
Dielectric constant, 500, 842
frequency dependence, 505–506
relationship to refractive index,
766
selected ceramics and polymers,
500
Dielectric displacement, 501, 842
Dielectric loss, 506
Dielectric materials, 498, 507, 842
Dielectric strength, 507, 842
selected ceramics and polymers,
500
Diffraction (x-ray), 83–84, 842
Diffraction angle, 86
Diffractometers, 85
Diffusion, 162–163, 842
grain growth and, 269
in ionic materials, 177
in integrated circuit
interconnects, 178–179
in Si of Cu, Au, Ag, and Al, 178
interstitial, 164, 845
mechanisms, 163–164
and microstructure development,
351–355, 365–366
nonsteady-state, 167–171, 847
in polymers, 179–181
short-circuit, 177
steady-state, 165–167, 851
vacancy, 164, 177, 853
Diffusion coefficient, 166, 842
relation to ionic mobility, 497
temperature dependence,
172–177
values for various metal systems,
171
Diffusion couples, 162
Diffusion flux, 165, 842
for polymers, 179
Digitization of information/signals,
748–749, 783
Dimethyl ether, 101
Dimethylsiloxane, 118, 554–555,
556, 835. See also Silicones;
Silicone rubber
melting and glass transition
temperatures, 838
Diode, 490, 842
Dipole moment, 500
Dipoles:
electric, 31, 842
induced, 31
magnetic, 723–724
permanent, 32
Directional solidification, 331
Directions, see Crystallographic
directions
Discontinuous fibers, 626
Dislocation density, 246, 284, 285,
842
Dislocation etch pits, 242
Dislocation line, 141, 142, 143,
842
Dislocation motion, 244–245
caterpillar locomotion analogy,
245–246
in ceramics, 271
at grain boundaries, 257–258
influence on strength, 257
recovery and, 264
Dislocations, 140–144, 842
in ceramics, 144, 246, 271
characteristics of, 246–248
interactions, 247
multiplication, 248
at phase boundaries, 430, 435
pile-ups, 258
plastic deformation and, 199,
243–255, 256
in polymers, 137, 144
strain fields, 246–247
Dispersed phase, 619, 842
definition, 619
geometry, 619
Dispersion (optical), 759, 765
Dispersion-strengthened
composites, 624, 842
Disposal of materials, 793–794
Domain growth, 737–738
iron single crystal, 722
Domains, 730, 736–737, 742,
842
Domain walls, 736–737
Donors, 477, 842
Doping, 480, 483–484, 842
Double bonds, 98–99
Drain casting, 596
Drawing:
glass, 592
influence on polymer properties,
276–277
metals, 571, 842
polymer fibers, 610–611, 842
Drift velocity, electron, 468
Driving force, 166, 842
electrochemical reactions, 665
grain growth, 269
recrystallization, 264
sintering, 601
steady-state diffusion, 166
Dry corrosion, 691
Drying, clay products, 597–598
Ductile fracture, 203–204, 290–292,
842
Ductile iron, 525, 526, 842
compositions, mechanical
properties, and applications,
527
Ductile-to-brittle transition,
311–314, 842
polymers, 308
and temper embrittlement, 437
Ductility, 203–204, 842
fine and coarse pearlite, 432
precipitation hardened aluminum
alloy, 445
selected materials, 205, 809–813Index • 865
spheroidite, 432
tempered martensite, 436
Durometer hardness, 226, 229
E
Economics, materials selection:
considerations in materials
engineering, 790–791
tubular composite shaft, 641–644
Eddy currents, 742
Edge dislocations, 140, 244–245,
843. See also Dislocations
interactions, 246–247
in polymers, 137
E-glass, 636, 637–638
Elastic deformation, 192–199, 843
Elastic modulus, see Modulus of
elasticity
Elastic (strain) recovery, 210, 843
Elastomers, 215, 278–281, 552–557,
610, 843
in composites, 621
deformation, 278–279
thermoplastic, 561–563
trade names, properties, and
applications, 556
Electrical conduction:
in insulators and semiconductors,
466–467
in metals, 466
Electrical conductivity, 462, 468,
469, 841
ranges for material types (bar
chart), 8
selected ceramics and polymers,
496
selected metals, 469
selected semiconductors, 474
temperature variation (Ge), 513
values for electrical wires, 473
Electrical resistivity, 461–462, 850.
