كتاب Foundations of Materials Science and Engineering - Sixth Edition
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Foundations of Materials Science and Engineering - Sixth Edition

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Foundations of Materials Science and Engineering - Sixth Edition  Empty
مُساهمةموضوع: كتاب Foundations of Materials Science and Engineering - Sixth Edition    كتاب Foundations of Materials Science and Engineering - Sixth Edition  Emptyالسبت 27 يوليو 2024, 11:42 pm

أخواني في الله
أحضرت لكم كتاب
Foundations of Materials Science and Engineering - Sixth Edition
William F. Smith
Late Professor Emeritus of Engineering of
University of Central Florida
Javad Hashemi, Ph.D.
Professor of Mechanical Engineering
Florida Atlantic University
Dr. Francisco Presuel-Moreno
Associate Professor of Ocean and
Mechanical Engineering
Florida Atlantic University

كتاب Foundations of Materials Science and Engineering - Sixth Edition  F_o_m_31
و المحتوى كما يلي :


T A B L E O F C O N T E N T S
Preface xv
C H A P T E R 1
Introduction to Materials Science
and Engineering 2
1.1 Materials and Engineering 3
1.2 Materials Science and Engineering 7
1.3 Types of Materials 9
1.3.1 Metallic Materials 9
1.3.2 Polymeric Materials 11
1.3.3 Ceramic Materials 14
1.3.4 Composite Materials 16
1.3.5 Electronic Materials 18
1.4 Competition Among Materials 19
1.5 Recent Advances in Materials Science
and Technology and Future Trends 21
1.5.1 Smart Materials 21
1.5.2 Nanomaterials 23
1.6 Design and Selection 24
1.7 Summary 26
1.8 Definitions 26
1.9 Problems 27
C H A P T E R 2
Atomic Structure and Bonding 30
2.1 Atomic Structure and Subatomic
Particles 31
2.2 Atomic Numbers, Mass Numbers,
and Atomic Masses 35
2.2.1 Atomic Numbers and Mass Numbers 35
2.3 The Electronic Structure of Atoms 39
2.3.1 Planck’s Quantum Theory and
Electromagnetic Radiation 39
2.3.2 Bohr’s Theory of the Hydrogen Atom 40
2.3.3 The Uncertainty Principle and
Schrödinger’s Wave Functions 44
2.3.4 Quantum Numbers, Energy Levels,
and Atomic Orbitals 47
2.3.5 The Energy State of Multielectron
Atoms 50
2.3.6 The Quantum-Mechanical Model
and the Periodic Table 52
2.4 Periodic Variations in Atomic
Size, Ionization Energy, and Electron
Affinity 55
2.4.1 Trends in Atomic Size 55
2.4.2 Trends in Ionization Energy 56
2.4.3 Trends in Electron Affinity 58
2.4.4 Metals, Metalloids, and Nonmetals 60
2.5 Primary Bonds 60
2.5.1 Ionic Bonds 62
2.5.2 Covalent Bonds 68
2.5.3 Metallic Bonds 75
2.5.4 Mixed Bonding 77
2.6 Secondary Bonds 79
2.7 Summary 82
2.8 Definitions 82
2.9 Problems 84
C H A P T E R 3
Crystal and Amorphous Structure
in Materials 92
3.1 The Space Lattice and Unit Cells 93
3.2 Crystal Systems and Bravais Lattices 94
3.3 Principal Metallic Crystal Structures 95
3.3.1 Body-Centered Cubic (BCC) Crystal
Structure 97
3.3.2 Face-Centered Cubic (FCC) Crystal
Structure 100
3.3.3 Hexagonal Close-Packed (HCP) Crystal
Structure 101
3.4 Atom Positions in Cubic Unit Cells 104
3.5 Directions in Cubic Unit Cells 105Table of Contents v
3.6 Miller Indices for Crystallographic Planes
in Cubic Unit Cells 109
3.7 Crystallographic Planes and Directions in
Hexagonal Crystal Structure 114
3.7.1 Indices for Crystal Planes in HCP Unit
Cells 114
3.7.2 Direction Indices in HCP Unit Cells 116
3.8 Comparison of FCC, HCP, and BCC Crystal
Structures 116
3.8.1 FCC and HCP Crystal Structures 116
3.8.2 BCC Crystal Structure 119
3.9 Volume, Planar, and Linear Density
Unit-Cell Calculations 119
3.9.1 Volume Density 119
3.9.2 Planar Atomic Density 120
3.9.3 Linear Atomic Density and Repeat
Distance 122
3.10 Polymorphism or Allotropy 123
3.11 Crystal Structure Analysis 124
3.11.1 X-Ray Sources 125
3.11.2 X-Ray Diffraction 126
3.11.3 X-Ray Diffraction Analysis of Crystal
Structures 128
3.12 Amorphous Materials 134
3.13 Summary 135
3.14 Definitions 136
3.15 Problems 137
C H A P T E R 4
Solidification and Crystalline
Imperfections 146
4.1 Solidification of Metals 147
4.1.1 The Formation of Stable Nuclei in Liquid
Metals 149
4.1.2 Growth of Crystals in Liquid Metal and
Formation of a Grain Structure 154
4.1.3 Grain Structure of Industrial
Castings 155
4.2 Solidification of Single Crystals 156
4.3 Metallic Solid Solutions 160
4.3.1 Substitutional Solid Solutions 161
4.3.2 Interstitial Solid Solutions 163
4.4 Crystalline Imperfections 165
4.4.1 Point Defects 165
4.4.2 Line Defects (Dislocations) 166
4.4.3 Planar Defects 170
4.4.4 Volume Defects 172
4.5 Experimental Techniques for Identification
of Microstructure and Defects 173
4.5.1 Optical Metallography, ASTM
Grain Size, and Grain Diameter
Determination 173
4.5.2 Scanning Electron Microscopy
(SEM) 178
4.5.3 Transmission Electron Microscopy
(TEM) 179
4.5.4 High-Resolution Transmission Electron
Microscopy (HRTEM) 180
4.5.5 Scanning Probe Microscopes and Atomic
Resolution 182
4.6 Summary 186
4.7 Definitions 187
4.8 Problems 188
C H A P T E R 5
Thermally Activated Processes and
Diffusion in Solids 196
5.1 Rate Processes in Solids 197
5.2 Atomic Diffusion in Solids 201
5.2.1 Diffusion in Solids in General 201
5.2.2 Diffusion Mechanisms 201
5.2.3 Steady-State Diffusion 203
5.2.4 Non–Steady-State Diffusion 206
5.3 Industrial Applications of Diffusion
Processes 208
5.3.1 Case Hardening of Steel by Gas
Carburizing 208
5.3.2 Impurity Diffusion into Silicon Wafers
for Integrated Circuits 212
5.4 Effect of Temperature on Diffusion
in Solids 215
5.5 Summary 218
5.6 Definitions 219
5.7 Problems 219vi Table of Contents
C H A P T E R 6
Mechanical Properties
of Metals I 224
6.1 The Processing of Metals and Alloys 225
6.1.1 The Casting of Metals and Alloys 225
6.1.2 Hot and Cold Rolling of Metals
and Alloys 227
6.1.3 Extrusion of Metals and Alloys 231
6.1.4 Forging 232
6.1.5 Other Metal-Forming Processes 234
6.2 Stress and Strain in Metals 235
6.2.1 Elastic and Plastic Deformation 236
6.2.2 Engineering Stress and Engineering
Strain 236
6.2.3 Poisson’s Ratio 239
6.2.4 Shear Stress and Shear Strain 240
6.3 The Tensile Test and The Engineering
Stress-Strain Diagram 241
6.3.1 Mechanical Property Data Obtained
from the Tensile Test and the Engineering
Stress-Strain Diagram 243
6.3.2 Comparison of Engineering Stress-Strain
Curves for Selected Alloys 249
6.3.3 True Stress and True Strain 249
6.4 Hardness and Hardness Testing 251
6.5 Plastic Deformation of Metal Single
Crystals 253
6.5.1 Slipbands and Slip Lines on the Surface of
Metal Crystals 253
6.5.2 Plastic Deformation in Metal Crystals by
the Slip Mechanism 256
6.5.3 Slip Systems 256
6.5.4 Critical Resolved Shear Stress for Metal
Single Crystals 261
6.5.5 Schmid’s Law 261
6.5.6 Twinning 264
6.6 Plastic Deformation of Polycrystalline
Metals 265
6.6.1 Effect of Grain Boundaries on the Strength
of Metals 265
6.6.2 Effect of Plastic Deformation on
Grain Shape and Dislocation
Arrangements 267
6.6.3 Effect of Cold Plastic Deformation on
Increasing the Strength of Metals 270
6.7 Solid-Solution Strengthening of
Metals 271
6.8 Recovery and Recrystallization of
