Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1 الأربعاء 18 أبريل 2012, 3:22 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Non-linear Finite Element Analysis of Solids and Structures VOLUME 1: ESSENTIALS M. A. Crisfield FEA Professor of Computational Mechanics Department of Aeronautics Imperial College of Science, Technology and Medicine London, UK
ويتناول الموضوعات الأتية :
Contents Preface Notation 1 General introduction, brief history and introduction to geometric non-linearity 1 1 General introduction and a brief history 1 1 1 A brief history 1 2 A simple example for geometric non-linearity with one degree of freedom 1 2 1 An incremental solution 1 2 2 An iterative solution (the Newton-Raphson method) 1 2 3 Combined tncremental/iterative solutions (full or modified Newton-Raphson or the initial-stress method) 1 3 A simple example with two variables 13 1 ‘Exact solutions 1 3 3 An energy basis List of books on (or related to) non-linear finite elements References to early work on non-linear finite elements The use of virtual work 1 4 Special notation 2 A shallow truss element with Fortran computer program 2 1 A shallow truss element 2 2 A set of Fortran subroutines 2 2 1 Subroutine ELEMENT 2 2 2 Subroutine INPUT 2 2 3 Subroutine FORCE 2 2 4 Subroutine ELSTRUC 2 2 5 2 2 6 Subroutine CROUT 2 2 7 Subroutine SOLVCR 2 3 A flowchart and computer program for an incremental (Euler) solution 2 3 1 Program NONLTA 2 4 A flowchart and computer program for an iterative solution using the Newton-Raphson method 2 4 1 Program NONLTB 2 4 2 A flowchart and computer program for an incrementaViterative solution procedure using full or modified Newton-Raphson iterations 2 5 1 Program NONLTC Subroutine BCON and details on displacement control Flowchart and computer listing for subroutine ITER Vvi CONTENTS 2 6 Problems for analysis Single variable with spring 2 6 1 1 Incremental solution using program NONLTA 2 6 1 2 Iterative solution using program NONLTB 2 6 1 3 Incremental/iterative solution using program NONLTC Perfect buckling with two variables 2 6 4 1 Pure incremental solution using program NONLTA 2 6 4 2 An incremental/\terative solution using program NONLTC with small increments 2 6 4 3 An incremental/iterative solution using program NONLTC with large increments 2 6 4 4 An incremental/iterative solution using program NONLTC with displacement control 2 6 2 Single variable no spring 2 6 4 Imperfect 'buckling with two variades 2 7 Special notation 2 8 References 3 Truss elements and solutions for different strain measures 3.1 A simple example with one degree of freedom 3.1.1 A rotated engineering strain 3.1.2 Green's strain 3.1.3 A rotated log-strain 3.1.5 Comparing the solutions 3.2 Solutions for a bar under uniaxial tension or compression 3.2.1 Almansi's strain 3.3 A truss element based on Green's strain 3.3.3 The tangent stiffness matrix 3.3.4 Using shape functions 3.3.5 Alternative expressions involving updated coordinates 3.3.6 An updated Lagrangian formulation 3.4 An alternative formulation using a rotated engineering strain 3.5 An alternative formulation using a rotated log-strain 3.6 An alternative corotational formulation using engineering strain 3.7 Space truss elements 3.8 Mid-point incremental strain updates A rotated log-strain formulation allowing for volume change Geometry and the strain-displacement relationships Equilibrium and the internal force vector Fortran subroutines for general truss elements 3.9.1 Subroutine ELEMENT 3.9.2 Subroutine INPUT 3.9.3 Subroutine FORCE 3.10 Problems for analysis 3.10.1 Bar under uniaxial load (large strain) 3.10.2 Rotating bar 3.10.2.1 Deep truss (large-strains) (Example 2.1) 3.10.2.2 Shallow truss (small-strains) (Example 2.2) 3.10.3 Hardening problem with one variable (Example 3) 3.10.4 Bifurcation problem (Example 4) 3.10.5 Limit point with two variables (Example 