See also Electrical conductivity
metals
influence of impurities, 470
influence of plastic deformation,
470, 471
influence of temperature,
469–470
values for various materials,
824–827
Electrical wires, aluminum and
copper, 472–473
Electric dipole moment, 501
Electric dipoles, see Dipoles
Electric field, 462, 468, 843
Electrochemical cells, 664–665
Electrochemical reactions, 662–670
Electrodeposition, 664–665
Electrode potentials, 664–665
values of, 666
Electroluminescence, 776, 843
Electrolytes, 665, 843
Electromagnetic radiation, 760–762
interactions with atoms/electrons,
763–764
Electromagnetic spectrum,
760–761
Electron band structure, see
Energy bands
Electron cloud, 30
Electron configurations, 21–23, 843
elements, 22
periodic table and, 23–24
stable, 21
Electronegativity, 24, 29, 843
influence on solid solubility, 134
values for the elements, 24
Electroneutrality, 130, 843
Electron gas, 466
Electronic conduction, 463, 497
Electronic polarization, 504, 550,
763, 768, 848
Electron microscopy, 150–153
Electron mobility, 468
influence of dopant content on,
483–484
influence of temperature on,
484–485
selected semiconductors, 474
Electron orbitals, 17
Electron probability distribution,
18, 19
Electrons, 16
conduction process, 476, 492–493
role, diffusion in ionic materials,
177, 179
energy bands, see Energy bands
energy levels, 18–21
free, see Free electrons
scattering, 468, 707
in semiconductors, 474–481
temperature variation of
concentration, 481–483
spin, 19, 727
valence, 21
Electron states, 843
Electron transitions, 763–764
metals, 764–765
nonmetals, 765–767
Electron volt, 28, 843
Electropositivity, 24, 843
Electrorheological fluids, 12
Elongation, percent, 203
selected materials, 205, 809–813
selected metals, 205
selected polymers, 205
Embrittlement:
hydrogen, 687–688
temper, 437
Embryo, phase particle, 403–405
Emf series, 665–666, 843
Emitter, 492
Endurance limit, 317. See also
Fatigue limit
Energy:
activation, see Activation energy
bonding, 26–28, 840
current concerns about, 13,
793–794
free, 342, 343, 402–405, 844
grain boundary, 145
photon, 762
surface, 144
vacancy formation, 129
Energy band gap, see Band gap
Energy bands, 463–465
structures for metals, insulators,
and semiconductors, 464–465
Energy levels (states), 17–20,
463–464
Energy and materials, 793
Energy product, magnetic, 744–745
Engineering stress/strain, 189–190,
851
Entropy, 279, 342, 402
Environmental considerations and
materials, 792–797
Epoxies:
degradation resistance, 696
polymer-matrix composites,
640–641
repeat unit structure, 834
trade names, characteristics, and
applications, 554
Equilibrium:
definition of, 342
phase, 342–343, 843
Equilibrium diagrams, see Phase
diagrams
Erosion-corrosion, 685–686, 843
Error bars, 230–231
Error function, Gaussian, 168
Etching, 150, 151
Etch pits, 242
Ethane, 99866 • Index
Ethers, 101
Ethylene, 99
polymerization, 101–102
Ethylene glycol (structure), 605
Euro coins, alloys used for, 539
Eutectic isotherm, 357
Eutectic phase, 366, 843
Eutectic reactions, 357, 364, 843
iron-iron carbide system, 381, 383
Eutectic structure, 366, 843
Eutectic systems:
binary, 356–369
microstructure development,
361–369
Eutectoid, shift of position,
391–392
Eutectoid ferrite, 387
Eutectoid reactions, 371, 843
iron-iron carbide system, 383
kinetics, 414–416
Eutectoid steel, microstructure
changes/development,
384–386
Exchange current density, 672
Excited states, 764, 843
Exhaustion, in extrinsic
semiconductors, 482
Expansion, thermal, see Thermal
expansion
Extrinsic semiconductors, 477–481,
843
electron concentration vs.
temperature, 482
exhaustion, 482
saturation, 482
Extrusion, 843
clay products, 596
metals, 571
polymers, 609–610
F
Fabrication:
ceramics, 589–591
clay products, 594–599
fiber-reinforced composites,
648–650
metals, 569–574
Face-centered cubic structure,
40–41, 843
anion stacking (ceramics), 79–80
Burgers vector for, 249
close packed planes (metals),
77–79
slip systems, 248
Factor of safety, 232, 302
Failure, mechanical, see Creep;
Fatigue; Fracture
Faraday constant, 667
Fatigue, 314–326, 843
corrosion, 325–326
crack initiation and propagation,
320–322
cyclic stresses, 315–317
environmental effects, 325–326
low- and high-cycle, 319
polymers, 319–320
probability curves, 319
thermal, 325
Fatigue life, 318, 843
factors that affect, 322–325
Fatigue limit, 317, 318, 843
Fatigue strength, 317, 318, 843
Fatigue testing, 317
S-N curves, 317–319, 320, 336
Feldspar, 595
Fermi energy, 465, 480, 708, 843
Ferrimagnetism, 731–735, 843
temperature dependence,
735–736
Ferrite (α), 380–382, 843
eutectoid/proeutectoid, 339,
387–388, 849
from decomposition of cementite,
524
Ferrites (magnetic ceramics),
731–733, 843
Curie temperature, 735–736
as magnetic storage, 748
Ferritic stainless steels, 522, 523
Ferroelectricity, 507–508, 843
Ferroelectric materials, 507–508
Ferromagnetic domain walls, 147
Ferromagnetism, 729–730, 844
temperature dependence,
735–736
Ferrous alloys, 844. See also Cast
irons; Iron; Steels
annealing, 575–577
classification, 383, 518
continuous cooling
transformation diagrams,
426–429
costs, 829–830
hypereutectoid, 388–391, 845
hypoeutectoid, 386–388, 845
isothermal transformation
diagrams, 414–426
microstructures, 384–391
mechanical properties of,
430–434, 809–810
Fiber efficiency parameter, 634
Fiberglass, 541
Fiberglass-reinforced composites,
637–638
Fiber-reinforced composites,
625–650, 844
continuous and aligned, 627–633
discontinuous and aligned,
633–634
discontinuous and randomly
oriented, 634–635
fiber length effect, 625–626
fiber orientation/concentration
effect, 626–635
fiber phase, 635–637
longitudinal loading, 627–631, 632
matrix phase, 637
processing, 648–650
reinforcement efficiency, 635
transverse loading, 631, 633–635
Fibers, 557, 844
coefficient of thermal expansion
values, 818
in composites, 619
continuous vs. discontinuous,
625–626
fiber phase, 635–637
length effect, 625–626
orientation and concentration,
626–635
costs, 833
density values


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
رابط مباشر لتنزيل كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach - 3rd Edition
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Fundamentals of Materials Science and Engineering - An Integrated Approach
» كتاب Fundamentals of Materials Science and Engineering 5th Edition
» كتاب SOLIDWORKS 2023 and Engineering Graphics - An Integrated Approach
» كتاب Fundamentals of Materials Science and Engineering
» كتاب Fundamentals of Materials Science and Engineering

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: