Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Manufacturing Technology for Aerospace Structural Materials الأحد 17 فبراير 2013, 6:16 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Manufacturing Technology for Aerospace Structural Materials F.C. Campbell
و المحتوى كما يلي :
Contents Preface xiii Chapter 1 Introduction 1 1.1 Aluminum 4 1.2 Magnesium and Beryllium 6 1.3 Titanium 7 1.4 High Strength Steels 8 1.5 Superalloys 8 1.6 Composites 9 1.7 Adhesive Bonding and Integrally Cocured Structure 10 1.8 Metal and Ceramic Matrix Composites 11 1.9 Assembly 12 Summary 12 References 13 Chapter 2 Aluminum 15 2.1 Metallurgical Considerations 17 2.2 Aluminum Alloy Designation 23 2.3 Aluminum Alloys 25 2.4 Melting and Primary Fabrication 31 2.4.1 Rolling Plate and Sheet 33 2.4.2 Extrusion 37 2.5 Heat Treating 37 2.5.1 Solution Heat Treating and Aging 37 2.5.2 Annealing 42 2.6 Forging 43 2.7 Forming 46 2.7.1 Blanking and Piercing 47 2.7.2 Brake Forming 48 2.7.3 Deep Drawing 49 2.7.4 Stretch Forming 50 vContents 2.7.5 Rubber Pad Forming 51 2.7.6 Superplastic Forming 51 2.8 Casting 57 2.8.1 Sand Casting 60 2.8.2 Plaster and Shell Molding 62 2.8.3 Permanent Mold Casting 63 2.8.4 Die Casting 64 2.8.5 Investment Casting 64 2.8.6 Evaporative Pattern Casting 64 2.8.7 Casting Heat Treatment 65 2.8.8 Casting Properties 65 2.9 Machining 66 2.9.1 High Speed Machining 68 2.9.2 Chemical Milling 76 2.10 Joining 76 2.11 Welding 77 2.11.1 Gas Metal and Gas Tungsten Arc Welding 78 2.11.2 Plasma Arc Welding 80 2.11.3 Laser Welding 81 2.11.4 Resistance Welding 82 2.11.5 Friction Stir Welding 83 2.12 Chemical Finishing 88 Summary 89 Recommended Reading 90 References 90 Chapter 3 Magnesium and Beryllium 93 MAGNESIUM 95 3.1 Magnesium Metallurgical Considerations 95 3.2 Magnesium Alloys 97 3.2.1 Wrought Magnesium Alloys 97 3.2.2 Magnesium Casting Alloys 99 3.3 Magnesium Fabrication 103 3.3.1 Magnesium Forming 103 3.3.2 Magnesium Sand Casting 104 3.3.3 Magnesium Heat Treating 106 3.3.4 Magnesium Machining 107 3.3.5 Magnesium Joining 107 3.4 Magnesium Corrosion Protection 108 BERYLLIUM 109 3.5 Beryllium Metallurgical Considerations 109 3.6 Beryllium Alloys 110 viContents 3.7 Beryllium Powder Metallurgy 111 3.8 Beryllium Fabrication 114 3.8.1 Beryllium Forming 114 3.8.2 Beryllium Machining 115 3.8.3 Beryllium Joining 116 3.9 Aluminum–Beryllium Alloys 116 Summary 116 References 118 Chapter 4 Titanium 119 4.1 Metallurgical Considerations 120 4.2 Titanium Alloys 126 4.2.1 Commercially Pure Titanium 126 4.2.2 Alpha and Near-Alpha Alloys 127 4.2.3 Alpha–Beta Alloys 128 4.2.4 Beta Alloys 131 4.3 Melting and Primary Fabrication 132 4.4 Forging 137 4.5 Directed Metal Deposition 140 4.6 Forming 143 4.7 Superplastic Forming 145 4.8 Heat Treating 150 4.8.1 Stress Relief 151 4.8.2 Annealing 152 4.8.3 Solution Treating and Aging 152 4.9 Investment Casting 154 4.10 Machining 158 4.11 Joining 165 4.12 Welding 165 4.13 Brazing 170 Summary 171 Recommended Reading 172 References 173 Chapter 5 High Strength Steels 175 5.1 Metallurgical Considerations 176 5.2 Medium Carbon Low Alloy Steels 182 5.3 Fabrication of Medium Carbon Low Alloy Steels 186 5.4 Heat Treatment of Medium Carbon Low Alloy Steels 191 5.5 High Fracture Toughness Steels 198 5.6 Maraging Steels 200 5.7 Precipitation Hardening Stainless Steels 202 viiContents Summary 207 Recommended Reading 207 References 208 Chapter 6 Superalloys 211 6.1 Metallurgical Considerations 213 6.2 Commercial Superalloys 219 6.2.1 Nickel Based Superalloys 221 6.2.2 Iron–Nickel Based Superalloys 224 6.2.3 Cobalt Based Superalloys 225 6.3 Melting and Primary Fabrication 225 6.4 Powder Metallurgy 228 6.4.1 Powder Metallurgy Forged Alloys 228 6.4.2 Mechanical Alloying 230 6.5 Forging 232 6.6 Forming 236 6.7 Investment casting 238 6.7.1 Polycrystalline Casting 239 6.7.2 Directional Solidification (DS) Casting 240 6.7.3 Single Crystal (SC) Casting 242 6.8 Heat Treatment 243 6.8.1 Solution Strengthened Superalloys 243 6.8.2 Precipitation Strengthened Nickel Base Superalloys 244 6.8.3 Precipitation Strengthened Iron–Nickel Base Superalloys 246 6.8.4 Cast Superalloy Heat Treatment 247 6.9 Machining 248 6.9.1 Turning 251 6.9.2 Milling 252 6.9.3 Grinding 254 6.10 Joining 256 6.10.1 Welding 256 6.10.2 Brazing 260 6.10.3 Transient Liquid Phase (TLP) Bonding 263 6.11 Coating Technology 264 6.11.1 Diffusion Coatings 264 6.11.2 Overlay Coatings 265 6.11.3 Thermal Barrier Coatings 266 Summary 266 Recommended Reading 270 References 270 viiiContents Chapter 7 Polymer Matrix Composites 273 7.1 Materials 276 7.1.1 Fibers 277 7.1.2 Matrices 280 7.1.3 Product Forms 282 7.2 Fabrication Processes 286 7.3 Cure Tooling 286 7.3.1 Tooling Considerations 286 7.4 Ply Collation 291 7.4.1 Manual Lay-up 291 7.4.2 Flat Ply Collation and Vacuum Forming 294 7.5 Automated Tape Laying 295 7.6 Filament Winding 298 7.7 Fiber Placement 304 7.8 Vacuum Bagging 307 7.9 Curing 311 7.9.1 Curing of Epoxy Composites 313 7.9.2 Theory of Void Formation 314 7.9.3 Hydrostatic Resin Pressure 318 7.9.4 Resin and Prepreg Variables 322 7.9.5 Condensation Curing Systems 323 7.9.6 Residual Curing Stresses 324 7.10 Liquid Molding 327 7.11 Preform Technology 328 7.11.1 Fibers 329 7.11.2 Woven Fabrics 330 7.11.3 Multiaxial Warp Knits 331 7.11.4 Stitching 331 7.11.5 Braiding 333 7.11.6 Preform Handling 334 7.12 Resin Injection 336 7.12.1 RTM Curing 338 7.12.2 RTM Tooling 338 7.13 Vacuum Assisted Resin Transfer Molding 339 7.14 Pultrusion 341 7.15 Thermoplastic Composites 343 7.15.1 Thermoplastic Consolidation 345 7.15.2 Thermoforming 351 7.15.3 Thermoplastic Joining 355 7.16 Trimming and Machining Operations 361 Summary 364 Recommended Reading 366 References 366 ixContents Chapter 8 Adhesive Bonding and Integrally Cocured Structure 369 8.1 Advantages of Adhesive Bonding 370 8.2 Disadvantages of Adhesive Bonding 371 8.3 Theory of Adhesion 372 8.4 Joint Design 372 8.5 Adhesive Testing 377 8.6 Surface Preparation 378 8.7 Epoxy Adhesives 383 8.7.1 Two-part Room Temperature Curing Epoxy Liquid and Paste Adhesives 384 8.7.2 Epoxy Film Adhesives 385 8.8 Bonding Procedures 385 8.8.1 Prekitting of Adherends 385 8.8.2 Prefit Evaluation 386 8.8.3 Adhesive Application 387 8.8.4 Bond Line Thickness Control 388 8.8.5 Bonding 388 8.9 Sandwich Structures 390 8.9.1 Honeycomb Core 393 8.9.2 Honeycomb Processing 399 8.9.3 Balsa Wood 403 8.9.4 Foam Cores 404 8.9.5 Syntactic Core 406 8.9.6 Inspection 407 8.10 Integrally Cocured Structure 408 Summary 415 Recommended Reading 416 References 417 Chapter 9 Metal Matrix Composites 419 9.1 Discontinuously Reinforced Metal Matrix Composites 424 9.2 Stir Casting 424 9.3 Slurry Casting – Compocasting 427 9.4 Liquid Metal Infiltration (Squeeze Casting) 427 9.5 Pressure Infiltration Casting 430 9.6 Spray Deposition 431 9.7 Powder Metallurgy Methods 432 9.8 Secondary Processing of Discontinuous MMCs 434 9.9 Continuous Fiber Aluminum Metal Matrix Composites 435 9.10 Continuous Fiber Reinforced Titanium Matrix Composites 440 xContents 9.11 Secondary Fabrication of Titanium