5) 3.10.6 Hardening solution with two variables (Example 6) 3.10.7 Snap-back (Example 7) 98CONTENTS vii 3.11 Special notation 3.12 References 4 Basic continuum mechanics Stress and strain Stress-st rain relationships 4 2 1 Plane strain axial symmetry and plane stress 4 2 2 Decomposition into vo,umetric and deviatoric components 4 2 3 An alternative expression using the Lame constants Transformations and rotations 4 3 1 Transformations to a new set of axes 4 3 2 A rigid-body rotation Green’s strain 4 4 1 Virtual work expressions using Green s strain 4 4 2 Work expressions using von Karman s non-linear strain-displacement relqtionships for a plate Almansi’s strain The true or Cauchy stress Summarising the different stress and strain measures The polar-decomposition theorem 4 8 1 Ari example Green and Almansi strains in terms of the principal stretches 4.10 A simple description of the second Piola-Kirchhoff stress 4.11 Corotational stresses and strains 4.12 More on constitutive laws 4.13 Special notation 4.14 References 5 Basic finite element analysis of continua 5 1 Introduction and the total Lagrangian formulation 5 1 1 Element formulation 5 1 2 The tangent stiffness matrix 5 1 3 Extension to three dimensions 5 1 4 An axisymmetric membrane 5 2 Implenientation of the total Lagrangian method 5 2 1 With dn elasto-plastic or hypoelastic material 5 3 The updated Lagrangian formulation 5 4 Implementation of the updated Lagrangian method Incremental formulation involving updating after convergence A total formulation for an elastic response An approximate incremental formulation 5 5 Special notation 5 6 References 6 Basic plasticity 6 1 Introduction 6 2 Stress updating incremental or iterative strains? 6 3 The standard elasto-plastic modular matrix for an elastic/perfectly plastic von Mises material under plane stress 6 3 1 Non-associative plasticity 6 4 Introducing hardening 159viii CONTENTS 6 4 3 Kinematic hardening Von Mises plasticity in three dimensions 6 5 1 Splitting the update into volumetric and deviatoric parts 6 5 2 Using tensor notation 6 6 Integrating the rate equations 6 6 1 Crossing the yield surface 6 6 2 Two alternative predictors 6 6 3 Returning to the yield surface 6 6 4 Sub-incrementation 6 6 5 Generalised trapezoidal or mid-point algorithms 6 6 6 A backward-Euler return 6 6 7 The radial return algorithm a special form of backward-Euler procedure The consistent tangent modular matrix 6 7 1 Splitting the deviatoric from the volumetric components 6 7 2 A combined formulation 6 8 Special two-dimensional situations 6 8 1 Plane strain and axial symmetry 6 8 2 Plane stress 6 8 2 1 A consistent tangent modular matrix for plane stress Isotropic strain hardening Isotropic work hardening 6 9 Numerical examples 6 9 1 Intersection point 6 9 2 6 9 3 Sub-increments 6 9 4 6 9 5 Backward-Euler return A forward-Euler integration Correction or return to the yield surface 6 9 5 1 General method 6 9 5 2 Specific plane-stress method 6 9 6 Consistent and inconsistent tangents 6 9 6 1 Solution using the general method 6 9 6 2 Solution using the specific plane-stress method 6 10 Plasticity and mathematical programming 6 10 1 6 1 1 Special notation 6 12 References A backward-Euler or implicit formulation 7 Two-dimensional formulations for beams and rods 7 1 A shallow-arch formulation A simple corotational element using Kirchhoff theory 7 2 1 Stretching 'stresses and 'strains 7 2 8 Some observations 7 3 A simple corotational element using Timoshenko beam theory 74 An alternative element using Reissner's beam theory The tangent stiffness matrix Introduction of material non-linearity or eccentricity Numerical integration and specific shape functions Introducing shear deformation Specific shape fur,ctions, order of integration and shear-locking Bending 'stresses' and 'strains The virtual local displacements The virtual work