Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Materials Science and Engineering السبت 10 يوليو 2021, 11:36 am | |
|
أخوانى فى الله أحضرت لكم كتاب Fundamentals of Materials Science and Engineering 4th Edition AN INTEGRATED APPROACH William D. Callister, Jr. Department of Metallurgical Engineering The University of Utah David G. Rethwisch Department of Chemical and Biochemical Engineering The University of Iowa
و المحتوى كما يلي :
Contents • xv LIST OF SYMBOLS xxiii 1. Introduction 1 Learning Objectives 2 1.1 Historical Perspective 2 1.2 Materials Science and Engineering 2 1.3 Why Study Materials Science and Engineering? 4 1.4 Classification of Materials 5 Materials of Importance—Carbonated Beverage Containers 9 1.5 Advanced Materials 10 1.6 Modern Materials Needs 12 1.7 Processing/Structure/Properties/ Performance Correlations 13 Summary 15 References 16 Question 16 2. Atomic Structure and Interatomic Bonding 17 Learning Objectives 18 2.1 Introduction 18 ATOMIC STRUCTURE 18 2.2 Fundamental Concepts 18 2.3 Electrons in Atoms 19 2.4 The Periodic Table 25 ATOMIC BONDING IN SOLIDS 26 2.5 Bonding Forces and Energies 26 2.6 Primary Interatomic Bonds 28 2.7 Secondary Bonding or van der Waals Bonding 32 Materials of Importance—Water (Its Volume Expansion Upon Freezing) 34 2.8 Molecules 35 Summary 35 Equation Summary 36 Processing/Structure/Properties/Performance Summary 36 Important Terms and Concepts 37 References 37 Questions and Problems 37 Fundamentals of Engineering Questions and Problems 39 3. Structures of Metals and Ceramics 40 Learning Objectives 41 3.1 Introduction 41 CRYSTAL STRUCTURES 42 3.2 Fundamental Concepts 42 3.3 Unit Cells 42 3.4 Metallic Crystal Structures 43 3.5 Density Computations—Metals 47 3.6 Ceramic Crystal Structures 48 3.7 Density Computations—Ceramics 54 3.8 Silicate Ceramics 55 3.9 Carbon 59 Materials of Importance—Carbon Nanotubes 60 3.10 Polymorphism and Allotropy 61 3.11 Crystal Systems 61 Material of Importance—Tin (Its Allotropic Transformation) 63 CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND PLANES 64 3.12 Point Coordinates 64 3.13 Crystallographic Directions 66 3.14 Crystallographic Planes 72 3.15 Linear and Planar Densities 76 3.16 Close-Packed Crystal Structures 77 CRYSTALLINE AND NONCRYSTALLINE MATERIALS 81 3.17 Single Crystals 81 3.18 Polycrystalline Materials 81 3.19 Anisotropy 81 3.20 X-Ray Diffraction: Determination of Crystal Structures 83 3.21 Noncrystalline Solids 87 Summary 89 Equation Summary 91 Processing/Structure/Properties/Performance Summary 92Important Terms and Concepts 93 References 94 Questions and Problems 94 Fundamentals of Engineering Questions and Problems 101 4. Polymer Structures 102 Learning Objectives 103 4.1 Introduction 103 4.2 Hydrocarbon Molecules 103 4.3 Polymer Molecules 105 4.4 The Chemistry of Polymer Molecules 106 4.5 Molecular Weight 111 4.6 Molecular Shape 113 4.7 Molecular Structure 115 4.8 Molecular Configurations 116 4.9 Thermoplastic and Thermosetting Polymers 120 4.10 Copolymers 121 4.11 Polymer Crystallinity 122 4.12 Polymer Crystals 125 Summary 128 Equation Summary 129 Processing/Structure/Properties/Performance Summary 130 Important Terms and Concepts 130 References 131 Questions and Problems 131 Fundamentals of Engineering Questions and Problems 133 5. Imperfections in Solids 134 Learning Objectives 135 5.1 Introduction 135 POINT DEFECTS 136 5.2 Point Defects in Metals 136 5.3 Point Defects in Ceramics 137 5.4 Impurities in Solids 140 5.5 Point Defects in Polymers 143 5.6 Specification of Composition 143 MISCELLANEOUS IMPERFECTIONS 147 5.7 Dislocations—Linear Defects 147 5.8 Interfacial Defects 150 5.9 Bulk or Volume Defects 153 5.10 Atomic Vibrations 153 MICROSCOPIC EXAMINATION 153 5.11 Basic Concepts of Microscopy 153 Materials of Importance—Catalysts (and Surface Defects) 154 5.12 Microscopic Techniques 155 5.13 Grain Size Determination 159 Summary 161 Equation Summary 163 Processing/Structure/Properties/Performance Summary 164 Important Terms and Concepts 165 References 165 Questions and Problems 165 Design Problems 169 Fundamentals of Engineering Questions and Problems 169 6. Diffusion 170 Learning Objectives 171 6.1 Introduction 171 6.2 Diffusion Mechanisms 172 6.3 Steady-State Diffusion 173 6.4 Nonsteady-State Diffusion 175 6.5 Factors That Influence Diffusion 179 6.6 Diffusion in Semiconducting Materials 184 Material of Importance—Aluminum for Integrated Circuit Interconnects 187 6.7 Other Diffusion Paths 188 6.8 Diffusion in Ionic and Polymeric Materials 188 Summary 191 Equation Summary 192 Processing/Structure/Properties/Performance Summary 193 Important Terms and Concepts 194 References 195 Questions and Problems 195 Design Problems 198 Fundamentals of Engineering Questions and Problems 199 7. Mechanical Properties 200 Learning Objectives 201 7.1 Introduction 201 7.2 Concepts of Stress and Strain 202 ELASTIC DEFORMATION 205 7.3 Stress–Strain Behavior 205 7.4 Anelasticity 209 7.5 Elastic Properties of Materials 209 MECHANICAL BEHAVIOR—METALS 211 7.6 Tensile Properties 212 7.7 True Stress and Strain 219 7.8 Elastic Recovery After Plastic Deformation 222 7.9 Compressive, Shear, and Torsional Deformation 222 xvi • ContentsMECHANICAL BEHAVIOR—CERAMICS 223 7.10 Flexural Strength 223 7.11 Elastic Behavior 224 7.12 Influence of Porosity on the Mechanical Properties of Ceramics 224 MECHANICAL BEHAVIOR—POLYMERS 226 7.13 Stress–Strain Behavior 226 7.14 Macroscopic Deformation 228 7.15 Viscoelastic Deformation 229 HARDNESS AND OTHER MECHANICAL PROPERTY CONSIDERATIONS 233 7.16 Hardness 233 7.17 Hardness of Ceramic Materials 238 7.18 Tear Strength and Hardness of Polymers 239 PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS 239 7.19 Variability of Material Properties 239 7.20 Design/Safety Factors 242 Summary 243 Equation Summary 246 Processing/Structure/Properties/Performance Summary 248 Important Terms and Concepts 249 References 250 Questions and Problems 250 Design Problems 258 Fundamentals of Engineering Questions and Problems 259 8. Deformation and Strengthening Mechanisms 260 Learning Objectives 261 8.1 Introduction 261 DEFORMATION MECHANISMS FOR METALS 261 8.2 Historical 262 8.3 Basic Concepts of Dislocations 262 8.4 Characteristics of Dislocations 264 8.5 Slip Systems 265 8.6 Slip in Single Crystals 267 8.7 Plastic Deformation of Polycrystalline Metals 270 8.8 Deformation by Twinning 272 MECHANISMS OF STRENGTHENING IN METALS 273 8.9 Strengthening by Grain Size Reduction 273 8.10 Solid-Solution Strengthening 275 8.11 Strain Hardening 276 RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH 279 8.12 Recovery 279 8.13 Recrystallization 280 8.14 Grain Growth 284 DEFORMATION MECHANISMS FOR CERAMIC MATERIALS 285 8.15 Crystalline Ceramics 285 8.16 Noncrystalline Ceramics 286 MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 287 8.17 Deformation of Semicrystalline Polymers 287 8.18 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 290 Materials of Importance—Shrink-Wrap Polymer Films 292 8.19 Deformation of Elastomers 293 Summary 295 Equation Summary 298 Processing/Structure/Properties/Performance Summary 299 Important Terms and Concepts 302 References 302 Questions and Problems 302 Design Problems 307 Fundamentals of Engineering Questions and Problems 307 9. Failure 308 Learning Objectives 309 9.1 Introduction 309 FRACTURE 310 9.2 Fundamentals of Fracture 310 9.3 Ductile Fracture 310 9.4 Brittle Fracture 312 9.5 Principles of Fracture Mechanics 314 9.6 Brittle Fracture of Ceramics 322 9.7 Fracture of Polymers 326 9.8 Fracture Toughness Testing 328 FATIGUE 332 9.9 Cyclic Stresses 333 9.10 The S-N Curve 334 9.11 Fatigue in Polymeric Materials 337 9.12 Crack Initiation and Propagation 337 9.13 Factors That Affect Fatigue Life 339 9.14 Environmental Effects 341 CREEP 342 9.15 Generalized Creep Behavior 343 Contents • xvii9.16 Stress and Temperature Effects 344 9.17 Data Extrapolation Methods 346 9.18 Alloys for High-Temperature Use 347 9.19 Creep in Ceramic and Polymeric Materials 347 Summary 348 Equation Summary 351 Important Terms and Concepts 352 References 352 Questions and Problems 352 Design Problems 357 Fundamentals of Engineering Questions and Problems 357 10. Phase Diagrams 359 Learning Objectives 360 10.1 Introduction 360 DEFINITIONS AND BASIC CONCEPTS 360 10.2 Solubility Limit 361 10.3 Phases 362 10.4 Microstructure 362 10.5 Phase Equilibria 362 10.6 One-Component (or Unary) Phase Diagrams 363 BINARY PHASE DIAGRAMS 365 10.7 Binary Isomorphous Systems 365 10.8 Interpretation of Phase Diagrams 367 10.9 Development of Microstructure in Isomorphous Alloys 371 10.10 Mechanical Properties of Isomorphous Alloys 374 10.11 Binary Eutectic Systems 374 10.12 Development of Microstructure in Eutectic Alloys 380 Materials of Importance—Lead-Free Solders 381 10.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 387 10.14 Eutectoid and Peritectic Reactions 390 10.15 Congruent Phase Transformations 391 10.16 Ceramic Phase Diagrams 391 10.17 Ternary Phase Diagrams 395 10.18 The Gibbs Phase Rule 396 THE IRON–CARBON SYSTEM 398 10.19 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 398 10.20 Development of Microstructure in Iron–Carbon Alloys 401 10.21 The Influence of Other Alloying Elements 408 Summary 409 Equation Summary 411 Processing/Structure/Properties/Performance Summary 412 Important Terms and Concepts 412 References 414 Questions and Problems 414 Fundamentals of Engineering Questions and Problems 420 11. Phase Transformations 421 Learning Objectives 422 11.1 Introduction 422 PHASE TRANSFORMATIONS IN METALS 422 11.2 Basic Concepts 423 11.3 The Kinetics of Phase Transformations 423 11.4 Metastable Versus Equilibrium States 433 MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON–CARBON ALLOYS 434 11.5 Isothermal Transformation Diagrams 434 11.6 Continuous-Cooling Transformation Diagrams 445 11.7 Mechanical Behavior of Iron–Carbon Alloys 448 11.8 Tempered Martensite 452 11.9 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 455 Materials of Importance—Shape-Memory Alloys 456 PRECIPITATION HARDENING 459 11.10 Heat Treatments 459 11.11 Mechanism of Hardening 461 11.12 Miscellaneous Considerations 464 CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS 464 11.13 Crystallization 464 11.14 Melting 465 11.15 The Glass Transition 466 11.16 Melting and Glass Transition Temperatures 466 11.17 Factors That Influence Melting and Glass Transition Temperatures 467 Summary 469 Equation Summary 472 Processing/Structure/Properties/Performance Summary 473 Important Terms and Concepts 475 References 475 Questions and Problems 476 xviii • ContentsDesign Problems 480 Fundamentals of Engineering Questions and Problems 481 12. Electrical Properties 483 Learning Objectives 484 12.1 Introduction 484 ELECTRICAL CONDUCTION 484 12.2 Ohm’s Law 484 12.3 Electrical Conductivity 485 12.4 Electronic and Ionic Conduction 486 12.5 Energy Band Structures in Solids 486 12.6 Conduction in Terms of Band and Atomic Bonding Models 488 12.7 Electron Mobility 490 12.8 Electrical Resistivity of Metals 491 12.9 Electrical Characteristics of Commercial Alloys 494 Materials of Importance—Aluminum Electrical Wires 494 SEMICONDUCTIVITY 496 12.10 Intrinsic Semiconduction 496 12.11 Extrinsic Semiconduction 499 12.12 The Temperature Dependence of Carrier Concentration 502 12.13 Factors That Affect Carrier Mobility 503 12.14 The Hall Effect 507 12.15 Semiconductor Devices 509 ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS 515 12.16 Conduction in Ionic Materials 516 12.17 Electrical Properties of Polymers 516 DIELECTRIC BEHAVIOR 517 12.18 Capacitance 517 12.19 Field Vectors and Polarization 519 12.20 Types of Polarization 522 12.21 Frequency Dependence of the Dielectric Constant 524 12.22 Dielectric Strength 525 12.23 Dielectric Materials 525 OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 525 12.24 Ferroelectricity 525 12.25 Piezoelectricity 526 Summary 527 Equation Summary 530 Processing/Structure/Properties/Performance Summary 531 Important Terms and Concepts 535 References 535 Questions and Problems 535 Design Problems 539 Fundamentals of Engineering Questions and Problems 540 13. Types and Applications of Materials 542 Learning Objectives 543 13.1 Introduction 543 TYPES OF METAL ALLOYS 543 13.2 Ferrous Alloys 543 13.3 Nonferrous Alloys 556 Materials of Importance—Metal Alloys Used for Euro Coins 565 TYPES OF CERAMICS 566 13.4 Glasses 567 13.5 Glass-Ceramics 567 13.6 Clay Products 569 13.7 Refractories 569 13.8 Abrasives 571 13.9 Cements 571 13.10 Advanced Ceramics 573 Materials of Importance—Piezoelectric Ceramics 575 13.11 Diamond and Graphite 576 TYPES OF POLYMERS 577 13.12 Plastics 577 Materials of Importance—Phenolic Billiard Balls 580 13.13 Elastomers 580 13.14 Fibers 582 13.15 Miscellaneous Applications 583 13.16 Advanced Polymeric Materials 584 Summary 588 Processing/Structure/Properties/Performance Summary 590 Important Terms and Concepts 592 References 592 Questions and Problems 592 Design Questions 593 Fundamentals of Engineering Questions and Problems 594 14. Synthesis, Fabrication, and Processing of Materials 595 Learning Objectives 596 14.1 Introduction 596 FABRICATION OF METALS 596 Contents • xix14.2 Forming Operations 597 14.3 Casting 598 14.4 Miscellaneous Techniques 600 THERMAL PROCESSING OF METALS 601 14.5 Annealing Processes 601 14.6 Heat Treatment of Steels 604 FABRICATION OF CERAMIC MATERIALS 613 14.7 Fabrication and Processing of Glasses and Glass-Ceramics 615 14.8 Fabrication and Processing of Clay Products 620 14.9 Powder Pressing 624 14.10 Tape Casting 626 SYNTHESIS AND FABRICATION OF POLYMERS 627 14.11 Polymerization 627 14.12 Polymer Additives 630 14.13 Forming Techniques for Plastics 631 14.14 Fabrication of Elastomers 634 14.15 Fabrication of Fibers and Films 634 Summary 635 Processing/Structure/Properties/Performance Summary 637 Important Terms and Concepts 641 References 642 Questions and Problems 642 Design Problems 644 Fundamentals of Engineering Questions and Problems 645 15. Composites 646 Learning Objectives 647 15.1 Introduction 647 PARTICLE-REINFORCED COMPOSITES 649 15.2 Large-Particle Composites 649 15.3 Dispersion-Strengthened Composites 653 FIBER-REINFORCED COMPOSITES 653 15.4 Influence of Fiber Length 654 15.5 Influence of Fiber Orientation and Concentration 655 15.6 The Fiber Phase 663 15.7 The Matrix Phase 665 15.8 Polymer-Matrix Composites 665 15.9 Metal-Matrix Composites 671 15.10 Ceramic-Matrix Composites 672 15.11 Carbon–Carbon Composites 674 15.12 Hybrid Composites 674 15.13 Processing of Fiber-Reinforced Composites 675 STRUCTURAL COMPOSITES 677 15.14 Laminar Composites 677 15.15 Sandwich Panels 678 Materials of Importance—Nanocomposite Barrier Coatings 679 Summary 681 Equation Summary 683 Important Terms and Concepts 684 References 684 Questions and Problems 684 Design Problems 687 Fundamentals of Engineering Questions and Problems 688 16. Corrosion and Degradation of Materials 689 Learning Objectives 690 16.1 Introduction 690 CORROSION OF METALS 691 16.2 Electrochemical Considerations 691 16.3 Corrosion Rates 697 16.4 Prediction