Matrix Composites 447 9.12 Fiber Metal Laminates 452 Summary 455 Recommended Reading 456 References 456 Chapter 10 Ceramic Matrix Composites 459 10.1 Reinforcements 464 10.2 Matrix Materials 467 10.3 Interfacial Coatings 470 10.4 Fiber Architectures 471 10.5 Fabrication Methods 472 10.6 Powder Processing 472 10.7 Slurry Infiltration and Consolidation 474 10.8 Polymer Infiltration and Pyrolysis (PIP) 476 10.9 Chemical Vapor Infiltration (CVI) 482 10.10 Directed Metal Oxidation (DMO) 487 10.11 Liquid Silicon Infiltration (LSI) 488 Summary 490 Recommended Reading 492 References 492 Chapter 11 Structural Assembly 495 11.1 Framing 496 11.2 Shimming 498 11.3 Hole Drilling 499 11.3.1 Manual Drilling 500 11.3.2 Power Feed Drilling 504 11.3.3 Automated Drilling 505 11.3.4 Automated Riveting Equipment 508 11.3.5 Drill Bit Geometries 509 11.3.6 Reaming 514 11.3.7 Countersinking 514 11.4 Fastener Selection and Installation 515 11.4.1 Special Considerations for Composite Joints 518 11.4.2 Solid Rivets 520 11.4.3 Pin and Collar Fasteners 523 xiContents 11.4.4 Bolts and Nuts 525 11.4.5 Blind Fasteners 527 11.4.6 Fatigue Improvement and Interference Fit Fasteners 528 11.5 Sealing 533 11.6 Painting 534 Summary 535 Recommended Reading 537 References 537 Appendix A Metric Conversions 539 Appendix B A Brief Review of Materials Fundamentals 541 B.1 Materials 542 B.2 Metallic Structure 543 B.3 Ceramics 555 B.4 Polymers 556 B.5 Composites 562 Recommended Reading 565 References 566 Appendix C Mechanical and Environmental Properties 567 C.1 Static Strength Properties 568 C.2 Failure Modes 570 C.3 Fracture Toughness 572 C.4 Fatigue 576 C.5 Creep and Stress Rupture 581 C.6 Corrosion 582 C.7 Hydrogen Embrittlement 584 C.8 Stress Corrosion Cracking 586 C.9 High Temperature Oxidation and Corrosion 587 C.10 Polymeric Matrix Composite Degradation 587 Recommended Reading 591 References 591 Index Index Adhesive bonding, 10–11, 370, 415–16 advantages, 370–1 bonding procedures, 385 adhesive application, 387–8 bond line thickness control, 388 bonding, 388–90 prefit evaluation, 386–7 prekitting of adherends, 385–6 disadvantages, 371–2 epoxy adhesives, 383–4 film, 385 two-part room temperature curing liquid/paste, 384 joint design, 372–7 sandwich structures, 390–3 balsa wood, 403–404 foam cores, 404–406 honeycomb core, 393–9 honeycomb processing, 399–403 inspection, 407–408 syntactic core, 406–407 surface preparation, 378–9 aluminum and titanium, 380–3 principles, 380 protection during handling, 383 techniques, 379–80 testing, 377–8 theory of adhesion, 372 Air travel, 2 Airbus A320, A330, A340, 10 Airframe durability, 2 Alloys, 6 Aluminum, 4–6, 89–90 advantages, 16–17 alloy designation, 23–5 alloys, 25–31 casting: alloys, 57–8 chemical compositions, 57 contamination, 59–60 die casting, 64 evaporative pattern casting, 64–5 furnaces, 58–9 grain size control, 58 heat treatment, 65 investment casting, 64 permanent mold casting, 63–4 plaster/shell molding, 62–3 premium quality, 58 properties, 65–6 sand casting, 60–2 sludge formation/settling, 60 temperature control, 59 uses, 57 chemical finishing, 88–9 disadvantages, 17 forging, 43–6 blocker, 45–6 conventional, 46 high definition, 46 precision, 46 forming, 46–7 blanking/piercing, 47–8 brake forming, 48–9 deep drawing, 49–50 rubber pad forming, 51 stretch forming, 50–1 superplastic forming, 51–7 heat treating, 37 annealing, 42–3 solution heat treating/aging, 37–42Index Aluminum, (Continued) joining, 76 machining, 66–8 chemical milling, 76 high speed, 68–76 major attributes of wrought alloys, 18 melting/primary fabrication, 31–3 extrusion, 37 rolling plate/sheet, 33–6 metallurgical considerations, 17–23 strengthening solution, 96 welding, 77–8 friction stir, 83–8 gas metal/gas tungsten arc, 78–80 laser, 81–2 plasma arc, 80–1 resistance, 82–3 Aluminum MMCs, 435–40 Aluminum–beryllium alloys, 116 Aluminum–copper alloy (2XXX series), 6 Aluminum–zinc alloy (7XXX series), 6 Aramid fiber, 278 Assembly see Structural assembly Automated tape laying (ATL), 295–8 Automated variable polarity plasma arc (VPPA), 80–1 AV-8B Harrier, 2, 10 B-2 bomber, 10 Balsa wood, 403–404 Beryllium, 6–7, 94–5, 109, 116–18 alloys, 110 aluminum–beryllium alloys, 116 fabrication: forming, 114–15 joining, 116 machining, 115–16 metallurgical considerations, 109 corrosion resistance, 109 toxicity, 110 powder metallurgy, 111–14 Boeing aircraft, 7, 10 Boron, 2 Boron fiber, 279–80 Carbon fiber, 2, 278–9 Carbon–carbon (C–C) composites, 12, 463 Ceramic matrix composites, 11–12, 460–4, 490–2, 563 chemical vapor infiltration (CVI), 482–7 directed metal oxidation (DMO), 487–8 fabrication methods, 472 fiber architectures, 471 interfacial coatings, 470 liquid silicon infiltration (LSI), 488–90 materials, 467–70 polymer infiltration/pyrolysis (PIP), 476–82 powder processing, 472–4 reinforcements, 464–7 slurry infiltration/consolidation, 474–6 Ceramics, 555–6 ionic/covalent bonds, 556 Chemical vapor infiltration (CVI), 482–7 Cobalt, 8 Cold hearth melting, 7 Commercial aircraft, 4 Compocasting (slurry casting), 427 Composites, 2, 4, 9–10, 562–5 fiber, 562 interface, 562–3 matrix, 562 rule of mixtures, 563–5 see also Ceramic matrix composites; Metal matrix composites (MMCs); Polymer matrix composites Contour tape laying machines (CTLM), 295 Corrosion, 582 chemical, 582 electrochemical, 582–3 exfoliation, 584 galvanic, 583–4 intergranular, 584 pitting, 584 Crack growth rate, 125–6 Creep, 581 594Index Didymium, 96–7 Direct current electrode positive (DCEP) arrangement, 78, 79 Directed metal oxidation (DMO), 487–8 Directionally solidified (DS) casting, 9 E-glass fiber, 277 Electron beam (EB) welding, 166, 168–9 Electroslag remelting (ESR), 226–7 Environmental properties see Mechanical/environmental properties Fatigue, 576–7 crack growth rate, 578–81 crack initiation/growth, 6 endurance limit, 578 fracture mechanics approach, 580 high cycle tests, 579 strength, 125–6 strength/life, 578 Fiber metal laminates, 452–4 Fighter aircraft, 2, 7 Flat tape laying machines (FTLM), 295 Foam cores, 404–406 Fracture toughness, 6 Friction stir welding (FSW), 6, 83–8 Gas metal arc welding (GMAW), 78–80, 166, 168, 259 Gas tungsten arc welding (GTAW), 78–80, 166, 167–8, 258–9 Glass fiber, 277 Glass fiber reinforced aluminum laminates (GLARE), 11, 453–4 Graphite fiber, 278–9 High fracture toughness steels, 198–200 High strength steels, 8, 176 high fracture toughness steels, 198–200 maraging steels, 200–202 medium carbon low alloy steels, 182–6 fabrication, 186–91 heat treatment, 191–7 metallurgical considerations, 176–82 precipitation hardening stainless steels, 202–207 quality levels, 185 stress corrosion cracking, 190–1 High temperature oxidation/ corrosion, 587 hot corrosion, 587 oxidation, 587 Honeycomb core, 393–4 advantages, 396–7 cell configurations, 394–5 comparative properties, 396 corrosion protection, 397 expansion process, 395–6 freeze-thaw cycles, 397–8 liquid damage, 397–9 processing, 399 bonding, 401 cleaning/drying, 401 cocuring, 402–403 forming, 399 migration/crushing, 403 potting, 399–401 pressure selection, 401–402 splicing, 399 trimming, 399 Hot isostatic pressing (HIP), 8 Hydrogen embrittlement, 584–6 Impurities, 6 Integrally cocured structure, 10–11, 408–10 advantages, 410 cobonding, 413, 415 disadvantages, 410 hat, 410 spring-in, 410 terminations, 411, 413 Investment casting, 8 Iron–nickel, 8 Laser beam welding (LBW), 81–2, 169 Liquid metal infiltration (squeeze casting), 427–30 Liquid molding, 327–8 595Index Liquid silicon infiltration (LI), 488–90 Low velocity impact damage (LVID), 590 Magnesium, 6–7, 94, 95 corrosion protection, 108–109 fabrication, 103 forming, 103–104 heat treating, 106–107 joining, 107–108 machining, 107 sand casting, 104–105 metallurgical considerations: HCP crystalline structure, 95–6 melting point, 95–6 strengthening solution, 96–7 Magnesium alloys, 97 casting alloys, 99 Mg–Ag–Rare Earth, 102–103 Mg–Al/Mg–Zn, 99–101 Mg–Zn–Zr/Mg–Rare Earth–Zr, 101–102 wrought alloys, 97–9 Manganese, 96 Maraging steels, 200–202 Material density, 2 Materials, 542 Mechanical alloying (MA), 230–2 Mechanical/environmental properties, 568 failure modes, 570 brittle fractures, 570–1 ductile, 570 ductile-to-brittle transition, 571 fatigue, 572 intergranularly, 572 transgranular, 572 transition temperature, 571–2 fracture control, 576 fracture critical, 576 fracture toughness, 572–4 critical stress intensity factor, 574 plane-strain, 574–5 static strength, 568–9 Medium carbon low alloy steels, 182 43XX class, 183–4 classification, 183 elements, 182–3 fabrication: annealed condition, 188 forging, 186–8 grinding, 189 machinability ratings, 188–9 welded/brazed, 189–90 hardening, 183, 192 austenitizing, 195–6 quenching, 196 tempering, 197 heat treatment, 191–4 one-step temper embrittlement, 197 stress relieving, 192 susceptible to decarburization, 192 two-step temper embrittlement, 197 Metal matrix composites (MMCs), 11–12, 420–4, 455–6 continuous fiber aluminum MMCs, 435–40 continuous fiber reinforced titanium matrix composites, 440–7 discontinuously reinforced, 424 liquid metal infiltration (squeeze casting), 427–30 powder metallurgy methods, 432–4 pressure infiltration casting, 430–1 secondary fabrication of titanium matrix composites, 447–51 fiber metal laminates, 452–4 secondary processing of discontinuous MMCs, 434–5 slurry casting (compocasting), 427 spray deposition, 431–2 stir casting, 424–7 Metallic structure, 543–55 annealing, 547 body centered cubic (BCC), 543 dislocation, 545–6 dispersion strengthened alloys, 552 eutectic reaction, 553 eutectoid reaction, 554 face centered cubic (FCC), 543 grain size, 548 596Index hexagonal close-packed (HCP), 543 martensite, 551 pearlite, 551 peritectic reaction, 553 peritectoid reaction, 554 plastic deformation, 546 precipitation hardening, 549 slip direction, 546 slip planes, 546 slip system, 546 stress relieving, 547–8 substitutional/interstitial solid solutions, 548–9 work hardening, 546–7 Metric conversions, 540 Mischmetal, 96 Multiaxial warp knits (MWKs), 331 Nickel, 8 Plasma arc welding (PAW), 166, 168 Polymer infiltration and pyrolysis (PIP), 476–7 conventional processes, 479–80 sol-gel infiltration, 480–2 space shuttle C–C, 477–9 Polymer matrix composites, 364–6 advantages, 274 automated tape laying, 295–8 cost drivers, 275–6 cure tooling, 286 considerations, 286–91 expansion/contraction, 289–90 inside/outside moldline (IML/OML), 287 material selection, 287–9 spring-in, 290–1 curing, 311–13 condensation curing system, 323–4 epoxy composite, 313–14 hydrostatic resin pressure, 318–22 residual curing stresses, 324–7 resin/prepreg variables, 322–3 theory of void formation, 314–18 disadvantages, 274–5 fabrication processes, 286 fiber placement, 304–307 filament winding, 298–300 autoclave curing, 304 choice of mandrel material, 303 equipment, 300 fiber orientation, 300 helical, 300 hoop, 301–302 polar, 301 prepregs, 303 viscosity/pot life, 302 wet, 302–303 liquid molding, 327–8 materials, 276–7 fibers, 277–80 hybrids, 285 matrices, 280–2 preform, 285–6 prepregs, 282–3 product forms, 282–6 rovings, tows, yarns, 282 stitched fabric, 284–5 woven fabric, 283–4 ply collation, 291 flat ply collation/vacuum forming, 294–5 manual lay-up, 291–4 preform technology, 328–9 braiding, 333–4 fibers, 329–30 multiaxial warp knits, 331 preform handling, 334–5 stitching, 331–3 woven fabrics, 330–1 pultrusion, 341–3 resin injection, 336–8 RTM curing, 338 RTM tooling, 338–9 thermoplastic composites, 343–5 consolidation, 345–51 joining, 355–61 thermoforming, 351–5 trimming/machining operations, 361–4 vacuum assisted resin transfer molding, 339–41 vacuum bagging, 307–11 597Index Polymeric matrix composite degradation: absorbed moisture, 588–9 delaminations, 589–91 temperature, 587–8 Polymers, 556–7 thermosets/thermoplastics, 557–62 Polymethylmethacrylimides (PMIs), 406 Polystyrene cores, 405 Polyurethane foams, 405 Polyvinyl chloride (PVC) foam, 406 Powder metallurgy (PM), 228, 432–4 forged alloys, 228–30 mechanical alloying, 230–2 Pressure infiltration casting (PIC), 430–1 Quartz fiber, 277 Rare earths (RE), 96 Resin transfer molding (RTM), 327–8 curing, 338 tooling, 338–9 Self-forming technique (SFT), 454 Silver, 96 Single crystal (SC) casting, 9 Slurry casting (compocasting), 427 Space shuttle, 477–9 Spray deposition, 431 Squeeze casting (liquid metal infiltration), 427–30 Stir casting, 424–7 Stress corrosion cracking (SCC), 6, 586 Stress rupture, 582 Structural assembly, 12, 496, 535–6 fastener selection/installation, 515–18 blind fasteners, 527–8 bolts/nuts, 525–7 fatigue improvement/interference fit fasteners, 528–32 pin/collar fasteners, 523–5 solid rivets, 520–3 special considerations for composite joints, 518–20 framing, 496–8 hole drilling, 499–500 automated, 505–508 automated riveting equipment, 508–509 countersinking, 514–15 drill bit geometries, 509–14 manual, 500–504 power feed, 504–505 reaming, 514 painting, 534–5 sealing, 533–4 shimming, 498–9 Superalloys, 8–9, 212–13, 266–70 coating technology, 264 diffusion, 264–5 overlay, 265–6 thermal barrier, 266 commercial, 219–21 cobalt based, 225 iron–nickel based, 224–5 nickel based, 221–4 forging, 232–3 die lubrication, 234 furnace heated, 233 isothermal/hot die, 233, 235–6 open die, 233 plastic deformation, 234 quality, 235 recrystallization, 234 ring rolling, 233 roll, 233 slow strain rates, 234 upset/extrusion, 233 forming, 236 annealed condition, 237–8 cold operations, 236–7 hot, 237 heat treatment, 243 cast superalloy heat treatment, 247–8 precipitation strengthened iron–nickel base, 246–7 precipitation strengthened nickel base, 244–6 solution strengthened, 243–4 598Index investment casting, 238–9 directional solidification (DS) casting, 240–2 polycrystalline, 239–40 single crystal (SC) casting, 242–3 joining, 256 brazing, 260–3 transient liquid phase (TLP) bonding, 263–4 welding, 256–60 machining, 248–50 grinding, 254 milling, 252–4 turning, 251–2 melting/primary fabrication, 225–6 electroslag remelting, 226–7 vacuum arc melting, 226–7 vacuum induction melting, 226 metallurgical