The tangent stiffness matrix llsing shape functions Including higher-order axial terms 221CONTENTS ix 7.5 An isoparametric degenerate-continuum approach using the total Lagrangian formulation 7.6 Special notation 7.7 References The introduction of shape functions and extension to a general isoparametric element 8 Shells 8 1 A range of shallow shells 8 1 1 Strain-displacement relationships 8 1 2 Stress-strain relatiomhips 8 1 3 Shape functions 8 1 4 Virtual work and the internal force vector 8 1 5 The tangent stiffness matrix 8 1 6 Numerical integration matching shape functions and 'locking 8 1 7 Extensions to the shallow-shell formulation 8 2 A degenerate-continuum element using a total Lagrangian formulation 8 2 1 The tangent stiffness matrix 8 3 Special notation 8 4 References 9 More advanced solution procedures 9 2 Line searches The total potential energy 9 2 1 Theory Flowchart and Fortran subroutine to find the new step length 9 2 2 1 Fortran subroutine SEARCH Implementation within a finite element computer program 9 2 3 1 Input 9 2 3 2 Changes to the iterative subroutine ITER 9 2 3 3 Flowchart for Iine-search loop at the structural level The need for arc-length or similar techniques and examples of their use Various forms of generalised displacement control 93 2 1 The 'spherical arc-length method 9 3 2 2 Linearised arc-length methods 9 3 2 3 Generalised displacement control at a specific variable Flowchart and Fortran subroutines for the application of the arc-length constraint 9 4 1 1 Fortran subroutines ARCLl and QSOLV Flowchart and Fortran subroutine for the main structural iterative loop (ITER) 9 4 2 1 Fortran subroutine ITER 9 3 The arc-length and related methods 9 4 Detailed formulation for ttre 'cylindrical arc-length' method 9 4 3 The predictor solution Automatic increments, non-proportional loading and convegence criteria 9 5 3 Non-proportional loading 9 5 4 Convergence criteria Automatic increment cutting The current stiffness parameter and automatic switching to the arc-length method Restart facilities and the computation of the lowest eigenmode of K, rcjrtran subroutine LSLOOP Input for incremental/iterative control 9 6 2 1 Subroutine INPUT2 flowchart and Fortran subroutine for the main program module NONLTD 9 6 3 1 Fortran for main program module NONLTD 9 6 The updated computer prcgram 299X CONTENTS Flowchart and Fortran subroutine. for routine SCALUP 9 6 4 1 Fortran for routine SCALUP Flowchart and Fortran for subroutine NEXINC 9 6 5 1 Fortran for subroutine NEXINC 9 7 Quasi-Newton methods 9 8 Secant-related acceleration tecriniques 9 8 1 Cut-outS 9 8 2 Flowchart and Fortran for subroutine ACCEL 9 8 2 1 Fortran for subroutine ACCEL 9 9 Problems for analysts 9 9 1 The problems Small-strain limit-point cxample with one variable (Example 2 2) Hardening problem with one variable (Example 3) Bifurcation problem (Example 4) Limit point with two variables (Example 5) Hardening solution with two variable (Example 6) Snap-back (Example 7) 9 10 Further work on solution procedures 9 11 Special notation 9 12 References Appendix Lobatto rules for numerical integration Subject index Author index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1 رابط مباشر لتنزيل كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1
عدل سابقا من قبل Admin في الإثنين 18 فبراير 2019, 5:33 pm عدل 1 مرات |
|
Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1 الجمعة 02 نوفمبر 2012, 10:17 pm | |
| |
|
أحمد علي الحارثي مهندس فعال
عدد المساهمات : 238 التقييم : 414 تاريخ التسجيل : 02/10/2012 العمر : 35 الدولة : مصر العمل : مهندس إنتاج وتصميم ميكانيكي الجامعة : المنيا
| موضوع: رد: كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1 الجمعة 02 نوفمبر 2012, 10:25 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Non-linear Finite Element Analysis of Solids and Structures Volume 1 الجمعة 02 نوفمبر 2012, 10:26 pm | |
| |
|