of Corrosion Rates 699 16.5 Passivity 705 16.6 Environmental Effects 706 16.7 Forms of Corrosion 707 16.8 Corrosion Environments 714 16.9 Corrosion Prevention 715 16.10 Oxidation 717 CORROSION OF CERAMIC MATERIALS 720 DEGRADATION OF POLYMERS 720 16.11 Swelling and Dissolution 720 16.12 Bond Rupture 722 16.13 Weathering 724 Summary 724 Equation Summary 726 Important Terms and Concepts 728 References 728 Questions and Problems 728 Design Problems 731 Fundamentals of Engineering Questions and Problems 732 17. Thermal Properties 733 Learning Objectives 734 17.1 Introduction 734 17.2 Heat Capacity 734 17.3 Thermal Expansion 738 xx • ContentsMaterials of Importance—Invar and Other Low-Expansion Alloys 740 17.4 Thermal Conductivity 741 17.5 Thermal Stresses 744 Summary 746 Equation Summary 747 Important Terms and Concepts 748 References 748 Questions and Problems 748 Design Problems 750 Fundamentals of Engineering Questions and Problems 750 18. Magnetic Properties 751 Learning Objectives 752 18.1 Introduction 752 18.2 Basic Concepts 752 18.3 Diamagnetism and Paramagnetism 756 18.4 Ferromagnetism 758 18.5 Antiferromagnetism and Ferrimagnetism 759 18.6 The Influence of Temperature on Magnetic Behavior 763 18.7 Domains and Hysteresis 764 18.8 Magnetic Anisotropy 767 18.9 Soft Magnetic Materials 768 Materials of Importance—An Iron–Silicon Alloy That Is Used in Transformer Cores 769 18.10 Hard Magnetic Materials 770 18.11 Magnetic Storage 773 18.12 Superconductivity 776 Summary 779 Equation Summary 781 Important Terms and Concepts 782 References 782 Questions and Problems 782 Design Problems 785 Fundamentals of Engineering Questions and Problems 785 19. Optical Properties 786 Learning Objectives 787 19.1 Introduction 787 BASIC CONCEPTS 787 19.2 Electromagnetic Radiation 787 19.3 Light Interactions With Solids 789 19.4 Atomic and Electronic Interactions 790 OPTICAL PROPERTIES OF METALS 791 OPTICAL PROPERTIES OF NONMETALS 792 19.5 Refraction 792 19.6 Reflection 794 19.7 Absorption 794 19.8 Transmission 798 19.9 Color 798 19.10 Opacity and Translucency in Insulators 800 APPLICATIONS OF OPTICAL PHENOMENA 801 19.11 Luminescence 801 19.12 Photoconductivity 801 Materials of Importance—Light-Emitting Diodes 802 19.13 Lasers 804 19.14 Optical Fibers in Communications 808 Summary 810 Equation Summary 812 Important Terms and Concepts 813 References 813 Questions and Problems 814 Design Problem 815 Fundamentals of Engineering Questions and Problems 815 20. Economic, Environmental, and Societal Issues in Materials Science and Engineering 816 Learning Objectives 817 20.1 Introduction 817 ECONOMIC CONSIDERATIONS 817 20.2 Component Design 818 20.3 Materials 818 20.4 Manufacturing Techniques 818 ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS 819 20.5 Recycling Issues in Materials Science and Engineering 821 Materials of Importance—Biodegradable and Biorenewable Polymers/Plastics 824 Summary 826 References 827 Design Questions 827 Appendix A The International System of Units (SI) 828 Appendix B Properties of Selected Engineering Materials 830 B.1 Density 830 B.2 Modulus of Elasticity 833 B.3 Poisson’s Ratio 837 B.4 Strength and Ductility 838 Contents • xxiB.5 Plane Strain Fracture Toughness 843 B.6 Linear Coefficient of Thermal Expansion 845 B.7 Thermal Conductivity 848 B.8 Specific Heat 851 B.9 Electrical Resistivity 854 B.10 Metal Alloy Compositions 857 Appendix C Costs and Relative Costs for Selected Engineering Materials 859 Appendix D Repeat Unit Structures for Common Polymers 864 xxii • Contents Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials 868 Mechanical Engineering Online Support Module Library of Case Studies Glossary 869 Answers to Selected Problems 882 Index 886• xxiii The number of the section in which a symbol is introduced or explained is given in parentheses. List of Symbols A area Å angstrom unit Ai atomic weight of element i (2.2) APF atomic packing factor (3.4) a lattice parameter: unit cell x-axial length (3.4) a crack length of a surface crack (9.5) at% atom percent (5.6) B magnetic flux density (induction) (18.2) B r magnetic remanence (18.7) BCC body-centered cubic crystal structure (3.4) b lattice parameter: unit cell y-axial length (3.11) b Burgers vector (5.7) C capacitance (12.18) Ci concentration (composition) of component i in wt% (5.6) Ci concentration (composition) of component i in at% (5.6) C , Cp heat capacity at constant volume, pressure (17.2) CPR corrosion penetration rate (16.3) CVN Charpy V-notch (9.8) %CW percent cold work (8.11) c lattice parameter: unit cell z-axial length (3.11) c , cp specific heat at constant volume, pressure (17.2) D diffusion coefficient (6.3) D dielectric displacement (12.19) DP degree of polymerization (4.5) d diameter d average grain diameter (8.9) dhkl interplanar spacing for planes of Miller indices h, k, and l (3.20) E energy (2.5) E modulus of elasticity or Young’s modulus (7.3) y y e electric field intensity (12.3) Ef Fermi energy (12.5) Eg band gap energy (12.6) E r(t) relaxation modulus (7.15) %EL ductility, in percent elongation (7.6) e electric charge per electron (12.7) e electron (16.2) erf Gaussian error function (6.4) exp e, the base for natural logarithms F force, interatomic or mechanical (2.5, 7.2) f Faraday constant (16.2) FCC face-centered cubic crystal structure (3.4) G shear modulus (7.3) H magnetic field strength (18.2) Hc magnetic coercivity (18.7) HB Brinell hardness (7.16) HCP hexagonal close-packed crystal structure (3.4) HK Knoop hardness (7.16) HRB, HRF Rockwell hardness: B and F scales (7.16) HR15N, HR45W superficial Rockwell hardness: 15N and 45W scales (7.16) HV Vickers hardness (7.16) h Planck’s constant (19.2) (hkl) Miller indices for a crystallographic plane (3.14) I electric current (12.2) I intensity of electromagnetic radiation (19.3) i current density (16.3) iC corrosion current density (16.4)J diffusion flux (6.3) J electric current density (12.3) Kc fracture toughness (9.5) KIc plane strain fracture toughness for mode I crack surface displacement (9.5) k Boltzmann’s constant (5.2) k thermal conductivity (17.4) l length l c critical fiber length (15.4) ln natural logarithm log logarithm taken to base 10 M magnetization (18.2) polymer number-average molecular weight (4.5) polymer weight-average molecular weight (4.5) mol% mole percent N number of fatigue cycles (9.10) NA Avogadro’s number (3.5) Nf fatigue life (9.10) n principal quantum number (2.3) n number of atoms per unit cell (3.5) n strain-hardening exponent (7.7) n number of electrons in an electrochemical reaction (16.2) n number of conducting electrons per cubic meter (12.7) n index of refraction (19.5) n for ceramics, the number of formula units per unit cell (3.7) ni intrinsic carrier (electron and hole) concentration (12.10) P dielectric polarization (12.19) P–B ratio Pilling–Bedworth ratio (16.10) p number of holes per cubic meter (12.10) Q activation energy Q magnitude of charge stored (12.18) R atomic radius (3.4) R gas constant %RA ductility, in percent reduction in area (7.6) r interatomic distance (2.5) r reaction rate (16.3) rA, rC anion and cation ionic radii (3.6) S fatigue stress amplitude (9.10) SEM scanning electron microscopy or microscope T temperature Tc Curie temperature (18.6) TC superconducting critical temperature (18.12) Tg glass transition temperature (11.15) Tm melting temperature TEM transmission electron microscopy or microscope M w Mn