Plastically Deformed Metals 272
6.8.1 Structure of a Heavily Cold-Worked Metal
before Reheating 273
6.8.2 Recovery 273
6.8.3 Recrystallization 275
6.9 Superplasticity in Metals 279
6.10 Nanocrystalline Metals 281
6.11 Summary 282
6.12 Definitions 283
6.13 Problems 285
C H A P T E R 7
Mechanical Properties
of Metals II 294
7.1 Fracture of Metals 295
7.1.1 Ductile Fracture 296
7.1.2 Brittle Fracture 297
7.1.3 Toughness and Impact Testing 300
7.1.4 Ductile-to-Brittle Transition
Temperature 302
7.1.5 Fracture Toughness 303
7.2 Fatigue of Metals 305
7.2.1 Cyclic Stresses 309
7.2.2 Basic Structural Changes that Occur
in a Ductile Metal in the Fatigue
Process 310
7.2.3 Some Major Factors that Affect the
Fatigue Strength of a Metal 311
7.3 Fatigue Crack Propagation Rate 312
7.3.1 Correlation of Fatigue Crack
Propagation with Stress and Crack
Length 312
7.3.2 Fatigue Crack Growth Rate versus
Stress-Intensity Factor Range Plots 314
7.3.3 Fatigue Life Calculations 316
7.4 Creep and Stress Rupture of Metals 318
7.4.1 Creep of Metals 318Table of Contents vii
7.4.2 The Creep Test 320
7.4.3 Creep-Rupture Test 321
7.5 Graphical Representation of Creep- and
Stress-Rupture Time-Temperature Data
Using the Larsen-Miller Parameter 322
7.6 A Case Study In Failure of Metallic
Components 324
7.7 Recent Advances and Future Directions in
Improving The Mechanical Performance of
Metals 327
7.7.1 Improving Ductility and Strength
Simultaneously 327
7.7.2 Fatigue Behavior in Nanocrystalline
Metals 329
7.8 Summary 329
7.9 Definitions 330
7.10 Problems 331
C H A P T E R 8
Phase Diagrams 336
8.1 Phase Diagrams of Pure Substances 337
8.2 Gibbs Phase Rule 339
8.3 Cooling Curves 340
8.4 Binary Isomorphous Alloy Systems 342
8.5 The Lever Rule 344
8.6 Nonequilibrium Solidification
of Alloys 348
8.7 Binary Eutectic Alloy Systems 351
8.8 Binary Peritectic Alloy Systems 359
8.9 Binary Monotectic Systems 364
8.10 Invariant Reactions 365
8.11 Phase Diagrams with Intermediate Phases
and Compounds 367
8.12 Ternary Phase Diagrams 371
8.13 Summary 374
8.14 Definitions 375
8.15 Problems 377
C H A P T E R 9
Engineering Alloys 388
9.1 Production of Iron and Steel 389
9.1.1 Production of Pig Iron in a Blast
Furnace 390
9.1.2 Steelmaking and Processing of Major
Steel Product Forms 391
9.2 The Iron-Carbon System 393
9.2.1 The Iron–Iron-Carbide Phase
Diagram 393
9.2.2 Solid Phases in the Fe–Fe
3C Phase
Diagram 393
9.2.3 Invariant Reactions in the Fe–Fe
3C Phase
Diagram 394
9.2.4 Slow Cooling of Plain-Carbon Steels 396
9.3 Heat Treatment of Plain-Carbon
Steels 403
9.3.1 Martensite 403
9.3.2 Isothermal Decomposition of
Austenite 408
9.3.3 Continuous-Cooling Transformation
Diagram for a Eutectoid Plain-Carbon
Steel 413
9.3.4 Annealing and Normalizing of PlainCarbon Steels 415
9.3.5 Tempering of Plain-Carbon Steels 417
9.3.6 Classification of Plain-Carbon Steels and
Typical Mechanical Properties 421
9.4 Low-Alloy Steels 423
9.4.1 Classification of Alloy Steels 423
9.4.2 Distribution of Alloying Elements in Alloy
Steels 423
9.4.3 Effects of Alloying Elements on the
Eutectoid Temperature of Steels 424
9.4.4 Hardenability 426
9.4.5 Typical Mechanical Properties and
Applications for Low-Alloy Steels 430
9.5 Aluminum Alloys 432
9.5.1 Precipitation Strengthening
(Hardening) 432viii Table of Contents
9.5.2 General Properties of Aluminum and Its
Production 438
9.5.3 Wrought Aluminum Alloys 440
9.5.4 Aluminum Casting Alloys 444
9.6 Copper Alloys 446
9.6.1 General Properties of Copper 446
9.6.2 Production of Copper 446
9.6.3 Classification of Copper Alloys 446
9.6.4 Wrought Copper Alloys 447
9.7 Stainless Steels 452
9.7.1 Ferritic Stainless Steels 452
9.7.2 Martensitic Stainless Steels 453
9.7.3 Austenitic Stainless Steels 455
9.8 Cast Irons 457
9.8.1 General Properties 457
9.8.2 Types of Cast Irons 457
9.8.3 White Cast Iron 459
9.8.4 Gray Cast Iron 459
9.8.5 Ductile Cast Irons 460
9.8.6 Malleable Cast Irons 462
9.9 Magnesium, Titanium, and Nickel
Alloys 464
9.9.1 Magnesium Alloys 464
9.9.2 Titanium Alloys 466
9.9.3 Nickel Alloys 468
9.10 Special-Purpose Alloys and Applications 468
9.10.1 Intermetallics 468
9.10.2 Shape-Memory Alloys 470
9.10.3 Amorphous Metals 474
9.11 Summary 475
9.12 Definitions 476
9.13 Problems 478
C H A P T E R 10
Polymeric Materials 488
10.1 Introduction 489
10.1.1 Thermoplastics 490
10.1.2 Thermosetting Plastics (Thermosets) 490
10.2 Polymerization Reactions 491
10.2.1 Covalent Bonding Structure of an
Ethylene Molecule 491
10.2.2 Covalent Bonding Structure of an
Activated Ethylene Molecule 492
10.2.3 General Reaction for the Polymerization
of Polyethylene and the Degree of
Polymerization 493
10.2.4 Chain Polymerization Steps 493
10.2.5 Average Molecular Weight for
Thermoplastics 495
10.2.6 Functionality of a Monomer 496
10.2.7 Structure of Noncrystalline Linear
Polymers 496
10.2.8 Vinyl and Vinylidene Polymers 498
10.2.9 Homopolymers and Copolymers 499
10.2.10 Other Methods of Polymerization 502
10.3 Industrial Polymerization Methods 504
10.4 Glass Transition Temperature and
Crystallinity in Thermoplastics 506
10.4.1 Glass Transition Temperature 506
10.4.2 Solidification of Noncrystalline
Thermoplastics 506
10.4.3 Solidification of Partly Crystalline
Thermoplastics 507
10.4.4 Structure of Partly Crystalline
Thermoplastic Materials 508
10.4.5 Stereoisomerism in Thermoplastics 510
10.4.6 Ziegler and Natta Catalysts 510
10.5 Processing of Plastic Materials 512
10.5.1 Processes Used for Thermoplastic
Materials 512
10.5.2 Processes Used for Thermosetting
Materials 516
10.6 General-Purpose Thermoplastics 518
10.6.1 Polyethylene 520
10.6.2 Polyvinyl Chloride and
Copolymers 523
10.6.3 Polypropylene 525
10.6.4 Polystyrene 525
10.6.5 Polyacrylonitrile 526
10.6.6 Styrene–Acrylonitrile (SAN) 527
10.6.7 ABS 527
10.6.8 Polymethyl Methacrylate
(PMMA) 529
10.6.9 Fluoroplastics 530Table of Contents ix
10.7 Engineering Thermoplastics 531
10.7.1 Polyamides (Nylons) 532
10.7.2 Polycarbonate 535
10.7.3 Phenylene Oxide–Based Resins 536
10.7.4 Acetals 537
10.7.5 Thermoplastic Polyesters 538
10.7.6 Polyphenylene Sulfide 539
10.7.7 Polyetherimide 540
10.7.8 Polymer Alloys 540
10.8 Thermosetting Plastics (Thermosets) 541
10.8.1 Phenolics 543
10.8.2 Epoxy Resins 544
10.8.3 Unsaturated Polyesters 546
10.8.4 Amino Resins (Ureas and
Melamines) 547
10.9 Elastomers (Rubbers) 549
10.9.1 Natural Rubber 549
10.9.2 Synthetic Rubbers 553
10.9.3 Properties of Polychloroprene
Elastomers 554
10.9.4 Vulcanization of Polychloroprene
Elastomers 555
10.10 Deformation and Strengthening of Plastic
Materials 557
10.10.1 Deformation Mechanisms for
Thermoplastics 557
10.10.2 Strengthening of Thermoplastics 559
10.10.3 Strengthening of Thermosetting
Plastics 562
10.10.4 Effect of Temperature on the Strength of
Plastic Materials 563
10.11 Creep and Fracture of Polymeric
Materials 564
10.11.1 Creep of Polymeric Materials 564
10.11.2 Stress Relaxation of Polymeric
Materials 566
10.11.3 Fracture of Polymeric Materials 567
10.12 Summary 570