considerations, 213 compositions, 215–16 creep failures, 218 forms/usage, 217–18 powder metallurgy (PM), 218 processes, 218 strengthening, 213–15 topologically closed-packed (TCP) phases, 216–17 powder metallurgy, 228–32 Superplastic forming, 51–2 advantages, 52–3 Ashby and Verral model, 53–4 cavitation, 55–6 gas pressure, 56–7 requirements, 53 single sheet process, 54–5 Superplastic forming/diffusion bonding (SPF/DB), 8 Thermal barrier coatings (TBC), 9 Thermomechanically affect zone (TMAZ), 85 Thermoplastic composites, 343, 557–62 addition polymerization, 558 advantages, 344–5 amorphous, 559, 560–1 condensation reaction, 561 consolidation, 345–6 autoclave, 349 autoconsolidation/in-situ placement, 349–51 Autohesion process, 347–8 continuous, 348–9 film stacking, 346 processing temperature, 346–7 two press process, 348 joining, 355–61 adhesive bonding, 356 dual resin bonding, 356 induction welding, 358–9 mechanical fastening, 356 melt fusion, 356 resistance welding, 357 ultrasonic welding, 358 semi-crystalline, 559–60 thermoforming, 351–2 diaphragm forming, 354 matched metal dies, 352 preheating methods, 352 pultrusion, 354–5 resin transfer molding, 355 transfer time, 352–4 thermoset/thermoplastic difference, 343–4 Titanium, 7–8, 120, 171–2 alloys, 126 brazing, 170 directed metal deposition (laser powder, laser direct manufacturing, electron beam free form fabrication), 140–3 forging, 137–8 alpha–beta defects, 138–9 beta, 139–40 hot die/isothermal, 140 forming: hot formed, 143–5 springback, 143 vacuum/creep forming, 145 heat treating, 150–1 annealing, 152 solution treating and aging, 152–4 stress relief, 151–2 investment casting, 154–8 599Index Titanium, (Continued) joining, 165 machining: chemical milling, 164 cutting fluids, 160 cutting tools, 160 damage to surface, 163–4 difficulties, 158–9 flood coolant, 164 improper, 159 milling and drilling, 160–3 rigid machine tools, 159–60 successful, 159 melting/primary fabrication: as-cast ingot conditioning, 136 cold hearth melting, 133 consumable vacuum arc melting, 132 defects, 134–5 equiaxed structure, 136 hot rolling, 136–7 Hunter process, 132 Kroll process, 132 primary, 135–6 metallurgical considerations, 120 affinity for interstitial elements, 123 alpha/beta phases, 120–1 classification of alloys, 121–3 melting point, 126 microstructure/mechanical property development, 124–6 strength, 123–4 superplastic forming: advantages, 145–6 four-sheet process, 149–50 single-sheet process, 146–7 three-sheet process, 147–9 two-sheet process, 147 welding, 165–6 cleanliness, 166–7 diffusion bonding, 169–70 electron beam welding, 166, 168–9 gas metal arc welding, 166, 168 gas tungsten arc welding, 166, 167–8 laser beam welding, 169 plasma arc welding, 166, 168 spot/seam welding, 169 types, 166 Titanium alloys, 126 alpha–beta, 128–31 beta anneal (BA), 129 mill annealed (MA), 129 recrystallization anneal (RA), 129 solution treated and aged (STA), 129 alpha/near-alpha, 127–8 beta, 131–2 commercially pure, 126–7 Titanium matrix composites (TMCs): continuous fiber reinforced, 440–7 secondary fabrication, 447–51 Transient liquid phase (TLP) bonding, 263–4 Turbine blades, 8 Vacuum arc remelting (VAR), 132–3, 226–7 Vacuum assisted resin transfer molding (VARTM), 338, 339–41 Vacuum induction melting (VIM), 226 Vacuum melting, 7 Zinc, 96 Zirconium, 96
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials رابط مباشر لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials
عدل سابقا من قبل Admin في الأحد 31 يناير 2021, 9:33 pm عدل 3 مرات |
|