TS tensile strength (7.6) t time t r rupture lifetime (9.15) Ur modulus of resilience (7.6) [uw] indices for a crystallographic direction (3.13) V electrical potential difference (voltage) (12.2) VC unit cell volume (3.4) VC corrosion potential (16.4) VH Hall voltage (12.14) Vi volume fraction of phase i (10.8) velocity vol% volume percent Wi mass fraction of phase i (10.8) wt% weight percent (5.6) x length x space coordinate Y dimensionless parameter or function in fracture toughness expression(9.5) y space coordinate z space coordinate lattice parameter: unit cell y–z interaxial angle (3.11) , , phase designations l linear coefficient of thermal expansion (17.3) lattice parameter: unit cell x–z interaxial angle (3.11) lattice parameter: unit cell x–y interaxial angle (3.11) shear strain (7.2) precedes the symbol of a parameter to denote finite change engineering strain (7.2) dielectric permittivity (12.18)
r dielectric constant or relative permittivity (12.18) .s steady-state creep rate (9.16) T true strain (7.7) viscosity (8.16) overvoltage (16.4) Bragg diffraction angle (3.20) D Debye temperature (17.2) wavelength of electromagnetic radiation (3.20) magnetic permeability (18.2) B Bohr magneton (18.2) r relative magnetic permeability (18.2) e electron mobility (12.7) h hole mobility (12.10) Poisson’s ratio (7.5) frequency of electromagnetic radiation (19.2) density (3.5) y xxiv • List of Symbols electrical resistivity (12.2) t radius of curvature at the tip of a crack (9.5) engineering stress, tensile or compressive (7.2) electrical conductivity (12.3) * longitudinal strength (composite) (15.5) c critical stress for crack propagation (9.5) fs flexural strength (7.10) m maximum stress (9.5) m mean stress (9.9)
m stress in matrix at composite failure (15.5) T true stress (7.7)
w safe or working stress (7.20) y yield strength (7.6) shear stress (7.2) c fiber–matrix bond strength/matrix shear yield strength (15.4) crss critical resolved shear stress (8.6) m magnetic susceptibility (18.2) Subscripts c composite cd discontinuous fibrous composite cl longitudinal direction (aligned fibrous composite) ct transverse direction (aligned fibrous composite) f final f at fracture f fiber i instantaneous m matrix m, max maximum min minimum 0 original 0 at equilibrium 0 in a vacuum 886 • Index A Abrasive ceramics, 566, 571 Abrasives, 869 Absorption coefficient, 797 Absorption of light: in metals, 791–792 in nonmetals, 792–800 Absorptivity, 790 ABS polymer, 578 A mBnXp crystal structures, 57 Acceptors, 500, 869 Acetic acid, 106 Acetylene, 104 Acid rain, as corrosion environment, 714 Acids (organic), 106 Acid slags, 570 Acrylics, see Poly(methyl methacrylate) Acrylonitrile, see Polyacrylonitrile (PAN) Acrylonitrile-butadiene rubber, 581 Acrylonitrile-butadiene-styrene (ABS), 578 Activation energy, 869 for creep, 345 for diffusion, 180, 426 free, 425, 429 for viscous flow, 643 Activation polarization, 699–701, 869 Actuator, 11, 573 Addition polymerization, 627–628, 869 Additives, polymer, 630–631 Adhesives, 583–584, 869 Adhesive tape, 17 Adipic acid (structure), 630 Adsorption, 154 Advanced ceramics, 566, 573–576 Advanced materials, 10–12 Advanced polymers, 584–588 Age hardening, see Precipitation hardening Air, as quenching medium, 609 AISI/SAE steel designation scheme, 547 Akermanite, 61 Alcohols, 106 Aldehydes, 106 Alkali metals, 25 Alkaline earth metals, 25 Allotropic transformation (tin), 67 Allotropy, 65, 869 Alloys, 5, 869. See also Solid solutions; specific alloys atomic weight equations, 145 cast, 556 composition specification, 143–144 compositions for various, 857–858 costs, 859–861 defined, 140 density equations, 145 density values, 830–832 ductility values, 838–841 electrical resistivity values, 854–855 fracture toughness values, 319, 843–844 heat treatable, 556 high-temperature, 347 linear coefficient of thermal expansion values, 845–846 low expansion, 740 modulus of elasticity values, 833–835 Poisson’s ratio values, 837 specific heat values, 851–852 strengthening, see Strengthening of metals tensile strength values, 838–841 thermal conductivity values, 848–849 wrought, 556 yield strength values, 838–841 Alloy steels, 442, 544, 869 See also Steels Alnico, 771 -Iron, see Ferrite () Alternating copolymers, 121, 122, 869 Alumina, see Aluminum oxide Aluminosilicates, 620 Aluminum: atomic radius and crystal structure, 47 bonding energy and melting temperature, 30 elastic and shear moduli, 206 electrical conductivity, 491 electrical wires, 494–496 for integrated circuit interconnects, 187–188 Poisson’s ratio, 206 recrystallization temperature, 283 slip systems, 266 superconducting critical temperature, 778 thermal properties, 737 yield and tensile strengths, ductility, 217 Aluminum alloys, 558–559 fatigue behavior, 355 plane strain fracture toughness, 319, 843 precipitation hardening, 461–463 properties and applications, 559 Aluminum-copper alloys, phase diagram, 462 Aluminum-lithium alloys, 558, 559 Aluminum oxide: electrical conductivity, 515 flexural strength, 217, 841 Page numbers in italics refer to the glossary.Aluminum oxide (Continued) hardness, 239 index of refraction, 793 modulus of elasticity, 206, 835 plane strain fracture toughness, 319, 844 Poisson’s ratio, 206, 838 sintered microstructure, 626 stress-strain behavior, 225 thermal properties, 737 translucency, 4, 800 as whiskers and fibers, 664 Aluminum oxide-chromium oxide phase diagram, 392 Ammonia, bonding energy and melting temperature, 30 Amorphous materials, 46, 91–92, 869 Anelasticity, 209, 869 Angle computation between two crystallographic directions, 269 Anions, 53, 869 Anisotropy, 85–86, 869 of elastic modulus, 86, 210 magnetic, 767–769 Annealing, 601, 602–604, 869 ferrous alloys, 602–604 glass, 618 Annealing point, glass, 618, 869 Annealing twins, 152 Anodes, 691, 869 area effect, galvanic corrosion, 707 sacrificial, 716, 878 Antiferromagnetism, 759, 869 temperature dependence, 763 Aramid: cost as a fiber, 863 fiber-reinforced polymer-matrix composites, 667–668 melting and glass transition temperatures, 868 properties as fiber, 664 repeat unit structure, 667, 866 Argon, bonding energy and melting temperature, 30 Aromatic hydrocarbons (chain groups), 106, 467 Arrhenius equation, 431 Artificial aging, 464, 869 Asphaltic concrete, 651 ASTM standards, 202 Atactic configuration, 118, 869 Athermal transformation, 441, 869 Atomic bonding, see Bonding Atomic mass, 18 Atomic mass unit (amu), 19, 869 Atomic models: Bohr, 19–20, 21, 870 wave-mechanical, 20, 21, 880 Atomic number, 18, 869 Atomic packing factor, 48, 869 Atomic point defects, 135–136, 137–139 Atomic radii, of selected metals, 47 Atomic structure, 18–26 Atomic vibrations, 153, 735, 869 Atomic weight, 19, 869 metal alloys, equations for, 145 Atom percent, 144, 869 Austenite, 398, 869 shape-memory phase transformations, 457–458 transformations, 434–448 summary, 455–456 Austenitic stainless steels, 548, 549 Austenitizing, 603, 869 Automobiles, rusted and stainless steel, 689 Automobile transmission, 170 Auxetic materials, 210 Average value, 240 Avogadro’s number, 19 Avrami equation, 433, 465 AX crystal structures, 56–57 A mXp crystal structures, 57 B Bainite, 438–439, 446, 456, 869 mechanical properties, 451 Bakelite, see Phenol-formaldehyde (Bakelite) Ball bearings, ceramic, 574, 576 Band gap, 488–490 Band gap energy, 869 determination of, 537 selected semiconductors, 497 Bands, see Energy bands Barcol hardness, 239 Barium ferrite (as magnetic storage medium), 775 Barium titanate: crystal structure, 57, 525–526 as dielectric, 525 as ferroelectric, 525–526 as piezoelectric, 527, 575 Base (transistor), 511–512 Basic refractories, 570 Basic slags, 570 