10.13 Definitions 571
10.14 Problems 574
C H A P T E R 11
Ceramics 584
11.1 Introduction 585
11.2 Simple Ceramic Crystal Structures 587
11.2.1 Ionic and Covalent Bonding in Simple
Ceramic Compounds 587
11.2.2 Simple Ionic Arrangements Found in
Ionically Bonded Solids 588
11.2.3 Cesium Chloride (CsCl) Crystal
Structure 591
11.2.4 Sodium Chloride (NaCl) Crystal
Structure 592
11.2.5 Interstitial Sites in FCC and HCP Crystal
Lattices 596
11.2.6 Zinc Blende (ZnS) Crystal Structure 598
11.2.7 Calcium Fluoride (CaF2) Crystal
Structure 600
11.2.8 Antifluorite Crystal Structure 602
11.2.9 Corundum (Al2O3) Crystal Structure 602
11.2.10 Spinel (MgAl2O4) Crystal Structure 602
11.2.11 Perovskite (CaTiO3) Crystal
Structure 603
11.2.12 Carbon and Its Allotropes 603
11.3 Silicate Structures 607
11.3.1 Basic Structural Unit of the Silicate
Structures 607
11.3.2 Island, Chain, and Ring Structures of
Silicates 607
11.3.3 Sheet Structures of Silicates 607
11.3.4 Silicate Networks 608
11.4 Processing of Ceramics 610
11.4.1 Materials Preparation 611
11.4.2 Forming 611
11.4.3 Thermal Treatments 615
11.5 Traditional and Structural Ceramics 618
11.5.1 Traditional Ceramics 618
11.5.2 Structural Ceramics 620
11.6 Mechanical Properties of Ceramics 622
11.6.1 General 622
11.6.2 Mechanisms for the Deformation of
Ceramic Materials 622x Table of Contents
11.6.3 Factors Affecting the Strength of Ceramic
Materials 624
11.6.4 Toughness of Ceramic Materials 624
11.6.5 Transformation Toughening of Partially
Stabilized Zirconia (PSZ) 626
11.6.6 Fatigue Failure of Ceramics 628
11.6.7 Ceramic Abrasive Materials 628
11.7 Thermal Properties of Ceramics 629
11.7.1 Ceramic Refractory Materials 629
11.7.2 Acidic Refractories 630
11.7.3 Basic Refractories 631
11.7.4 Ceramic Tile Insulation for the Space
Shuttle Orbiter 631
11.8 Glasses 633
11.8.1 Definition of a Glass 633
11.8.2 Glass Transition Temperature 633
11.8.3 Structure of Glasses 633
11.8.4 Compositions of Glasses 636
11.8.5 Viscous Deformation of Glasses 636
11.8.6 Forming Methods for Glasses 640
11.8.7 Tempered Glass 641
11.8.8 Chemically Strengthened Glass 642
11.9 Ceramic Coatings and Surface
Engineering 643
11.9.1 Silicate Glasses 643
11.9.2 Oxides and Carbides 643
11.10 Nanotechnology and Ceramics 644
11.11 Summary 646
11.12 Definitions 647
11.13 Problems 648
C H A P T E R 12
Composite Materials 656
12.1 Introduction 657
12.1.1 Classification of Composite Materials 657
12.1.2 Advantages and Disadvantages of
Composite Materials over
Conventional Materials 658
12.2 Fibers for Reinforced-Plastic Composite
Materials 659
12.2.1 Glass Fibers for Reinforcing Plastic
Resins 659
12.2.2 Carbon Fibers for Reinforced
Plastics 662
12.2.3 Aramid Fibers for Reinforcing Plastic
Resins 664
12.2.4 Comparison of Mechanical Properties
of Carbon, Aramid, and Glass Fibers
for Reinforced-Plastic Composite
Materials 664
12.3 Matrix Materials for Composites 666
12.4 Fiber-Reinforced Plastic Composite
Materials 667
12.4.1 Fiberglass-Reinforced Plastics 667
12.4.2 Carbon Fiber–Reinforced Epoxy
Resins 668
12.5 Equations for Elastic Modulus
of Composite Laminates: Isostrain
and Isostress Conditions 670
12.5.1 Isostrain Conditions 670
12.5.2 Isostress Conditions 673
12.6 Open-Mold Processes for Fiber-Reinforced
Plastic Composite Materials 675
12.6.1 Hand Lay-Up Process 675
12.6.2 Spray Lay-Up Process 676
12.6.3 Vacuum Bag–Autoclave Process 677
12.6.4 Filament-Winding Process 678
12.7 Closed-Mold Processes for Fiber-Reinforced
Plastic Composite Materials 678
12.7.1 Compression and Injection
Molding 678
12.7.2 The Sheet-Molding Compound (SMC)
Process 679
12.7.3 Continuous-Pultrusion Process 680
12.8 Concrete 680
12.8.1 Portland Cement 681
12.8.2 Mixing Water for Concrete 684
12.8.3 Aggregates for Concrete 685
12.8.4 Air Entrainment 685
12.8.5 Compressive Strength of Concrete 686
12.8.6 Proportioning of Concrete Mixtures 686
12.8.7 Reinforced and Prestressed Concrete 687
12.8.8 Prestressed Concrete 688
12.9 Asphalt and Asphalt Mixes 690Table of Contents xi
12.10 Wood 692
12.10.1 Macrostructure of Wood 692
12.10.2 Microstructure of Softwoods 695
12.10.3 Microstructure of Hardwoods 696
12.10.4 Cell-Wall Ultrastructure 697
12.10.5 Properties of Wood 699
12.11 Sandwich Structures 700
12.11.1 Honeycomb Sandwich Structure 702
12.11.2 Cladded Metal Structures 702
12.12 Metal-Matrix and Ceramic-Matrix
Composites 703
12.12.1 Metal-Matrix Composites
(MMCs) 703
12.12.2 Ceramic-Matrix Composites
(CMCs) 705
12.12.3 Ceramic Composites and
Nanotechnology 710
12.13 Summary 710
12.14 Definitions 711
12.15 Problems 714
C H A P T E R 13
Corrosion 720
13.1 Corrosion and Its Economical Impact 721
13.2 Electrochemical Corrosion of Metals 722
13.2.1 Oxidation-Reduction Reactions 723
13.2.2 Standard Electrode Half-Cell Potentials
for Metals 724
13.3 Galvanic Cells 726
13.3.1 Macroscopic Galvanic Cells with
Electrolytes That Are One Molar 726
13.3.2 Galvanic Cells with Electrolytes That Are
Not One Molar 728
13.3.3 Galvanic Cells with Acid or Alkaline
Electrolytes with No Metal Ions
Present 730
13.3.4 Microscopic Galvanic Cell Corrosion of
Single Electrodes 731
13.3.5 Concentration Galvanic Cells 733
13.3.6 Galvanic Cells Created by Differences in
Composition, Structure, and Stress 736
13.4 Corrosion Rates (Kinetics) 738
13.4.1 Rate of Uniform Corrosion or
Electroplating of a Metal in an Aqueous
Solution 738
13.4.2 Corrosion Reactions and
Polarization 741
13.4.3 Passivation 745
13.4.4 The Galvanic Series 745
13.5 Types of Corrosion 746
13.5.1 Uniform or General Attack
Corrosion 746
13.5.2 Galvanic or Two-Metal Corrosion 748
13.5.3 Pitting Corrosion 749
13.5.4 Crevice Corrosion 751
13.5.5 Intergranular Corrosion 753
13.5.6 Stress Corrosion 755
13.5.7 Erosion Corrosion 758
13.5.8 Cavitation Damage 759
13.5.9 Fretting Corrosion 759
13.5.10 Selective Leaching 759
13.5.11 Hydrogen Damage 760
13.6 Oxidation of Metals 761
13.6.1 Protective Oxide Films 761
13.6.2 Mechanisms of Oxidation 763
13.6.3 Oxidation Rates (Kinetics) 764
13.7 Corrosion Control 766
13.7.1 Materials Selection 766
13.7.2 Coatings 767
13.7.3 Design 768
13.7.4 Alteration of Environment 769
13.7.5 Cathodic and Anodic Protection 770
13.8 Summary 771
13.9 Definitions 772
13.10 Problems 773
C H A P T E R 14
Electrical Properties of Materials 780
14.1 Electrical Conduction In Metals 781
14.1.1 The Classic Model for Electrical
Conduction in Metals 781xii Table of Contents
14.1.2 Ohm’s Law 783
14.1.3 Drift Velocity of Electrons in a
Conducting Metal 787
14.1.4 Electrical Resistivity of Metals 788
14.2 Energy-Band Model for Electrical
Conduction 792
14.2.1 Energy-Band Model for Metals 792
14.2.2 Energy-Band Model for Insulators 794
14.3 Intrinsic Semiconductors 794
14.3.1 The Mechanism of Electrical Conduction
in Intrinsic Semiconductors 794
14.3.2 Electrical Charge Transport in the
Crystal Lattice of Pure Silicon 795
14.3.3 Energy-Band Diagram for Intrinsic
Elemental Semiconductors 796
14.3.4 Quantitative Relationships for Electrical