Beachmarks (fatigue), 338 Bend strength, 224. See also Flexural strength Beryllia, 571 Beryllium-copper alloys, 556–557 Beverage containers, 1, 816 corrosion of, 816 diffusion rate of CO2 through, 190–191 stages of production, 595 Bifunctional repeat units, 109, 870 Billiard balls, 542, 580 Bimetallic strips, 733 Binary eutectic alloys, 374–387 Binary isomorphous alloys, 365–374 mechanical properties, 374 microstructure development, equilibrium cooling, 371–372 microstructure development, nonequilibrium cooling, 372–374 Biodegradable beverage can, 816 Biodegradable polymers/plastics, 824–825 Biomass, 825 Biomaterials, 11 Biorenewable polymers/plastics, 824–825 Block copolymers, 121, 122, 870 Blowing, of glass, 617 Blow molding, plastics, 634 Body-centered cubic structure, 48–49, 870 Burgers vector for, 267 slip systems, 266 twinning in, 272 Bohr atomic model, 19–20, 21, 870 Bohr magneton, 756, 870 Boltzmann’s constant, 136, 870 Bonding: carbon-carbon, 108 cementitious, 572 covalent, 30–31, 52, 871 hybrid sp, 23 hydrogen, 32, 33, 874 ionic, 28–29, 52–53, 874 metallic, 31–32, 875 van der Waals, see van der Waals bonding Bonding energy, 28, 870 and melting temperature for selected materials, 30 Bonding forces, 26–27 Bond rupture, in polymers, 722–724 Index • 887Bone, as composite, 648 Boron carbide: hardness, 239 Boron: boron-doped silicon semiconductors, 501 fiber-reinforced composites, 668, 671 properties as a fiber, 664 Borosilicate glass: composition, 567 electrical conductivity, 515 viscosity, 616 Borsic fiber-reinforced composites, 672 Bottom-up science, 12 Bragg’s law, 87–89, 870 Branched polymers, 115, 116, 870 Brass, 556, 557, 870 annealing behavior, 282 elastic and shear moduli, 206 electrical conductivity, 491 fatigue behavior, 355 phase diagram, 388, 389 Poisson’s ratio, 206 recrystallization temperature, 283 stress corrosion, 713 stress-strain behavior, 214 thermal properties, 737 yield and tensile strengths, ductility, 217 Brazing, 600, 870 Breakdown, dielectric, 511, 525 Bridge, suspension, 200 Brinell hardness tests, 234, 235–236 Brittle fracture, 215–216, 308, 310, 312–315, 870 ceramics, 322–326 Brittle materials, thermal shock, 745–746 Bronze, 556, 557, 870 Bronze age, 2 Bronze, photomicrograph, coring, 374 Buckminsterfullerene, 65 Burgers vector, 148, 870 for FCC, BCC, and HCP, 267 magnitude computation, 303 Butadiene: degradation resistance, 722 melting and glass transition temperatures, 868 repeat unit structure, 122, 865 Butane, 104–105 C Cadmium sulfide: color, 799 electrical characteristics, 497 Calcination, 572, 870 Calendering, 676 Capacitance, 517–518, 870 Capacitors, 517–522 Carbon: vs. graphite, 664, 667 polymorphism, 65 Carbon black, as reinforcement in rubbers, 581, 651 Carbon-carbon composites, 674, 870 Carbon diffusion, in steels, 402, 453 Carbon dioxide emissions, 154 Carbon dioxide (pressuretemperature phase diagram), 421 Carbon fiber-reinforced polymermatrix composites, 666–667, 668 Carbon fibers, 666–667 properties as fiber, 664 Carbon nanotubes, 12, 64 Carburizing, 175, 177, 870 Case-hardened gear, 170 Case hardening, 170, 341, 342, 870 Cast alloys, 556 Casting techniques: metals, 598–599 plastics, 634 slip, 621–622 tape, 626–627 Cast irons, 400, 544, 549–555, 870 annealing, 604 compositions, mechanical properties, and applications, 552 graphite formation in, 550 heat treatment effect on microstructure, 554 phase diagram, 550, 554 stress-strain behavior (gray), 251 Catalysts, 154 Catalytic converters (automobiles), 134, 154 Cathodes, 692, 870 Cathodic protection, 708, 715–716, 870 Cations, 53, 870 Cemented carbide, 650–651 Cementite, 398–400, 870 decomposition, 550, 554 proeutectoid, 405–406 in white iron, 551, 553 Cementitious bond, 572 Cements, 566, 571–573, 870 Ceramic ball bearings, 574, 576 Ceramic-matrix composites, 672–674, 870 Ceramics, 6–7, 870. See also Glass advanced, 573–576 application-classification scheme, 566 brittle fracture, 322–326 coefficient of thermal expansion values, 737, 846–847 color, 799 corrosion, 720 costs, 861–862 crystal structures, 52–58 summary, 58 defects, 137–140 defined, 6–7 density computation, 58–59 density values, 832 elastic modulus values, 206, 835–836 electrical conductivity values for selected, 515 electrical resistivity values, 855–856 fabrication techniques classification, 615 flexural strength values, 217, 841–842 fractography of, 324–326 fracture toughness values, 319, 844 impurities in, 142 indices of refraction, 793 as electrical insulators, 516, 525 magnetic, 759–763 mechanical properties of, 223–226 in MEMS, 574 phase diagrams, 391–395 piezoelectric, 11, 575 plastic deformation, 285–286 Poisson’s ratio values, 206, 838 porosity, 224–226, 625–626 porosity, influence on properties, 224–226 silicates, 59–62 specific heat values, 737, 853 as superconductors, 778 thermal conductivity values, 737, 850 888 • IndexCeramics (Continued) thermal properties, 737, 739, 742–743, 745 traditional, 573 traditional vs. new, 573 translucency and opacity, 800 Cercor (glass-ceramic), 568 Cermets, 650, 870 Cesium chloride structure, 56 Chain-folded model, 125–126, 870 Chain-reaction polymerization, see Addition polymerization Chain stiffening/stiffness, 115, 467, 468 Charge carriers: majority vs. minority, 500 temperature dependence, 502–503 Charpy impact test, 328–329, 870 Chevron markings, 312 Chips, semiconductor, 514 Chlorine, bonding energy and melting temperature, 30 Chloroprene, repeat unit structure, 122, 865 Chloroprene rubber: characteristics and applications, 581 melting and glass transition temperatures, 868 Cis, 119, 870 Clay, characteristics, 620 Clay products, 566, 569 drying and firing, 569, 622–624 fabrication, 620–622 Cleavage (brittle fracture), 313 Clinker, 572 Close-packed ceramic crystal structures, 83–84 Close-packed metal crystal structures, 81–83 Coarse pearlite, 436–437, 446, 870 Coatings (polymer), 583 Cobalt: atomic radius and crystal structure, 47 Curie temperature, 763 as ferromagnetic material, 758 magnetization curves (single crystal), 768 Coercivity (coercive force), 765, 870 Cold work, percent, 276 Cold working, 870. See also Strain hardening Collector, 511–512 Color, 870 metals, 791–792 nonmetals, 798–799 Colorants, 631, 870 Compacted graphite iron, 544, 551, 555 Compliance, creep, 232 Component, 360, 396, 870 Composites: aramid fiber-reinforced polymer, 667–668 carbon-carbon, 674, 870 carbon fiber-reinforced polymer, 666–667 ceramic-matrix, 672–674 classification scheme, 649 costs, 863 definition, 10, 648 dispersion-strengthened, 653 elastic behavior: longitudinal, 657–658 transverse, 659–660 fiber-reinforced, see Fiberreinforced composites glass fiber-reinforced polymer, 665–666 hybrid, 674–675, 874 laminar, 649, 663, 677–678, 874 large-particle, 649–653 metal-matrix, 671–672 particle-reinforced, 649–653 production processes, 675–677 properties, glass-, carbon-, aramid-fiber reinforced, 668 rule of mixtures expressions, 650, 657, 660, 661, 662, 670 strength: longitudinal, 661 transverse, 662 stress-strain behavior, 655–656 structural, 677–679 Composition, 870 conversion equations, 144–145, 167 specification of, 143–144 Compression molding, plastics, 632 Compression tests, 204 Compressive deformation, 203, 222 Computers: semiconductors in, 513–515 magnetic drives in, 773–775 Concentration, 143, 870. See also Composition Concentration cells, 709 Concentration gradient, 174, 870 Concentration polarization, 701–702, 870 Concentration profile, 174, 870 Concrete, 651–653, 870 electrical conductivity, 515 plane strain fracture toughness, 319, 844 