Conduction in Elemental Intrinsic
Semiconductors 797
14.3.5 Effect of Temperature on Intrinsic
Semiconductivity 799
14.4 Extrinsic Semiconductors 801
14.4.1 n-Type (Negative-Type) Extrinsic
Semiconductors 801
14.4.2 p-Type (Positive-Type) Extrinsic
Semiconductors 803
14.4.3 Doping of Extrinsic Silicon
Semiconductor Material 805
14.4.4 Effect of Doping on Carrier
Concentrations in Extrinsic
Semiconductors 805
14.4.5 Effect of Total Ionized Impurity
Concentration on the Mobility of
Charge Carriers in Silicon at Room
Temperature 808
14.4.6 Effect of Temperature on the
Electrical Conductivity of Extrinsic
Semiconductors 809
14.5 Semiconductor Devices 811
14.5.1 The pn Junction 812
14.5.2 Some Applications for pn Junction
Diodes 815
14.5.3 The Bipolar Junction Transistor 816
14.6 Microelectronics 818
14.6.1 Microelectronic Planar Bipolar
Transistors 818
14.6.2 Microelectronic Planar Field-Effect
Transistors 819
14.6.3 Fabrication of Microelectronic
Integrated Circuits 822
14.7 Compound Semiconductors 829
14.8 Electrical Properties of Ceramics 832
14.8.1 Basic Properties of Dielectrics 832
14.8.2 Ceramic Insulator Materials 834
14.8.3 Ceramic Materials for Capacitors 835
14.8.4 Ceramic Semiconductors 836
14.8.5 Ferroelectric Ceramics 838
14.9 Nanoelectronics 841
14.10 Summary 842
14.11 Definitions 843
14.12 Problems 845
C H A P T E R 15
Optical Properties and Superconductive
Materials 850
15.1 Introduction 851
15.2 Light and the Electromagnetic Spectrum 851
15.3 Refraction of Light 853
15.3.1 Index of Refraction 853
15.3.2 Snell’s Law of Light Refraction 855
15.4 Absorption, Transmission, and Reflection of
Light 856
15.4.1 Metals 856
15.4.2 Silicate Glasses 857
15.4.3 Plastics 858
15.4.4 Semiconductors 860
15.5 Luminescence 861
15.5.1 Photoluminescence 862
15.5.2 Cathodoluminescence 862
15.6 Stimulated Emission of Radiation and
Lasers 864
15.6.1 Types of Lasers 866Table of Contents xiii
15.7 Optical Fibers 868
15.7.1 Light Loss in Optical Fibers 868
15.7.2 Single-Mode and Multimode Optical
Fibers 869
15.7.3 Fabrication of Optical Fibers 870
15.7.4 Modern Optical-Fiber Communication
Systems 872
15.8 Superconducting Materials 873
15.8.1 The Superconducting State 873
15.8.2 Magnetic Properties of
Superconductors 874
15.8.3 Current Flow and Magnetic Fields in
Superconductors 876
15.8.4 High-Current, High-Field
Superconductors 877
15.8.5 High Critical Temperature (Tc)
Superconducting Oxides 879
15.9 Definitions 881
15.10 Problems 882
C H A P T E R 16
Magnetic Properties 886
16.1 Introduction 887
16.2 Magnetic Fields and Quantities 887
16.2.1 Magnetic Fields 887
16.2.2 Magnetic Induction 889
16.2.3 Magnetic Permeability 890
16.2.4 Magnetic Susceptibility 891
16.3 Types of Magnetism 892
16.3.1 Diamagnetism 892
16.3.2 Paramagnetism 892
16.3.3 Ferromagnetism 893
16.3.4 Magnetic Moment of a Single Unpaired
Atomic Electron 895
16.3.5 Antiferromagnetism 897
16.3.6 Ferrimagnetism 897
16.4 Effect of Temperature on
Ferromagnetism 897
16.5 Ferromagnetic Domains 898
16.6 Types of Energies that Determine the
Structure of Ferromagnetic Domains 899
16.6.1 Exchange Energy 900
16.6.2 Magnetostatic Energy 900
16.6.3 Magnetocrystalline Anisotropy
Energy 901
16.6.4 Domain Wall Energy 902
16.6.5 Magnetostrictive Energy 903
16.7 The Magnetization and Demagnetization of
a Ferromagnetic Metal 905
16.8 Soft Magnetic Materials 906
16.8.1 Desirable Properties for Soft Magnetic
Materials 906
16.8.2 Energy Losses for Soft Magnetic
Materials 906
16.8.3 Iron–Silicon Alloys 907
16.8.4 Metallic Glasses 909
16.8.5 Nickel–Iron Alloys 911
16.9 Hard Magnetic Materials 912
16.9.1 Properties of Hard Magnetic
Materials 912
16.9.2 Alnico Alloys 915
16.9.3 Rare Earth Alloys 917
16.9.4 Neodymium–Iron–Boron Magnetic
Alloys 917
16.9.5 Iron–Chromium–Cobalt Magnetic
Alloys 918
16.10 Ferrites 921
16.10.1 Magnetically Soft Ferrites 921
16.10.2 Magnetically Hard Ferrites 925
16.11 Summary 925
16.12 Definitions 926
16.13 Problems 929
C H A P T E R 17
Biological Materials and Biomaterials 934
17.1 Introduction 935
17.2 Biological Materials: Bone 936
17.2.1 Composition 936xiv Table of Contents
17.2.2 Macrostructure 936
17.2.3 Mechanical Properties 936
17.2.4 Biomechanics of Bone Fracture 939
17.2.5 Viscoelasticity of Bone 939
17.2.6 Bone Remodeling 940
17.2.7 A Composite Model of Bone 940
17.3 Biological Materials: Tendons and
Ligaments 942
17.3.1 Macrostructure and Composition 942
17.3.2 Microstructure 942
17.3.3 Mechanical Properties 943
17.3.4 Structure-Property Relationship 945
17.3.5 Constitutive Modeling and
Viscoelasticity 946
17.3.6 Ligament and Tendon Injury 948
17.4 Biological Material: Articular
Cartilage 950
17.4.1 Composition and Macrostructure 950
17.4.2 Microstructure 950
17.4.3 Mechanical Properties 951
17.4.4 Cartilage Degeneration 952
17.5 Biomaterials: Metals in Biomedical
Applications 952
17.5.1 Stainless Steels 954
17.5.2 Cobalt-Based Alloys 954
17.5.3 Titanium Alloys 955
17.5.4 Some Issues in Orthopedic Application of
Metals 957
17.6 Polymers in Biomedical Applications 959
17.6.1 Cardiovascular Applications of
Polymers 959
17.6.2 Ophthalmic Applications 960
17.6.3 Drug Delivery Systems 962
17.6.4 Suture Materials 962
17.6.5 Orthopedic Applications 962
17.7 Ceramics in Biomedical Applications 963
17.7.1 Alumina in Orthopedic Implants 964
17.7.2 Alumina in Dental Implants 965
17.7.3 Ceramic Implants and Tissue
Connectivity 966
17.7.4 Nanocrystalline Ceramics 967
17.8 Composites in Biomedical
Applications 968
17.8.1 Orthopedic Applications 968
17.8.2 Applications in Dentistry 969
17.9 Corrosion in Biomaterials 970
17.10 Wear in Biomedical Implants 971
17.11 Tissue Engineering 975
17.12 Summary 976
17.13 Definitions 977
17.14 Problems 978
A P P E N D I X I
Important Properties of Selected
Engineering Materials 983
A P P E N D I X II
Some Properties of
Selected Elements 1040
A P P E N D I X III
Ionic Radii of the Elements 1042
A P P E N D I X IV
Glass Transition Temperature
and Melting Temperature of
Selected Polymers 1044
A P P E N D I X V
Selected Physical Quantities
and Their Units 1045
References for Further Study by
Chapter 1047
Glossary 1050
Answers 1062
Index 1067xv
I N D E X
A
Abrasive properties of ceramic materials,
628–629
ABS, 527–529
Absorption of light, 856–861
Acceptor energy level, 803
Acetals, 537
ACL (anterior cruciate ligament), 945,
948–949
Acrylonitrile, 527
Activation energy, 197–198
Activation polarization of electrochemical
reactions, 743–744
Adaptive Engine Technology (GE Aviation),
15
Advanced ceramic materials, 14
Aerospace industry
composite materials used in, 17–18
material characteristics needed by, 7–8
superalloys in, 10, 21
AFMs (atomic force microscopes), 182,
185–186
Air entrained concrete, 685–686
Allotropy, 123–124
Alloys. See also Engineering alloys;
Solidification
alnico (aluminum-nickel), 915–916
binary eutectic systems of, 351–359
binary isomorphous systems of, 342–344
binary peritectic systems of, 359–364
cobalt-based, 954–955
composite materials advantages over
metal, 659
electrical resistivity of metal increased by,
790–791
ferrous and nonferrous, 9
iron-chromium-cobalt (Fe-Cr-Co)
magnetic, 918–920
iron-silicon, 907–908
lever rule for, 344–348
neodymium-iron-boron (Nd-Fe-B)
magnetic, 917–918
nickel-iron, 910–911
nonequilibrium solidification of, 348–351
polymer, 540–541
rare earth, 917
shape-memory, 22
solid solution of, 21, 160–161
tensile test and engineering stress-strain
diagram of, 249–250
titanium, 955–957
Alnico (aluminum-nickel) alloys, 915–916
Aloha Airlines, Inc., 720
α ferrite, 393
Alumina
as ceramic insulator material, 835
in dental implants, 965–966
description of, 621
in orthopedic implants, 964–965
Aluminum alloys
for casting, 444–446
precipitation strengthening, 432–438
properties of, 438–439
wrought, 440–443
Aluminum oxide, 585, 621, 835
American Concrete Institute, 686
American Society for Testing and Materials
(ASTM), 176–177, 266
Amino resins, 547–549
Amorphous materials, 134–135. See also
Crystal and amorphous structure
Amorphous metals, 474–475
amu (atomic mass units), 35
Annealing
in cold rolling of metal sheet, 228
plain-carbon steels, 415–417
in recovery and recrystallization of
plastically deformed metals,
272–273
Annealing point viscosity, 639
Anodes, 724
Anodic protection, for corrosion control,
770–771
Anterior cruciate ligament (ACL), 945,
948–949
Antiferromagnetism, 897
Antifluorite, 602
APF (atomic packing factor), 99–101
Aqueous solution, metals in, 738–741
Aramid (aromatic polyamide), 664–666
Area effect, in galvanic two-metal corrosion,
748–749
Aromatic polyamide (aramid), 664–666
Arrhenius, Svante August, 199–200
Arrhenius rate equation, 200–201
Articular cartilage, 950–952
Asperities, 972
ASTM (American Society for Testing and
Materials), 176–177, 266
Atactic stereoisomers, 510
Atomic diffusion
mechanisms of, 201–203
non-steady-state, 206–208
overview, 201
steady-state, 203–206
Atomic force microscopes (AFMs), 182,
185–186
Atomic mass units (amu), 35
Atomic numbers (Z) and mass numbers,
35–38
Atomic orbitals, 47–49
Atomic packing factor (APF), 99–101
Atomic resolution, scanning probe
microscopes and, 182–186
Atomic structure and bonding, 30–91
atomic numbers and mass numbers,
35–38
atomic size trends, across Periodic Table,
55–56
Bohr’s theory and hydrogen atom,
40–43
bonding strength, 2–3
electron affinity trends, across Periodic
Table, 58–60
energy state of multielectron atoms,
50–52
ionization energy trends, across Periodic
Table, 56–58
metals, metalloids, and nonmetals, 60
Planck’s quantum theory and
electromagnetic radiation, 39–40
positions of atoms in cubic unit cells,
104–1051068 Index
Atomic structure and bonding—Cont.
primary bonds
covalent, 68–75
ionic, 62–68
ionic-covalent mixed, 77–78
metallic, 75–77
metallic-covalent mixed, 78
metallic-ionic mixed, 78–79
overview, 60–61
quantum-mechanical model and Periodic
Table, 52–55
quantum numbers, energy levels, and
atomic orbitals, 47–49
secondary bonds, 79–81
subatomic particles, 31–34
uncertainty principle and Schrödinger’s
wave functions, 44–47
AT&T, Inc., 873
Attenuation, in optical glass fibers, 868–869
Attraction and repulsion forces in ionic
bonding, 63
Austempering, 418–421
Austenite steels, 393, 408–413
Austenitic stainless steels, 455–457
Austenitizing process, 396, 398
Automotive industry, 7–8, 23
Average molecular weight of polymeric
materials, 495–496
Avogadro, Amedeo, 35–36
Avogadro’s number, 35–36
B
Bain, E. C., 410n
Bainite structures, 410–411, 420
Ballard, Robert, 294
Ball bearings, of high performance ceramic
materials, 16
Balmer series of visible emissions, 43
Basal planes of HCP unit cells, 115
BCC (body-centered cubic) metallic crystal
structure, 95, 97–100, 1190
BCT (body-centered tetragonal) crystal
structure, 405–406
Beam of radiation, 864
Becquerel, Henri, 32
Bedworth, R. E., 761n
Benzene ring, 73–74
Beryllium, copper alloyed with, 452
Biased external voltage, 812
Binary eutectic alloy systems, 351–359
Binary isomorphous alloy systems, 342–344
Binary monotectic systems, 364–365
Binary peritectic alloy systems, 359–364
Biocompatibility, 953, 959
Biodegradable polymers, 959
Biological materials and biomaterials, 934–982
articular cartilage, 950–952
bone, 936–941
ceramics in biomedical applications
alumina in dental implants, 965–966
alumina in orthopedic implants,
964–965
nanocrystalline, 967–968
overview, 963
tissue connectivity and, 966
composites in biomedical applications,
968–970
corrosion in biomaterials, 970–971
materials characteristics needed by, 7–8
metals in biomedical applications
cobalt-based alloys, 954–955
in orthopedic applications, 957–959
overview, 952–954
stainless steels, 954
titanium alloys, 955–957
overview, 934–935
polymers in biomedical applications
in cardiovascular applications, 959–960
in drug delivery systems, 962
in ophthalmic applications, 960–962
in orthopedic applications, 962–963
in suture materials, 962
tendons and ligaments
constitutive modeling and
viscoelasticity of, 946–948
injury to, 948–950
macrostructure of, 942
mechanical properties of, 943–945
microstructure of, 942–943
structure-property relationship of,
945–946
tissue engineering, 975–976
wear in biomedical implants, 971–975
Biometals, 952. See also Biological
materials and biomaterials
Biotribology (wear in biomedical implants),
971
Bipolar junction transistor (BJT), 816–818
Bitter technique, 899
Blast furnaces, 390
Blends of polymers, 12–14
Blistering, corrosion as, 760–761
Blowmolding of thermoplastics, 514–515
Blown-glass process, 641
Body-centered cubic (BCC) metallic crystal
structure, 95, 97–100, 119
Body-centered tetragonal (BCT) crystal
structure, 405–406
Boeing, Inc., 677, 720
Bohr, Neils, 40–41, 45–46
Bohr magneton, 895, 922
Bohr’s theory, 40–43
Boltzmann, Ludwig, 197–200
Bond energy, 70–71
Bonding. See Atomic structure and bonding
Bond length, 70–71
Bond order, 69
Bone, 936–941, 951
Bone cement, 962–963
Borazon (cubic boron nitride), 629
Boron oxide, 634
Borosilicate glasses, 636
Boundary lubrication, 972
Boundary surface, for ground-state electron,
46–47
Boyle, Robert, 31
Brackett series of infrared emissions, 43
Bragg, William Henry, 128
Bragg’s law, 128
Bravais, A. J., 94
Bravais lattices, 94–96
Breakdown diodes, 815–816
Brinell hardness, 252
Brittle fracture
in ceramic materials, 624
of metals, 296–300
of polymeric materials, 568
Broglie, Louis de, 44
Buckminster Fullerenes (buckyballs), 605
Bulk polymerization, 504
Burgers vector, in line defects in crystalline
imperfections, 167
Butadiene, in ABS, 527
C
Calcium fluoride, 600–601
Cambium layer, in trees, 693
Cancellous bone, 936
Capacitance, 832Index 1069
Capacitors, 832, 835–836
Carbide coatings, 643–644
Carbon
allotropes of, 603–606
covalent bonds in molecules containing,
71–72
as fibers for reinforced-plastic composite
materials, 662–666
nanotubes of, 606
Carbon black, 551
Carbon dioxide lasers, 867
Carbon fiber-reinforced plastic (CFRP), 24,
668–670
Carbon fibers in epoxy matrix, 17