Condensation polymerization, 629, 870 Conducting polymers, 516–517 Conduction: electronic, 486 ionic, 486, 516 Conduction band, 488, 871 Conductivity, see Electrical conductivity; Thermal conductivity Configuration, molecular, 116–119 Conformation, molecular, 114 Congruent phase transformations, 391–392, 871 Constitutional diagrams, see Phase diagrams Continuous casting, 599 Continuous-cooling transformation diagrams, 445–448, 871 4340 steel, 448 1.13 wt% C steel, 478 0.76 wt% C steel, 445 for glass-ceramic, 568 Continuous fibers, 654 Conventional hard magnetic materials, 771 Conversion factors, magnetic units, 755 Cooling rate, of cylindrical rounds, 609 Coordinates, point, 68–70 Coordination numbers, 48, 50, 53–54, 871 Copolymers, 108, 121–122, 871 styrenic block, 587–588 Copper: atomic radius and crystal structure, 47 diffraction pattern, 105 elastic and shear moduli, 206 electrical conductivity, 491 OFHC, 494 Poisson’s ratio, 206 recrystallization, 283, 433 slip systems, 266 thermal properties, 737 yield and tensile strengths, ductility, 217 Index • 889Copper alloys, 556–557 properties and applications of, 557 Copper-aluminum phase diagram, 462 Copper-beryllium alloys, 494, 556–557 phase diagram, 481 Copper-nickel alloys: ductility vs. composition, 275, 375 electrical conductivity, 492 phase diagram, 365–366 tensile strength vs. composition, 275, 375 yield strength vs. composition, 275 Copper-silver phase diagram, 375, 397 Coring, 374 CorningWare (glass-ceramic), 568 Corrosion, 871 of beverage cans, 816 ceramic materials, 720 electrochemistry of, 691–696 environmental effects, 706 environments, 714–715 forms of, 707–714 galvanic series, 697, 698 overview of, 690 passivity, 705–706, 876 rates, 697–699 prediction of, 699–705 Corrosion fatigue, 342, 871 Corrosion inhibitors, 715 Corrosion penetration rate, 698–699, 871 Corrosion prevention, 715–716 Corundum, 571. See also Aluminum oxide crystal structure, 104 Cost of various materials, 859–863 Coulombic force, 29, 871 Covalency, degree of, 31 Covalent bonding, 30–31, 52–53, 104, 871 Crack configurations in ceramics, 324 Crack critical velocity, 324 Crack formation, 310 in ceramics, 324 fatigue and, 337 glass, 619 Crack propagation, 310. See also Fracture mechanics in brittle fracture, 312–313 in ceramics, 322–326 in ductile fracture, 310–311 fatigue and, 337–339 Cracks: stable vs. unstable, 310 Crack surface displacement modes, 318 Crazing, 327 Creep, 342–346, 871 ceramics, 347 influence of temperature and stress on, 344–345 mechanisms, 345 in polymers, 232, 347 stages of, 343–344 steady-state rate, 343 viscoelastic, 232 Creep compliance, 232 Creep modulus, 232 Creep rupture tests, 343 data extrapolation, 346–347 Crevice corrosion, 708–709, 871 Cristobalite, 60–61, 395 Critical cooling rate: ferrous alloys, 446–448 glass-ceramics, 568 Critical fiber length, 654–655 Critical resolved shear stress, 268, 871 as related to dislocation density, 304 Critical stress (fracture), 316 Critical temperature, superconductivity, 776, 778 Critical velocity (crack), 324, 325 Crosslinking, 115, 116, 871 elastomers, 293–294 influence on viscoelastic behavior, 232 thermosetting polymers, 120 Crystalline materials, 46, 85, 871 defects, 136–153 single crystals, 85, 878 Crystallinity, polymers, 122–124, 871 influence on mechanical properties, 290–291 Crystallites, 125, 871 Crystallization, polymers, 464–465 Crystallographic directions, 70–76 easy and hard magnetization, 767 families, 72 hexagonal crystals, 72–76 Crystallographic planes, 76–80 atomic arrangements, 79 close-packed, ceramics, 83–84 close-packed, metals, 81–83 diffraction by, 87–89 families, 79 hexagonal crystals, 79–80 Crystallographic point coordinates, 68–70 Crystal structures, 46–50, 871. See also Body-centered cubic structure; Close-packed crystal structures; Facecentered cubic structure; Hexagonal close-packed structure ceramics, 52–58 close-packed, ceramics, 83–84 close-packed, metals, 81–83 determination by x-ray diffraction, 87–91 selected metals, 47 types, ceramics, 52–58, 83–84 types, metals, 47–51, 81–83 Crystallization (ceramics), 567, 620, 871 Crystal systems, 65–66, 871 Cubic crystal system, 65, 66 Cubic ferrites, 759–762 Cunife, 771, 772 Cup-and-cone fracture, 311 Curie temperature, 763, 871 ferroelectric, 526 ferromagnetic, 737 Curing, plastics, 632 Current density, 485 Cyclic stresses, 333–334 D Damping capacity, steel vs. cast iron, 553 Data scatter, 239–241 Debye temperature, 736 Decarburization, 175 Defects, see also Dislocations atomic vibrations and, 153 dependence of properties on, 135 in ceramics, 137–140, 142 interfacial, 150–153 point, 136–140, 877 in polymers, 143 surface, 153 volume, 153 Defect structure, 137, 871 Deformation: elastic, see Elastic deformation elastomers, 293–294 plastic, see Plastic deformation 890 • IndexDeformation mechanism maps (creep), 345 Deformation mechanisms (semicrystalline polymers), elastic deformation, 287, 288 plastic deformation, 287, 289 Degradation of polymers, 720–724, 871 Degree of polymerization, 112, 871 Degrees of freedom, 396 Delayed fracture, 323 Density: computation for ceramics, 58–59 computation for metal alloys, 145 computation for metals, 51–52 computation for polymers, 124–125 of dislocations, 264 linear atomic, 80–81 planar atomic, 81 polymers (values for), 832–833 ranges for material types (bar chart), 5 relation to percent crystallinity for polymers, 123 values for various materials, 830–833 Design, component, 818 Design examples: cold work and recrystallization, 283–284 conductivity of a p-type semiconductor, 506–507 cubic mixed-ferrite magnet, 762–763 creep rupture lifetime for an S-590 steel, 346–347 nonsteady-state diffusion, 183–184 spherical pressure vessel, failure of, 320–322 steel shaft, alloy/heat treatment of, 612–613 tensile-testing apparatus, 243 tubular composite shaft, 669–671 Design factor, 242 Design stress, 242, 871 Dezincification, of brass, 711 Diamagnetism, 756–757, 871 Diamond, 63, 576–577 as abrasive, 571 bonding energy and melting temperature, 30 cost, 861 films, 576–577 hardness, 239 thermal conductivity value, 850 Diamond cubic structure, 63 Die casting, 599 Dielectric breakdown, 511, 525 Dielectric constant, 518, 871 frequency dependence, 524–525 relationship to refractive index, 793 selected ceramics and polymers, 519 Dielectric displacement, 520, 871 Dielectric loss, 525 Dielectric materials, 516–517, 525, 871 Dielectric strength, 525, 871 selected ceramics and polymers, 519 Diffraction (x-ray), 87, 871 Diffraction angle, 90 Diffractometers, 90 Diffusion, 171–172, 871 drive-in, 184–185 grain growth and, 284, 285 in ionic materials, 188 in integrated circuit interconnects, 187–188 in Si of Cu, Au, Ag, and Al, 188 interstitial, 173, 874 mechanisms, 172–173 and microstructure development, 372–374, 384 nonsteady-state, 175–179, 876 in polymers, 189–191 predeposition, semiconductors, 184–185 in semiconductors, 184–187 short-circuit, 188 steady-state, 173–175, 879 vacancy, 172–173, 188, 880 Diffusion coefficient, 174, 871 relation to ionic mobility, 516 temperature dependence, 179–184 values for various metal systems, 179 Diffusion couples, 171, 196 Diffusion flux, 173, 871 for polymers, 189 Digitization of information/signals, 774, 808 Dimethyl ether, 106 Dimethylsiloxane, 122, 581, 582, 865. See also Silicones; Silicone rubber melting and glass transition temperatures, 868 Diode, 509, 871 Dipole moment, 519 Dipoles: electric, 32, 871 induced, 32 magnetic, 752–753 permanent, 33 Directional solidification, 347 Directions, see Crystallographic directions Discontinuous fibers, 654 Dislocation density, 264, 302, 304, 871 Dislocation etch pits, 260 Dislocation line, 147, 148, 149, 871 Dislocation motion, 262–263 caterpillar locomotion analogy, 263 in ceramics, 285–286 at grain boundaries, 273–274 influence on strength, 274 recovery and, 280 Dislocations, 147–150, 871 in ceramics, 150, 264, 285–286 characteristics of, 264–265 interactions, 265 multiplication, 265 at phase boundaries, 450, 453 pile-ups, 274 plastic deformation and, 211–212, 261–271, 272 in polymers, 143, 150 strain fields, 264–265 Dispersed phase, 648, 871 definition, 648 geometry, 648 Dispersion (optical), 792 Dispersion-strengthened composites, 653, 871 Disposal of materials, 820–821 Domain growth, 764–765 iron single crystal, 765 Domains, 758, 764, 768, 872 Domain walls, 764 Donors, 500, 872 Doping, 501, 504, 872 Double bonds, 104 Drain casting, 621 Drawing: glass, 617 influence on polymer properties, 291 metals, 598, 872 polymer fibers, 634, 872 Index • 891Drift velocity, electron, 490 Drive-in diffusion, 184–185 Driving force, 174, 872 electrochemical reactions, 694 grain growth, 284 recrystallization, 280 sintering, 626 steady-state diffusion, 174 Dry corrosion, 717 Dry ice, 421 Drying, clay products, 622–623 Ductile fracture, 215–216, 310–312, 872 Ductile iron, 551, 553, 872 compositions, mechanical properties, and applications, 552 Ductile-to-brittle transition, 330–332, 872 polymers, 326 and temper embrittlement, 455 Ductility, 215–216, 872 fine and coarse pearlite, 450 precipitation hardened aluminum alloy, 463 selected materials, 217, 838–843 spheroidite, 450 tempered martensite, 454 Durometer hardness, 236, 239 E Economics, materials selection: considerations in materials engineering, 817–818 tubular composite shaft, 669–671 Eddy currents, 770 Edge dislocations, 147, 262–263, 872. See also Dislocations interactions, 264–265 E-glass, 664, 666 Elastic deformation, 205–211, 872 Elastic modulus, see Modulus of elasticity Elastic (strain) recovery, 222, 872 Elastomers, 227, 293–295, 580–582, 634, 872 in composites, 651 deformation, 293–294 thermoplastic, 587–588 trade names, properties, and applications, 581 Electrical conduction: in insulators and semiconductors, 489–490 in metals, 489 Electrical conductivity, 485, 491, 872 ranges for material types (bar chart), 7 selected ceramics and polymers, 515 selected metals, 491 selected semiconductors, 497 temperature variation (Ge), 537 values for electrical wires, 495 Electrical resistivity, 485, 878. See also Electrical conductivity metals influence of impurities, 493 influence of plastic deformation, 492, 493 influence of temperature, 492–493 values for various materials, 854–857 Electrical wires, aluminum and copper, 494–496 Electric dipole moment, 519 Electric dipoles, see Dipoles Electric field, 485, 490, 872 Electrochemical cells, 693–694 Electrochemical reactions, 691–696 Electrodeposition, 693 Electrode potentials, 693–694 values of, 695 Electroluminescence, 803, 872 Electrolytes, 693, 872 Electromagnetic radiation, 787–789 interactions with atoms/electrons, 790–791 Electromagnetic spectrum, 787–788 Electron band structure, see Energy bands Electron cloud, 31 Electron configurations, 22–25, 872 elements, 24 periodic table and, 25–26 stable, 23 Electronegativity, 25, 31, 872 influence on solid solubility, 141 values for the elements, 26 Electroneutrality, 137, 872 Electron gas, 489 Electronic conduction, 486, 516 Electronic polarization, 523, 575, 790, 794, 877 Electron microscopy, 157–158 Electron mobility, 490 influence of dopant content on, 504 influence of temperature on, 504–505 selected semiconductors, 497 Electron orbitals, 19 Electron probability distribution, 20, 21 Electrons, 18 conduction process, 498, 511–512 role, diffusion in ionic materials, 188 energy bands, see Energy bands energy levels, 20–22 free, see Free electrons scattering, 490–491, 735 in semiconductors, 496–502 temperature variation of concentration, 502–503 spin, 22, 755–756 valence, 22 Electron states, 872 Electron transitions, 790–791 metals, 791–792 nonmetals, 792–794 Electron volt, 29, 872 Electropositivity, 25, 872 Electrorheological fluids, 11 Elongation, percent, 215 selected materials, 217, 838–843 selected metals, 217 selected polymers, 217 Embrittlement: hydrogen, 713–714 temper, 455 Embryo, phase particle, 424–426 Emf series, 694–695, 872 Emitter, 511 Endurance limit, 335. See also Fatigue limit Energy: activation, see Activation energy bonding, 28–30, 870 current concerns about, 12, 820–821 free, 362, 363, 424–426, 873 grain boundary, 151 photon, 789 surface, 150 vacancy formation, 136 Energy band gap, see Band gap Energy bands, 486–488 structures for metals, insulators, and semiconductors, 488 Energy levels (states), 19–22, 486–487 Energy and materials, 820 892 • IndexEnergy product, magnetic, 770–771 Engineering stress/strain, 203–204, 879 Entropy, 293, 362, 424 Environmental considerations and materials, 819–826 Epoxies: degradation resistance, 721 polymer-matrix composites, 668 repeat unit structure, 864 trade names, characteristics, and applications, 579 Equilibrium: definition of, 362 phase, 362–363, 872 Equilibrium diagrams, see Phase diagrams Erosion-corrosion, 711–712, 872 Error bars, 241 Error function, Gaussian, 176 Etching, 156 Etch pits, 260 Ethane, 104 Ethers, 106 Ethylene, 104 polymerization, 106–107 Ethylene glycol (structure), 629 Euro coins, alloys used for, 565 Eutectic isotherm, 376 Eutectic phase, 385, 872 Eutectic reactions, 376, 383, 872 iron-iron carbide system, 400 Eutectic structure, 383, 872 Eutectic systems: binary, 374–387 microstructure development, 380–387 Eutectoid, shift of position, 408 Eutectoid ferrite, 404 Eutectoid reactions, 390, 872 iron-iron carbide system, 400 kinetics, 434–436 Eutectoid steel, microstructure changes/development, 401–403 Exchange current density, 700 Excited states, 791, 872 Exhaustion, in extrinsic semiconductors, 502 Expansion, thermal, see Thermal expansion Extrinsic semiconductors, 499–502, 872 electron concentration vs. temperature, 503 exhaustion, 502 saturation, 502 Extrusion, 872 clay products, 621 metals, 598 polymers, 633 F Fabrication: ceramics, 615–627 clay products, 620–624 fiber-reinforced composites, 675–677 metals, 597–601 Face-centered cubic structure, 47–48, 872 anion stacking (ceramics), 83–84 Burgers vector for, 267 close packed planes (metals), 81–83 slip systems, 265–266 Factor of safety, 242, 321 Failure, mechanical, see Creep; Fatigue; Fracture Faraday constant, 696 Fatigue, 332–342, 872 corrosion, 342 crack initiation and propagation, 337–339 cyclic stresses, 333–334 environmental effects, 341–342 low- and high-cycle, 336 polymers, 337 probability curves, 336 thermal, 341–342 Fatigue damage, commercial aircraft, 308 Fatigue life, 336, 872 factors that affect, 339–341 Fatigue limit, 335, 872 Fatigue strength, 335, 336, 872 Fatigue testing, 334–335 S-N curves, 334–337, 355 Feldspar, 620 Fermi energy, 488, 501, 736, 872 Ferrimagnetism, 759–763, 872 temperature dependence, 763 Ferrite (), 398–400, 872 eutectoid/proeutectoid, 404–405, 877 from decomposition of cementite, 550 Ferrites (magnetic ceramics), 759–761, 872 Curie temperature, 763 as magnetic storage, 775 Ferritic stainless steels, 548, 529 Ferroelectricity, 525–526, 873 Ferroelectric materials, 525–526 Ferromagnetic domain walls, 153 Ferromagnetism, 758–759, 873 temperature dependence, 763 Ferrous alloys, 873. See also Cast irons; Iron; Steels annealing, 601–604 classification, 401, 544 continuous-cooling transformation diagrams, 445–448 costs, 859–860 hypereutectoid, 405–408, 874 hypoeutectoid, 403–405, 874 isothermal transformation diagrams, 434–444 microstructures, 401–408 mechanical properties of, 448–452, 838–839 Fiber efficiency parameter, 663, 685 Fiberglass, 567 Fiberglass-reinforced composites, 665–666 Fiber-reinforced composites, 653–677, 873 continuous and aligned, 655–661 discontinuous and aligned, 662 discontinuous and randomly oriented, 662–663 fiber length effect, 654–655 fiber orientation/concentration effect, 655–663 fiber phase, 663–665 longitudinal loading, 655–659, 660–661 matrix phase, 665 processing, 675–677 reinforcement efficiency, 663 transverse loading, 659–660, 661 Fibers, 582–583, 873 coefficient of thermal expansion values, 847 in composites, 649 continuous vs. discontinuous, 654–655 fiber phase, 663–665 length effect, 654–655 orientation and concentration, 655–663 costs, 863 density values, 833 elastic modulus values, 664, 836 Index • 893Fibers (Continued) electrical resistivity values, 857 optical, 808–810 polymer, 582–583 properties of selected, 664 specific heat values, 853 spinning of, 634 tensile strength values, 664, 842 thermal conductivity values, 851 Fick’s first law, 174, 741, 873 for polymers, 189 Fick’s second law, 175–176, 749, 873 Fictive temperature, 615 Filament winding, 676–677 Fillers, 630, 873 Films: diamond, 576, 577 polymer, 584 shrink-wrap (polymer), 292 Fine pearlite, 436, 437, 448–449, 450, 452, 873 Fireclay refractories, 570 Firing, 570, 623–624, 873 Flame retardants, 631, 873 Flash memory, 483, 513 Flash memory cards, 483 Flexural deflection, equation for, 256 Flexural strength, 223–224, 873 influence of porosity on, ceramics, 224–226 values for selected ceramics, 217, 841–842 Float process (sheet glass), 618 Fluorescence, 801, 873 Fluorite structure, 57 Fluorocarbons, 108 trade names, characteristics, and applications, 578 Flux (clay products), 620, 623 Foams, 584, 873 Forces: bonding, 26–28 coulombic, 29, 871 Forging, 597, 598, 873 Formaldehyde, 106 Forming operations (metals), 597–598 Forsterite, 61 Forward bias, 510, 511, 873 Fractographic investigations: ceramics, 324–326 metals, 312 Fractographs: cup-and-cone fracture surfaces, 312 fatigue striations, 338 glass rod, 326 intergranular fracture, 315 transgranular fracture, 314 Fracture, see also Brittle fracture; Ductile fracture; Impact fracture testing delayed, 323 fundamentals of, 310 polymers, 326–327 types, 215–216, 310–314 Fracture mechanics, 314, 873 applied to ceramics, 322–323 polymers, 328 use in design, 320–322 Fracture profiles, 311 Fracture strength, 214. See also Flexural strength ceramics, 223–224 distribution of, 323 influence of porosity, 224–226 influence of specimen size, 323, 663–664 Fracture surface, ceramics, 325–326 Fracture toughness, 218, 317–319, 873 ceramic-matrix composites, 673–674 ranges for material types (bar chart), 7 testing, 319 values for selected materials, 319, 843–844 Free electrons, 489, 873 contributions to heat capacity, 736 role in heat conduction, 741 Free energy, 362, 424–426, 873 activation, 425, 430 volume, 424 Freeze-out region, 502–503 Frenkel defects, 137, 138, 873 equilibrium number, 139 Full annealing, 446, 603, 873 Fullerenes, 63, 65 Functionality (polymers), 109 Furnace heating elements, 494 Fused silica, 92 characteristics, 567, 616 dielectric properties, 519 electrical conductivity, 515 flexural strength, 217 index of refraction, 793 modulus of elasticity, 206 thermal properties, 737 G Gadolinium, 758, 761 Gallium arsenide: cost, 861 electrical characteristics, 497, 498 for lasers, 807 for light-emitting diodes, 802, 815 Gallium phosphide: electrical characteristics, 497 for light-emitting diodes, 815 Galvanic corrosion, 707–708, 873 Galvanic couples, 693 Galvanic series, 697, 698, 873 Galvanized steel, 566, 716 Garnets, 761 Garnet single crystal, 85 Gas constant, 136, 873 Gating system, 599 Gauge length, 202 Gaussian error function, 176 Gears (transmission), 170 Gecko lizard, 17 Geometrical isomerism, 118–119 Germanium: crystal structure, 63 electrical characteristics, 497, 503, 537 Gibbs phase rule, 396–397, 873 Gilding metal, 556 Glass: as amorphous material, 92–93 annealing, 604, 618, 869 blowing, 617 classification, 567 color, 799 commercial, compositions and characteristics, 567 corrosion resistance, 720 cost, 861–862 dielectric properties, 519 electrical conductivity, 515 flexural strength, 206, 841 forming techniques, 617–618 fracture surface (photomicrograph), 326 hardness, 239 heat treatment, 618–619 melting point, 616 modulus of elasticity, 206, 835 optical flint, 567 plane strain fracture toughness, 319, 844 refractive index, 793 sheet forming (float process), 618 soda-lime, composition, 567 894 • IndexGlass (Continued) softening point, 616 strain point, 616 stress-strain behavior, 225 structure, 93 surface crack propagation, 323 tempering, 618–619, 643 thermal properties, 737 viscous properties, 616 working point, 616, 881 Glass-ceramics, 567–568, 873 composition (Pyroceram), 567 continuous-cooling transformation diagram, 568 fabricating and heat treating, 619–620 flexural strength, 217, 841 modulus of elasticity, 206, 835 optical transparency, conditions for, 800 properties and applications, 568 Glass fibers, 666 fiberglass-reinforced composites, 665–666, 668 forming, 618 properties as fiber, 664 Glass transition, polymers, 466 Glass transition temperature, 466, 615, 873 factors that affect, polymers, 468–469 values for selected polymers, 467, 868 Gold, 562 atomic radius and crystal structure, 47 electrical conductivity, 491 slip systems, 266 thermal properties, 737 Graft copolymers, 121, 122, 873 Grain boundaries, 85, 150–151, 873 Grain boundary energy, 151 Grain growth, 284–285, 873 Grains, 873 definition, 85 distortion during plastic deformation, 270–271 Grain size, 873 dependence on time, 284–285 determination of, 159–160 mechanical properties and, 285 reduction, and strengthening of metals, 273–274 refinement by annealing, 603 Grain size number (ASTM), 160 Graphite, 63 in cast irons, 550 compared to carbon, 664, 666–667 cost, 862 from decomposition of cementite, 550 electrical conductivity, 515 properties/applications, 576–577 properties as whisker, 664 as a refractory, 571 structure of, 63 Gray cast iron, 550–553, 873 compositions, mechanical properties, and applications, 552 Green ceramic bodies, 622, 873 Green design, 821 Ground state, 22, 791, 873 Growth, phase particle, 423, 430–432, 873 rate, 431 temperature dependence of rate, 432 Gutta percha, 119 H Hackle region, 325–326 Half-cells, standard, 694 Half-reactions, 692 Hall coefficient, 508 Hall effect, 507–509, 873 Hall-Petch equation, 274 Hall voltage, 507 Halogens, 25 Hard disk drives, 773–775 Hardenability, 604–608, 873 Hardenability band, 607, 608 Hardenability curves, 605–608 Hard magnetic materials, 770–773, 873 properties, 772 Hardness, 873 bainite, pearlite vs. transformation temperature, 451 ceramics, 238–239 comparison of scales, 237 conversion diagram, 237 correlation with tensile strength, 238 fine and coarse pearlite, spheroidite, 450 pearlite, martensite, tempered martensite, 452 polymers, 239 tempered martensite, 452, 454 Hardness tests, 233–237 summary of tests, 234 Hard sphere model, 46 Head-to-head configuration, 117 Head-to-tail configuration, 117 Heat affected zone, 600 Heat capacity, 734–737, 873 temperature dependence, 736 vibrational contribution,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Materials Science and Engineering رابط مباشر لتنزيل كتاب Fundamentals of Materials Science and Engineering
|
|