Cardiovascular applications, polymeric
materials in, 959–960
Cartilage, articular, 950–952
Case hardening of steel by gas carburizing,
208–212
Cast-glass process, 641
Casting process for metals, 225–227
Cast irons
ductile, 460–462
gray, 459–460
malleable, 462–464
properties of, 457
types of, 457–458
white, 459
Cathode ray tube experiments, to find
subatomic particles, 32
Cathodes, 724
Cathodic protection, for corrosion control,
770–771
Cathodoluminescence, 862–863
Cavitation damage, as corrosion, 759
CCT (continuous-cooling transformation)
diagram for eutectoid steels, 413–415
CDA (Copper Development Association),
446–447
Cellulose crystalline molecules, in woods,
698
Cell-wall ultrastructure of wood, 697–699
Cementite (Fe3C), 393, 401
Ceramic materials, 584–655
in biomedical applications
alumina in dental implants, 965–966
alumina in orthopedic implants,
964–965
nanocrystalline, 967–968
overview, 963
tissue connectivity and, 966
as capacitors, 835–836
chemical attack to deteriorate, 722
in coatings and surface engineering,
643–644
for corrosion control, 767–768
dielectric properties of, 832–834
ferrimagnetism in, 897
ferroelectric, 838–841
glasses
chemically strengthened, 642–643
compositions of, 636
forming methods for, 640–641
glass transition temperature, 633
structure of, 633–636
tempered, 641–642
viscous deformation of, 636–639
as insulator materials, 834–835
mechanical properties of
abrasive, 628–629
deformation mechanisms, 622–624
fatigue failure, 628
overview, 622
strength, 624
toughness, 624–626
transformation toughening of partially
stabilized zirconia, 626–628
nanomaterials as, 23–24
nanotechnology and, 644–646
overview, 14–16, 584–587
piezoelectric, 22
processing
forming, 611–615
materials preparation, 611
overview, 610
thermal treatments, 615–617
as semiconductors, 836–838
silicate structures, 607–610
simple crystal structures
antifluorite, 602
calcium fluoride, 600–601
carbon and allotropes, 603–606
cesium chloride, 591–592
corundum, 602
interstitial sites in FCC and HCP,
596–598
ionic and covalent bonding in, 587–591
perovskite, 603
sodium chloride, 592–596
spinel, 602–603
zinc blende, 598–600
structural, 620–622
thermal properties of, 629–633
traditional, 618–620
Ceramic-matrix composite (CMC) materials,
16, 705–710
Cesium chloride, 591–592
CFRP (carbon fiber-reinforced plastic), 24,
668–670
Chadwick, James, 33
Chain polymerization steps, 492–495
Chain structures of silicates, 607–608
Charge cloud, of electrons, 34
Charpy test, 300–302
Chemical industry, material characteristics
needed by, 7–8
Chemically strengthened glasses, 642–643
Chemical vapor deposition (CVD) process,
827–828
Chevrolet Corvette, 680
Cladded metal structures, 702–703
Cleavage planes, in brittle fracture,
297–298
Closed-mold processes for fiber-reinforced
plastic, 678–680
CMC (ceramic-matrix composite) materials,
16, 705–710
CMOS (complementary metal oxide
semiconductor) devices, 829
CN (coordination number), 588, 590, 592
Coatings
for corrosion control, 767–768
surface engineering and, 643–644
Cobalt-based alloys, 10–11, 954–955
Coercive force, in ferromagnetism, 906
Collagen protein, 936
Columnar grains, 155
Competition for markets, 19–21
Complementary metal oxide semiconductor
(CMOS) devices, 829
Completely reversed stress cycle, 309
Composite materials, 656–719
advantages and disadvantages of,
658–659
asphalt and asphalt mixes, 690–691
in biomedical applications, 968–970
bone as, 940–941
carbon fiber-reinforced plastic, 668–670
ceramic-matrix (CMCs), 705–710
classification of, 657–658
closed-mold processes for fiberreinforced plastic, 678–6801070 Index
Composite materials—Cont.
concrete
aggregates for, 685
air entrained, 685–686
compressive strength of, 686
mixing water for, 684–685
overview, 680–681
portland cement, 681–684
prestressed, 688–690
proportioning of mixtures of, 686–687
reinforced, 687–688
description of, 16–18
fiberglass-reinforced plastic, 667–668
fibers for reinforced-plastic
aramid (aromatic polyamide), 664–666
carbon, 662–666
glass, 659–662, 664–666
isostrain conditions for, 670–673
isostress conditions for, 673–675
matrix materials for, 666
metal-matrix, 703–705
nanotechnology and ceramic, 710
open-mold processes for fiber-reinforced
plastic
filament-winding, 678
hand lay-up, 675–676
spray lay-up, 676–677
vacuum bag-autoclave, 677–678
overview, 656–657
sandwich structures, 700–703
wood
cell-wall ultrastructure, 697–699
hardwood microstructure, 696–697
macrostructure of, 692–695
properties of, 699–700
softwood microstructure, 694–695
Compound semiconductors, 829–831
Compression molding
of composites, 678–679
of thermosetting plastics, 516–517
Concentration polarization of
electrochemical reactions, 744–745
Concrete
aggregates for, 685
air entrained, 685–686
compressive strength of, 686
mixing water for, 684–685
overview, 680–681
portland cement, 681–684
prestressed, 688–690
proportioning of mixtures of, 686–687
reinforced, 687–688
Conduction band, in energy-band model for
insulators, 794
Conductivity, electrical, 784, 795
Congruently melting compounds, 370
Continuous-cooling transformation (CCT)
diagram for eutectoid steels,
413–415
Continuous-fiber-reinforced CMCs,
705–706
Continuous-fiber-reinforced MMCs,
703–705
Continuous-pultrusion process for
composites, 680–681
Continuous-wave (CV) lasers, 866
Cooling curves, 340–341, 344
Coordination number (CN), 588, 590, 592
Copolymers and homopolymers, 499–502
Copper alloys
classification of, 446–447
production of, 446
properties of, 446
wrought, 447–452
Copper Development Association (CDA),
446–447
Corrosion, 720–779
in biomaterials, 970–971
cavitation damage, 759
control of, 766–771
crevice, 751–753
economic impact of, 721–722
electrochemical, 722–726
erosion, 758
fretting, 759
galvanic cells
with acid or alkaline electrolytes,
730–731
composition, structure, and stress
differences to create, 736–738
concentration, 733–736
with electrolytes that are not one
molar, 728–729
macroscopic, with one-molar
electrolytes, 726–728
microscopic corrosion of single
electrodes, 731–733
galvanic or two-metal, 748–749
hydrogen damage, 760–761
intergranular, 753–755
oxidation of metals, 761–765
pitting, 749–751
rates of
galvanic series in, 745–746
of metal in aqueous solution,
738–741
passivation of metals in, 745
reactions and polarization, 741–745
selective leaching, 759–760
stress, 755–758
uniform or general attack, 746–747
Corrosion fatigue in metals, 312
Cortical bone, 936
Corundum, 602
Covalent bonding
in ceramic materials, 587–591, 623
description of, 68–75
of ethylene molecules, 490–492
Covalent radius, 56
Creep
of metals, 318–321
of polymeric materials, 564–566
of soft biological tissues, 947–948
Creep-rupture (stress-rupture) test of metals,
321–324
Crevice corrosion, 751–753, 970–971
Cristobalite, 609–610
Critical field, 874
Critical radius, undercooling versus,
151–153
Critical (minimum) radius ratio, 588–589
Critical resolved shear stress in, 261
Critical temperature, 874
Crystal and amorphous structure, 92–145.
See also Solidification
amorphous materials, 134–135
analysis of
X-ray diffraction for, 126–133
X-ray sources of, 124–126
atom positions in cubic unit cells,
104–105
body-centered cubic, 119
crystallographic planes and directions in
hexagonal, 114–116
crystal systems and Bravais lattices,
94–95
directions in cubic unit cells, 105–109
face-centered cubic versus hexagonal
close-packed, 116–119
linear atomic density and repeat distance
of, 122Index 1071
metallic
body-centered cubic, 97–100
face-centered cubic, 100–101
hexagonal close-packed, 101–104
overview, 95–97
Miller indices for crystallographic planes
in cubic unit cells, 109–114
planar atomic density of, 120–121
polymorphism or allotropy in, 123–124
space lattice and unit cells, 93–94
volume density of, 119–120
Crystalline imperfections
line defects, 166–169
planar defects, 170–172
point defects, 165–166
volume defects, 172–173
Crystalline silica, 608–609
Crystallinity in polymer materials, 506–511
Crystals
growth of, in liquid metals, 154–155
solidification of single, 156–160
Cubic boron nitride (Borazon), 584, 629
Cubic sites, in interstitial solid solutions,
163
Cubic soft ferrite materials, 921–922
Cubic unit cells
atom positions in, 104–105
directions in, 105–109
Miller indices for crystallographic planes
in, 109–114
X-ray diffraction conditions for, 129–131
Curie, Marie, 32
Curie temperature, 838, 898
Current, electrical, 876–877
Current density, electric, 786, 874
Current flow, electric, 783
CVD (chemical vapor deposition) process,
827–828
CV (continuous-wave) lasers, 866
Cyclic stresses, in fatigue of metals,
309–310
D
Dalton, John, 31
DBT (ductile-to-brittle transition), 294, 300,
302
Deep drawing process for metals, 234–235
Deformation
of ceramic materials, 622–624
of glasses, 636–639
twinning in, 264–265
Degree of polymerization (DP), 493
Degrees of freedom, in Gibbs phase rule,
339–340
δ ferrite, 393–394
Democritus (ancient Greek philosopher), 30
Dendrites, in solidification, 146
Dense packing in ionic solids, 588
Density, 119–122
Dental applications, 965–966, 969–970
Design for corrosion prevention, 768–769
Diamagnetism, 892
Diamond, 604–605
Die casting of aluminum, 445
Dielectric properties of ceramic materials,
832–834
Diffusion
atomic
mechanisms of, 201–203
non-steady-state, 206–208
overview, 201
steady-state, 203–206
case hardening of steel by gas
carburizing, 208–214
in integrated circuit fabrication, 823–825
temperature effects on, 215–218
Digital video disks (DVDs), polymeric
materials in, 11–12
Dipole moments, 79–81
Direct-chill semicontinuous casting process,
155–156
Direction indices, 105–109, 116
Discontinuous (whisker)- and particulatereinforced CMCs, 706–710
Discontinuous-fiber- and particulatereinforced MMCs, 705
Dislocations
as line defects in crystalline
imperfections, 166–167
in plastically deformed metals, 267–269
Domain wall energy, 902–904
Donor energy level, 802
Doping extrinsic semiconductors, 805–808
DP (degree of polymerization), 493
Drift velocity of electrons, 787–788
Drug delivery systems, polymeric materials
for, 962
Drying ceramic materials, 615
Dry pressing ceramic materials, 612
Ductile cast irons, 460–462
Ductile fracture of polymeric materials,
568–570
Ductile metals
fatigue-related structural changes in,
310–311
fracture of, 296–297
strength and ductility improvement in,
327–328
Ductile-to-brittle transition (DBT), 294,
300, 302
Ductility of metals, 247
Du Pont, Inc., 664
DVDs (digital video disks), polymeric
materials in, 11–12
Dynamic toughness, 300
E
Eddy-current energy losses, 907, 924
EDFAs (erbium-doped optical-fiber
amplifiers), 873
Edge dislocations, 167–168, 256
E (electrical) glass, for composites, 660
Elastically deformed metals, 235–236
Elastomers
natural rubber, 549–553
polychloroprene, 554–557
synthetic rubber, 553–554
Electrical conductivity, 784, 795
Electrical current density, 874
Electrical industry, material characteristics
needed by, 7–8
Electrical insulator porcelains, 619–620
Electrical porcelains, 835
Electrical properties of materials, 780–849.
See also Superconducting materials
ceramic materials
as capacitors, 835–836
dielectric properties, 832–834
ferroelectric, 838–841
as insulator materials, 834–835
as semiconductors, 836–838
compound semiconductors, 829–831
energy-band model for, 792–794
extrinsic semiconductors
doping of, 805–808
n-type, 801–803
p-type, 803–805
temperature effects on, 809–811
total ionized impurity concentration
and, 808–8091072 Index
Electrical properties of materials—Cont.
intrinsic semiconductors
electrical conduction in, 794–795
energy-band diagram for, 796–797
pure silicon, 795–796
quantitative relationships for electrical
conduction in, 797–799
temperature effects on, 799–801
metals, electrical conduction in
classic model of, 781–783
drift velocity of electrons in, 787–788
Ohm’s law, 783–786
resistivity, 788–791
microelectronics
integrated circuits, fabrication of,
822–829
planar bipolar transistors, 818–819
planar field-effect transistors, 819–822
nanoelectronics, 841–842
semiconductor devices
bipolar junction transistor, 816–818
overview, 811
pn junction, 812–815
pn junction diode applications,
815–816
Electrical resistance, 784
Electrical resistivity, 784, 788–791
Electric current density, 786
Electric current flow, 783
Electric dipole moment, 79–81
Electrochemical corrosion of metals,
721–726
Electrolytic tough-pitch (ETP) copper,
446, 450
Electromagnetic radiation, 39–40
Electromagnetic spectrum, 851–853
Electron affinity trends across Periodic
Table, 58–60
Electron density, 45–46
Electronegativity of atoms, 60
Electronic materials, 18–19
Electrons
charge cloud of, 34
conduction, 795, 797–798
in covalent bonding, 68
discovery of, 32–33
drift velocity of, 787–788
magnetic moment of single unpaired
atomic, 895–897
in metallic bonding, 75
Emulsion polymerization, 505
Encasement phenomenon, 363–365
Endurance (fatigue) limit, 307
Energy
activation, 197–198
allowable levels of, 41–42
bond, 70–71
ferromagnetism domain structure
determined by, 899–905
in ionic solids, 66–67
maximum energy product, of hard
magnetic materials, 913
of multielectron atoms, 50–52
quantum numbers and levels of, 47–49
soft magnetic material losses of, 906–907
Energy-band model for electrical properties
of materials
insulators, 794
intrinsic semiconductors, 796–797
metals, 792–794
Energy industry, material characteristics
needed by, 7–8
Engineering
for corrosion prevention, 768–769
materials and, 3–7
materials science and, 7–9
tissue, 975–976
Engineering alloys, 388–487
aluminum alloys
for casting, 444–446
precipitation strengthening, 432–438
properties of, 438–439
wrought, 440–443
amorphous metals, 474–475
cast irons
ductile, 460–462
gray, 459–460
malleable, 462–464
properties of, 457
types of, 457–458
white, 459
copper alloys
classification of, 446–447
production of, 446
properties of, 446
wrought, 447–452
intermetallics, 468–470
iron and steel production, 390–393
iron-iron-carbide phase diagram,
393–396
low-alloy steels
alloying element distribution in,
423–424
classification of, 423
eutectoid temperature of steels and,
424–425
hardenability of, 426–430
mechanical properties and applications
of, 430–432
magnesium alloys, 464–466
nickel alloys, 468
plain-carbon steels, heat treatment of
annealing and normalizing, 415–417
austenite, isothermal decomposition
of, 408–413
classification of, 421–422
continuous-cooling transformation
diagram for eutectoid, 413–415
martensite formation, 403–407
tempering, 417–421
plain-carbon steels, slow cooling of,
396–403
shape-memory alloys, 470–474
stainless steels
austenitic, 455–457
ferritic, 452–453
martensitic, 453–455
titanium alloys, 466–468
Engineering ceramic materials, 14
Engineering stress and strain in metals,
236–239
Engineering stress-strain diagram. See
Tensile test and engineering stressstrain diagram
Engineering thermoplastics. See also
Polymeric materials; Thermoplastics
acetals, 537
phenylene oxide-based resins, 536–537
polyamides, 532–535
polycarbonate, 535–536
polyetherimide, 540
polymer alloys, 540–541
polyphenylene sulfide, 539–540
properties of, 531–532
thermoplastic polyesters, 538–539
Environmental conditions, corrosion and,
769
Epoxy resins, 544–546
Equiaxed grains, 149, 154
Equilibrium interionic distance, in
bonding, 63Index 1073
Equilibrium phase diagrams, 337–338
Erbium-doped optical-fiber amplifiers
(EDFAs), 873
Erosion corrosion, 758
ETP (electrolytic tough-pitch) copper,
446, 450
Eutectoid cementite, 401
Eutectoid ferrite, 399
Eutectic composition of alloys, 351–352
Eutectic point, 352
Eutectic reactions, 352, 395
Eutectic temperature, 352
Eutectoid reactions, 395–396
Eutectoid steels
continuous-cooling transformation
diagram for, 413–415
isothermal transformation diagram for,
408–412
overview, 396–398
Eutectoid temperature, 424–425
Exchange energy, 900
Extracellular matrix, 942
Extrinsic semiconductors
doping of, 805–808
n-type, 801–803
p-type, 803–805
temperature effects on, 809–811
total ionized impurity concentration and,
808–809
Extrusion process
for ceramic materials, 614–615
for metals, 231–232
for thermoplastics, 513–514
F
Face-centered cubic (FCC) crystal structure
hexagonal close-packed metallic structure
versus, 116–119
interstitial sites in, 596–598
overview, 95, 100–101
Faraday, Michael, 738n
Faraday’s equation, 738–739
Fatigue, corrosion, 778
Fatigue failure, 306, 628, 669
Fatigue of metals
cyclic stresses, 309–310
factors affecting, 311–312
fatigue crack propagation rate,
312–317
in nanocrystalline metals, 329
overview, 305–308
structural changes in ductile metal from,
310–311
FCC (face-centered cubic) crystal structure.
See Face-centered cubic (FCC) crystal
structure
Feldspars, 610
Femur bone, 939
Ferrimagnetism, 897
Ferrites, 921–925
Ferritic stainless steels, 452–453
Ferroelectric ceramic materials, 838–841
Ferromagnetism
domains of, 898–899
energies determining structure of domains
of, 899–905
magnetization and demagnetization of
ferromagnetic metals, 905–906
overview, 888, 893–895
temperature effect on, 897–898
Ferrous metals and alloys, 9
Ferroxdure (Philips Company), 925
Fiberglass-reinforced plastic composite
materials, 667–668
Fiberglass-reinforcing material in polyester
or epoxy matrix, 17
Fibers for reinforced-plastic composite
materials
aramid (aromatic polyamide), 664–666
carbon, 662–666
glass, 659–662, 664–666
Fibrils, 943
Fibroblasts, 942
Fick, Adolf Eugen, 204n
Fick’s first law of diffusion, 204–205
Fick’s second law of diffusion, 206–208
Fields, magnetic, 887–889
Filament-winding open-mold process for
fiber-reinforced plastic, 678–679
Fillers, as additives, 524
Fireclay refractories, 630
Firing ceramic materials, 610
First electron affinity (EA1), 60
First ionization energy (IE1), 56
Flight systems and subsystems, 3
Float-glass process, 640–641
Fluctuating dipoles, 79–80
Fluid film lubrication, 972–973
Fluorescence, 861
Fluoroplastics, 530–531
Fluxoids, 877
Fontana, M. G., 752
Force, in ionic bonding, 62–64
Forging process for metals, 232–234
Forward-biased pn junction, 813–814
Fosterite, 835
Fracture
biomechanics of bone, 939
of ceramic materials, 624–626
of metals
brittle, 297–300
ductile, 296–297
ductile-to-brittle transition
temperature, 302
fracture toughness, 303–305
overview, 295–296
toughness and impact testing,
300–301
of polymeric materials, 567–570
Free electrons, in metallic bonding, 75
Frenkel, Yakov Ilyich, 166n
Frenkel imperfections, 166
Frequency of electromagnetic radiation, 39
Fretting corrosion, 759, 970–971
Fully stabilized zirconia, 626
Functionality of monomers, 496
G
Galvanic cells
with acid or alkaline electrolytes,
730–731
composition, structure, and stress
differences to create, 736–738
concentration, 733–736
with electrolytes that are not one molar,
728–729
macroscopic, with one-molar electrolytes,
726–728
microscopic, of single electrodes,
731–733
Galvanic corrosion, 748–749, 970
Galvanic series, 745–746
Galvanized steel, 748
Gamma ray waves, 39–40
GE Aviation, 15
General attack corrosion, 746–747
Gibbs, Josiah Willard, 339n
Gibbs phase rule, 339–3401074 Index
Glass
chemically strengthened, 642–643
compositions of, 636
as corrosion control coating, 768
as fibers for reinforced-plastic composite
materials, 659–662, 664–666
forming methods for, 640–641
light reflection, absorption, and
transmittance by silicate, 857–858
metallic, 909–910
structure of, 633–636
tempered, 641–642
viscous deformation of, 636–639
Glass enamel, 643
Glass-forming oxides, 633–634
Glass transition temperature, 506–511, 633
Glazes, 643
Goodyear, Charles, 550
Grain boundaries, as planar defects in
crystalline imperfections, 170–171
Grain-grain boundary, 736
Grain shape in plastically deformed metals,
267–269
Grain structure
ASTM size and diameter of, 173–178
equiaxed, 149, 154
formation of, 154–155
of industrial castings, 155–156
solidified metal as, 146
Gram-mole of an element (Avogadro’s
number of atoms), 35
Graphite, 604
Gray cast irons, 459–460
Greene, N. D., 752
H
Half-cell potentials for metals, 724–726
Hall-Petch equation, 266, 281
Hand lay-up open-mold processes for fiberreinforced plastic, 675–676
Hardenability of low-alloy steels, 426–430
Hardening of aluminum alloys, 432–438
Hard ferrite materials, 925
Hard magnetic materials
alnico (aluminum-nickel) alloys,
915–916
iron-chromium-cobalt (Fe-Cr-Co)
magnetic alloys, 918–920
neodymium-iron-boron (Nd-Fe-B)
magnetic alloys, 917–918
properties of, 912–915
rare earth alloys, 917
Hardness
of ceramic materials, 628–629
of Fe-C martensites, 407
of metals, 251–253
tempering temperature effect on, 418
Hardwoods, 693, 696–697
HCP (hexagonal close-packed) structure.
See Hexagonal close-packed (HCP)
structure
HDPE (high-density polyethylene), 520–522
Heartwood, in trees, 693
Heat stabilizer additives, 523
Heisenberg, Werner, 44
Hess law, 67
Heterogeneous nucleation, 153–154
Hexagonal close-packed (HCP) structure
face-centered cubic metallic crystal
structure versus, 116–119
interstitial sites in, 596–598
overview, 95, 101–104
High-alloy cast iron, 457
High-alumina refractories, 630
High critical temperature superconducting
oxides, 879–881
High-current, high-field superconducting
materials, 877–879
High-density polyethylene (HDPE),
520–522
High resolution transmission electron
microscopy (HRTEM), 180–182, 336
High-temperature reusable-surface
insulation (HRSI) tile material,
631–632
Holes, in pure silicon semiconductors,
795–798
Homogeneous nucleation, 149–151
Homogenization, 351
Homopolymers and copolymers, 499–502
Honeycomb sandwich structure, 702
Hooke, Robert, 244n
Hooke’s law, 244
Hot and cold rolling process for metals,
227–231
Hot isostatic pressing (HIP), 645
Hot pressing ceramic materials, 613
HRTEM (high resolution transmission
electron microscopy), 180–182, 336
Hume-Rothery, William, 342n
Hume-Rothery solid solubility rules, 342
Hybrid orbitals, 71
Hydration reactions, with portland cement,
683–684
Hydrocarbons, covalent bonds in, 72–73
Hydrogel contact lenses, 960–961
Hydrogen atom, Bohr’s theory of, 40–43
Hydrogen bonds, 81
Hydrogen damage, as corrosion, 760–761
Hydrogen embrittlement, 760
Hypereutectoid steels, 396, 401–403, 416
Hypereutectic alloys, 353
Hypoeutectoid steels, 396, 398–401, 416
Hypoeutectic alloys, 353
Hysteresis energy losses, 906–907
Hysteresis loop, magnetization loop
as, 906
I
Impact testing of metals, 300–301
Impact toughness, 300
Impurities
corrosion impact of, 737
in extrinsic semiconductors, 808–809
in silicon wafers for integrated circuits,
214
Index of refraction, 854–855
Induction, magnetic, 889–890
Industrial castings, grain structure of,
155–156
Industrial polymerization, 504–506
Infrared waves, 39–40
Injection molding
of composites, 678–679
of thermoplastics, 512–513
of thermosetting plastics, 518
Inner bark layer, in trees, 693
Insulator materials, 784, 834–835
Integrated circuits
complementary metal oxide
semiconductor devices, 829
diffusion and ion implantation of dopants
in silicon wafer surface, 823–825
impurity diffusion into silicon wafers
for, 214
increased density of transistors on, 19
MOS fabrication technology for, 826–829
photolithography for, 822–823
silicon dioxide layer on, 90
Intel, Inc., 780, 782Index 1075
Intergranular brittle fractures, 299
Intergranular corrosion, 753–755
Interionic distance, in bonding, 62–63
Intermediate oxides, 636
Intermediate phases, 367–369
Intermetallics, 369, 468–470
International Space Station (ISS), 4–6
Interplanar spacing in crystal structures,
112–113
Interstitialcies, as point defects in crystalline
imperfections, 166
Interstitial mechanism of diffusion, 201,
203–204
Interstitial sites in FCC and HCP,
596–598
Interstitial solid solutions, 160, 163–165
Intraocular lens implants, for cataracts, 961
Intrinsic semiconductors
electrical conduction in, 794–795
energy-band diagram for, 796–797
pure silicon, 795–796
quantitative relationships for electrical
conduction in, 797–799
temperature effects on, 799–801
Insulative applications, 11, 14
Invariant reactions
in Fe-Fe3C phase diagram, 394–396
phase diagrams of, 352, 365–367
Inverse spinel ferrites, 922–924
Ion-concentration galvanic cells, 733–734
Ionic bonding
in ceramic materials


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Foundations of Materials Science and Engineering - Sixth Edition
رابط مباشر لتنزيل كتاب Foundations of Materials Science and Engineering - Sixth Edition
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Foundations of Materials Science and Engineering - Sixth Edition
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Foundations of Materials Science and Engineering - Seventh Edition
» كتاب Manufacturing Processes for Engineering Materials - Sixth Edition in SI Units
» حل كتاب Advanced Mechanics of Materials - Sixth Edition Solutions Manual
»  كتاب Applied Strength of Materials - Sixth Edition SI Units Version
» كتاب Maintenance Engineering Handbook Sixth Edition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: