كتاب Manufacturing Technology for Aerospace Structural Materials - صفحة 2
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Manufacturing Technology for Aerospace Structural Materials

اذهب الى الأسفل 
انتقل الى الصفحة : الصفحة السابقة  1, 2, 3  الصفحة التالية
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأحد 17 فبراير 2013, 6:16 pm

تذكير بمساهمة فاتح الموضوع :

أخوانى فى الله
أحضرت لكم كتاب
Manufacturing Technology for Aerospace Structural Materials
F.C. Campbell  

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 M_t_f_10
و المحتوى كما يلي :


Contents
Preface xiii
Chapter 1 Introduction 1
1.1 Aluminum 4
1.2 Magnesium and Beryllium 6
1.3 Titanium 7
1.4 High Strength Steels 8
1.5 Superalloys 8
1.6 Composites 9
1.7 Adhesive Bonding and Integrally Cocured Structure 10
1.8 Metal and Ceramic Matrix Composites 11
1.9 Assembly 12
Summary 12
References 13
Chapter 2 Aluminum 15
2.1 Metallurgical Considerations 17
2.2 Aluminum Alloy Designation 23
2.3 Aluminum Alloys 25
2.4 Melting and Primary Fabrication 31
2.4.1 Rolling Plate and Sheet 33
2.4.2 Extrusion 37
2.5 Heat Treating 37
2.5.1 Solution Heat Treating and Aging 37
2.5.2 Annealing 42
2.6 Forging 43
2.7 Forming 46
2.7.1 Blanking and Piercing 47
2.7.2 Brake Forming 48
2.7.3 Deep Drawing 49
2.7.4 Stretch Forming 50
vContents
2.7.5 Rubber Pad Forming 51
2.7.6 Superplastic Forming 51
2.8 Casting 57
2.8.1 Sand Casting 60
2.8.2 Plaster and Shell Molding 62
2.8.3 Permanent Mold Casting 63
2.8.4 Die Casting 64
2.8.5 Investment Casting 64
2.8.6 Evaporative Pattern Casting 64
2.8.7 Casting Heat Treatment 65
2.8.8 Casting Properties 65
2.9 Machining 66
2.9.1 High Speed Machining 68
2.9.2 Chemical Milling 76
2.10 Joining 76
2.11 Welding 77
2.11.1 Gas Metal and Gas Tungsten Arc Welding 78
2.11.2 Plasma Arc Welding 80
2.11.3 Laser Welding 81
2.11.4 Resistance Welding 82
2.11.5 Friction Stir Welding 83
2.12 Chemical Finishing 88
Summary 89
Recommended Reading 90
References 90
Chapter 3 Magnesium and Beryllium 93
MAGNESIUM 95
3.1 Magnesium Metallurgical Considerations 95
3.2 Magnesium Alloys 97
3.2.1 Wrought Magnesium Alloys 97
3.2.2 Magnesium Casting Alloys 99
3.3 Magnesium Fabrication 103
3.3.1 Magnesium Forming 103
3.3.2 Magnesium Sand Casting 104
3.3.3 Magnesium Heat Treating 106
3.3.4 Magnesium Machining 107
3.3.5 Magnesium Joining 107
3.4 Magnesium Corrosion Protection 108
BERYLLIUM 109
3.5 Beryllium Metallurgical Considerations 109
3.6 Beryllium Alloys 110
viContents
3.7 Beryllium Powder Metallurgy 111
3.8 Beryllium Fabrication 114
3.8.1 Beryllium Forming 114
3.8.2 Beryllium Machining 115
3.8.3 Beryllium Joining 116
3.9 Aluminum–Beryllium Alloys 116
Summary 116
References 118
Chapter 4 Titanium 119
4.1 Metallurgical Considerations 120
4.2 Titanium Alloys 126
4.2.1 Commercially Pure Titanium 126
4.2.2 Alpha and Near-Alpha Alloys 127
4.2.3 Alpha–Beta Alloys 128
4.2.4 Beta Alloys 131
4.3 Melting and Primary Fabrication 132
4.4 Forging 137
4.5 Directed Metal Deposition 140
4.6 Forming 143
4.7 Superplastic Forming 145
4.8 Heat Treating 150
4.8.1 Stress Relief 151
4.8.2 Annealing 152
4.8.3 Solution Treating and Aging 152
4.9 Investment Casting 154
4.10 Machining 158
4.11 Joining 165
4.12 Welding 165
4.13 Brazing 170
Summary 171
Recommended Reading 172
References 173
Chapter 5 High Strength Steels 175
5.1 Metallurgical Considerations 176
5.2 Medium Carbon Low Alloy Steels 182
5.3 Fabrication of Medium Carbon Low Alloy Steels 186
5.4 Heat Treatment of Medium Carbon Low Alloy Steels 191
5.5 High Fracture Toughness Steels 198
5.6 Maraging Steels 200
5.7 Precipitation Hardening Stainless Steels 202
viiContents
Summary 207
Recommended Reading 207
References 208
Chapter 6 Superalloys 211
6.1 Metallurgical Considerations 213
6.2 Commercial Superalloys 219
6.2.1 Nickel Based Superalloys 221
6.2.2 Iron–Nickel Based Superalloys 224
6.2.3 Cobalt Based Superalloys 225
6.3 Melting and Primary Fabrication 225
6.4 Powder Metallurgy 228
6.4.1 Powder Metallurgy Forged Alloys 228
6.4.2 Mechanical Alloying 230
6.5 Forging 232
6.6 Forming 236
6.7 Investment casting 238
6.7.1 Polycrystalline Casting 239
6.7.2 Directional Solidification (DS) Casting 240
6.7.3 Single Crystal (SC) Casting 242
6.8 Heat Treatment 243
6.8.1 Solution Strengthened Superalloys 243
6.8.2 Precipitation Strengthened Nickel Base
Superalloys 244
6.8.3 Precipitation Strengthened Iron–Nickel Base
Superalloys 246
6.8.4 Cast Superalloy Heat Treatment 247
6.9 Machining 248
6.9.1 Turning 251
6.9.2 Milling 252
6.9.3 Grinding 254
6.10 Joining 256
6.10.1 Welding 256
6.10.2 Brazing 260
6.10.3 Transient Liquid Phase (TLP) Bonding 263
6.11 Coating Technology 264
6.11.1 Diffusion Coatings 264
6.11.2 Overlay Coatings 265
6.11.3 Thermal Barrier Coatings 266
Summary 266
Recommended Reading 270
References 270
viiiContents
Chapter 7 Polymer Matrix Composites 273
7.1 Materials 276
7.1.1 Fibers 277
7.1.2 Matrices 280
7.1.3 Product Forms 282
7.2 Fabrication Processes 286
7.3 Cure Tooling 286
7.3.1 Tooling Considerations 286
7.4 Ply Collation 291
7.4.1 Manual Lay-up 291
7.4.2 Flat Ply Collation and Vacuum Forming 294
7.5 Automated Tape Laying 295
7.6 Filament Winding 298
7.7 Fiber Placement 304
7.8 Vacuum Bagging 307
7.9 Curing 311
7.9.1 Curing of Epoxy Composites 313
7.9.2 Theory of Void Formation 314
7.9.3 Hydrostatic Resin Pressure 318
7.9.4 Resin and Prepreg Variables 322
7.9.5 Condensation Curing Systems 323
7.9.6 Residual Curing Stresses 324
7.10 Liquid Molding 327
7.11 Preform Technology 328
7.11.1 Fibers 329
7.11.2 Woven Fabrics 330
7.11.3 Multiaxial Warp Knits 331
7.11.4 Stitching 331
7.11.5 Braiding 333
7.11.6 Preform Handling 334
7.12 Resin Injection 336
7.12.1 RTM Curing 338
7.12.2 RTM Tooling 338
7.13 Vacuum Assisted Resin Transfer Molding 339
7.14 Pultrusion 341
7.15 Thermoplastic Composites 343
7.15.1 Thermoplastic Consolidation 345
7.15.2 Thermoforming 351
7.15.3 Thermoplastic Joining 355
7.16 Trimming and Machining Operations 361
Summary 364
Recommended Reading 366
References 366
ixContents
Chapter 8 Adhesive Bonding and Integrally Cocured Structure 369
8.1 Advantages of Adhesive Bonding 370
8.2 Disadvantages of Adhesive Bonding 371
8.3 Theory of Adhesion 372
8.4 Joint Design 372
8.5 Adhesive Testing 377
8.6 Surface Preparation 378
8.7 Epoxy Adhesives 383
8.7.1 Two-part Room Temperature Curing
Epoxy Liquid and Paste Adhesives 384
8.7.2 Epoxy Film Adhesives 385
8.8 Bonding Procedures 385
8.8.1 Prekitting of Adherends 385
8.8.2 Prefit Evaluation 386
8.8.3 Adhesive Application 387
8.8.4 Bond Line Thickness Control 388
8.8.5 Bonding 388
8.9 Sandwich Structures 390
8.9.1 Honeycomb Core 393
8.9.2 Honeycomb Processing 399
8.9.3 Balsa Wood 403
8.9.4 Foam Cores 404
8.9.5 Syntactic Core 406
8.9.6 Inspection 407
8.10 Integrally Cocured Structure 408
Summary 415
Recommended Reading 416
References 417
Chapter 9 Metal Matrix Composites 419
9.1 Discontinuously Reinforced Metal Matrix Composites 424
9.2 Stir Casting 424
9.3 Slurry Casting – Compocasting 427
9.4 Liquid Metal Infiltration (Squeeze Casting) 427
9.5 Pressure Infiltration Casting 430
9.6 Spray Deposition 431
9.7 Powder Metallurgy Methods 432
9.8 Secondary Processing of Discontinuous MMCs 434
9.9 Continuous Fiber Aluminum Metal Matrix
Composites 435
9.10 Continuous Fiber Reinforced Titanium Matrix
Composites 440
xContents
9.11 Secondary Fabrication of Titanium Matrix
Composites 447
9.12 Fiber Metal Laminates 452
Summary 455
Recommended Reading 456
References 456
Chapter 10 Ceramic Matrix Composites 459
10.1 Reinforcements 464
10.2 Matrix Materials 467
10.3 Interfacial Coatings 470
10.4 Fiber Architectures 471
10.5 Fabrication Methods 472
10.6 Powder Processing 472
10.7 Slurry Infiltration and Consolidation 474
10.8 Polymer Infiltration and Pyrolysis (PIP) 476
10.9 Chemical Vapor Infiltration (CVI) 482
10.10 Directed Metal Oxidation (DMO) 487
10.11 Liquid Silicon Infiltration (LSI) 488
Summary 490
Recommended Reading 492
References 492
Chapter 11 Structural Assembly 495
11.1 Framing 496
11.2 Shimming 498
11.3 Hole Drilling 499
11.3.1 Manual Drilling 500
11.3.2 Power Feed Drilling 504
11.3.3 Automated Drilling 505
11.3.4 Automated Riveting Equipment 508
11.3.5 Drill Bit Geometries 509
11.3.6 Reaming 514
11.3.7 Countersinking 514
11.4 Fastener Selection and Installation 515
11.4.1 Special Considerations for Composite
Joints 518
11.4.2 Solid Rivets 520
11.4.3 Pin and Collar Fasteners 523
xiContents
11.4.4 Bolts and Nuts 525
11.4.5 Blind Fasteners 527
11.4.6 Fatigue Improvement and Interference Fit
Fasteners 528
11.5 Sealing 533
11.6 Painting 534
Summary 535
Recommended Reading 537
References 537
Appendix A Metric Conversions 539
Appendix B A Brief Review of Materials Fundamentals 541
B.1 Materials 542
B.2 Metallic Structure 543
B.3 Ceramics 555
B.4 Polymers 556
B.5 Composites 562
Recommended Reading 565
References 566
Appendix C Mechanical and Environmental Properties 567
C.1 Static Strength Properties 568
C.2 Failure Modes 570
C.3 Fracture Toughness 572
C.4 Fatigue 576
C.5 Creep and Stress Rupture 581
C.6 Corrosion 582
C.7 Hydrogen Embrittlement 584
C.8 Stress Corrosion Cracking 586
C.9 High Temperature Oxidation and Corrosion 587
C.10 Polymeric Matrix Composite Degradation 587
Recommended Reading 591
References 591
Index
Index
Adhesive bonding, 10–11, 370,
415–16
advantages, 370–1
bonding procedures, 385
adhesive application, 387–8
bond line thickness control, 388
bonding, 388–90
prefit evaluation, 386–7
prekitting of adherends, 385–6
disadvantages, 371–2
epoxy adhesives, 383–4
film, 385
two-part room temperature curing
liquid/paste, 384
joint design, 372–7
sandwich structures, 390–3
balsa wood, 403–404
foam cores, 404–406
honeycomb core, 393–9
honeycomb processing, 399–403
inspection, 407–408
syntactic core, 406–407
surface preparation, 378–9
aluminum and titanium, 380–3
principles, 380
protection during handling, 383
techniques, 379–80
testing, 377–8
theory of adhesion, 372
Air travel, 2
Airbus A320, A330, A340, 10
Airframe durability, 2
Alloys, 6
Aluminum, 4–6, 89–90
advantages, 16–17
alloy designation, 23–5
alloys, 25–31
casting:
alloys, 57–8
chemical compositions, 57
contamination, 59–60
die casting, 64
evaporative pattern casting, 64–5
furnaces, 58–9
grain size control, 58
heat treatment, 65
investment casting, 64
permanent mold casting, 63–4
plaster/shell molding, 62–3
premium quality, 58
properties, 65–6
sand casting, 60–2
sludge formation/settling, 60
temperature control, 59
uses, 57
chemical finishing, 88–9
disadvantages, 17
forging, 43–6
blocker, 45–6
conventional, 46
high definition, 46
precision, 46
forming, 46–7
blanking/piercing, 47–8
brake forming, 48–9
deep drawing, 49–50
rubber pad forming, 51
stretch forming, 50–1
superplastic forming, 51–7
heat treating, 37
annealing, 42–3
solution heat treating/aging, 37–42Index
Aluminum, (Continued)
joining, 76
machining, 66–8
chemical milling, 76
high speed, 68–76
major attributes of wrought alloys, 18
melting/primary fabrication, 31–3
extrusion, 37
rolling plate/sheet, 33–6
metallurgical considerations, 17–23
strengthening solution, 96
welding, 77–8
friction stir, 83–8
gas metal/gas tungsten arc, 78–80
laser, 81–2
plasma arc, 80–1
resistance, 82–3
Aluminum MMCs, 435–40
Aluminum–beryllium alloys, 116
Aluminum–copper alloy (2XXX
series), 6
Aluminum–zinc alloy (7XXX
series), 6
Aramid fiber, 278
Assembly see Structural assembly
Automated tape laying (ATL), 295–8
Automated variable polarity plasma arc
(VPPA), 80–1
AV-8B Harrier, 2, 10
B-2 bomber, 10
Balsa wood, 403–404
Beryllium, 6–7, 94–5, 109, 116–18
alloys, 110
aluminum–beryllium alloys, 116
fabrication:
forming, 114–15
joining, 116
machining, 115–16
metallurgical considerations, 109
corrosion resistance, 109
toxicity, 110
powder metallurgy, 111–14
Boeing aircraft, 7, 10
Boron, 2
Boron fiber, 279–80
Carbon fiber, 2, 278–9
Carbon–carbon (C–C) composites,
12, 463
Ceramic matrix composites, 11–12,
460–4, 490–2, 563
chemical vapor infiltration (CVI),
482–7
directed metal oxidation (DMO),
487–8
fabrication methods, 472
fiber architectures, 471
interfacial coatings, 470
liquid silicon infiltration (LSI), 488–90
materials, 467–70
polymer infiltration/pyrolysis (PIP),
476–82
powder processing, 472–4
reinforcements, 464–7
slurry infiltration/consolidation, 474–6
Ceramics, 555–6
ionic/covalent bonds, 556
Chemical vapor infiltration (CVI),
482–7
Cobalt, 8
Cold hearth melting, 7
Commercial aircraft, 4
Compocasting (slurry casting), 427
Composites, 2, 4, 9–10, 562–5
fiber, 562
interface, 562–3
matrix, 562
rule of mixtures, 563–5
see also Ceramic matrix composites;
Metal matrix composites
(MMCs); Polymer matrix
composites
Contour tape laying machines
(CTLM), 295
Corrosion, 582
chemical, 582
electrochemical, 582–3
exfoliation, 584
galvanic, 583–4
intergranular, 584
pitting, 584
Crack growth rate, 125–6
Creep, 581
594Index
Didymium, 96–7
Direct current electrode positive (DCEP)
arrangement, 78, 79
Directed metal oxidation (DMO), 487–8
Directionally solidified (DS) casting, 9
E-glass fiber, 277
Electron beam (EB) welding, 166,
168–9
Electroslag remelting (ESR), 226–7
Environmental properties
see Mechanical/environmental
properties
Fatigue, 576–7
crack growth rate, 578–81
crack initiation/growth, 6
endurance limit, 578
fracture mechanics approach, 580
high cycle tests, 579
strength, 125–6
strength/life, 578
Fiber metal laminates, 452–4
Fighter aircraft, 2, 7
Flat tape laying machines (FTLM), 295
Foam cores, 404–406
Fracture toughness, 6
Friction stir welding (FSW), 6, 83–8
Gas metal arc welding (GMAW), 78–80,
166, 168, 259
Gas tungsten arc welding (GTAW),
78–80, 166, 167–8, 258–9
Glass fiber, 277
Glass fiber reinforced aluminum
laminates (GLARE), 11, 453–4
Graphite fiber, 278–9
High fracture toughness steels, 198–200
High strength steels, 8, 176
high fracture toughness steels,
198–200
maraging steels, 200–202
medium carbon low alloy steels,
182–6
fabrication, 186–91
heat treatment, 191–7
metallurgical considerations, 176–82
precipitation hardening stainless
steels, 202–207
quality levels, 185
stress corrosion cracking, 190–1
High temperature oxidation/
corrosion, 587
hot corrosion, 587
oxidation, 587
Honeycomb core, 393–4
advantages, 396–7
cell configurations, 394–5
comparative properties, 396
corrosion protection, 397
expansion process, 395–6
freeze-thaw cycles, 397–8
liquid damage, 397–9
processing, 399
bonding, 401
cleaning/drying, 401
cocuring, 402–403
forming, 399
migration/crushing, 403
potting, 399–401
pressure selection, 401–402
splicing, 399
trimming, 399
Hot isostatic pressing (HIP), 8
Hydrogen embrittlement, 584–6
Impurities, 6
Integrally cocured structure, 10–11,
408–10
advantages, 410
cobonding, 413, 415
disadvantages, 410
hat, 410
spring-in, 410
terminations, 411, 413
Investment casting, 8
Iron–nickel, 8
Laser beam welding (LBW), 81–2, 169
Liquid metal infiltration (squeeze
casting), 427–30
Liquid molding, 327–8
595Index
Liquid silicon infiltration (LI),
488–90
Low velocity impact damage
(LVID), 590
Magnesium, 6–7, 94, 95
corrosion protection, 108–109
fabrication, 103
forming, 103–104
heat treating, 106–107
joining, 107–108
machining, 107
sand casting, 104–105
metallurgical considerations:
HCP crystalline structure, 95–6
melting point, 95–6
strengthening solution, 96–7
Magnesium alloys, 97
casting alloys, 99
Mg–Ag–Rare Earth, 102–103
Mg–Al/Mg–Zn, 99–101
Mg–Zn–Zr/Mg–Rare Earth–Zr,
101–102
wrought alloys, 97–9
Manganese, 96
Maraging steels, 200–202
Material density, 2
Materials, 542
Mechanical alloying (MA), 230–2
Mechanical/environmental
properties, 568
failure modes, 570
brittle fractures, 570–1
ductile, 570
ductile-to-brittle transition, 571
fatigue, 572
intergranularly, 572
transgranular, 572
transition temperature, 571–2
fracture control, 576
fracture critical, 576
fracture toughness, 572–4
critical stress intensity
factor, 574
plane-strain, 574–5
static strength, 568–9
Medium carbon low alloy steels, 182
43XX class, 183–4
classification, 183
elements, 182–3
fabrication:
annealed condition, 188
forging, 186–8
grinding, 189
machinability ratings, 188–9
welded/brazed, 189–90
hardening, 183, 192
austenitizing, 195–6
quenching, 196
tempering, 197
heat treatment, 191–4
one-step temper embrittlement, 197
stress relieving, 192
susceptible to decarburization, 192
two-step temper embrittlement, 197
Metal matrix composites (MMCs),
11–12, 420–4, 455–6
continuous fiber aluminum MMCs,
435–40
continuous fiber reinforced titanium
matrix composites, 440–7
discontinuously reinforced, 424
liquid metal infiltration (squeeze
casting), 427–30
powder metallurgy methods, 432–4
pressure infiltration casting, 430–1
secondary fabrication of titanium
matrix composites, 447–51
fiber metal laminates, 452–4
secondary processing of discontinuous
MMCs, 434–5
slurry casting (compocasting), 427
spray deposition, 431–2
stir casting, 424–7
Metallic structure, 543–55
annealing, 547
body centered cubic (BCC), 543
dislocation, 545–6
dispersion strengthened alloys, 552
eutectic reaction, 553
eutectoid reaction, 554
face centered cubic (FCC), 543
grain size, 548
596Index
hexagonal close-packed (HCP), 543
martensite, 551
pearlite, 551
peritectic reaction, 553
peritectoid reaction, 554
plastic deformation, 546
precipitation hardening, 549
slip direction, 546
slip planes, 546
slip system, 546
stress relieving, 547–8
substitutional/interstitial solid
solutions, 548–9
work hardening, 546–7
Metric conversions, 540
Mischmetal, 96
Multiaxial warp knits (MWKs), 331
Nickel, 8
Plasma arc welding (PAW), 166, 168
Polymer infiltration and pyrolysis (PIP),
476–7
conventional processes, 479–80
sol-gel infiltration, 480–2
space shuttle C–C, 477–9
Polymer matrix composites, 364–6
advantages, 274
automated tape laying, 295–8
cost drivers, 275–6
cure tooling, 286
considerations, 286–91
expansion/contraction, 289–90
inside/outside moldline
(IML/OML), 287
material selection, 287–9
spring-in, 290–1
curing, 311–13
condensation curing system,
323–4
epoxy composite, 313–14
hydrostatic resin pressure, 318–22
residual curing stresses, 324–7
resin/prepreg variables, 322–3
theory of void formation, 314–18
disadvantages, 274–5
fabrication processes, 286
fiber placement, 304–307
filament winding, 298–300
autoclave curing, 304
choice of mandrel material, 303
equipment, 300
fiber orientation, 300
helical, 300
hoop, 301–302
polar, 301
prepregs, 303
viscosity/pot life, 302
wet, 302–303
liquid molding, 327–8
materials, 276–7
fibers, 277–80
hybrids, 285
matrices, 280–2
preform, 285–6
prepregs, 282–3
product forms, 282–6
rovings, tows, yarns, 282
stitched fabric, 284–5
woven fabric, 283–4
ply collation, 291
flat ply collation/vacuum
forming, 294–5
manual lay-up, 291–4
preform technology, 328–9
braiding, 333–4
fibers, 329–30
multiaxial warp knits, 331
preform handling, 334–5
stitching, 331–3
woven fabrics, 330–1
pultrusion, 341–3
resin injection, 336–8
RTM curing, 338
RTM tooling, 338–9
thermoplastic composites, 343–5
consolidation, 345–51
joining, 355–61
thermoforming, 351–5
trimming/machining operations,
361–4
vacuum assisted resin transfer
molding, 339–41
vacuum bagging, 307–11
597Index
Polymeric matrix composite degradation:
absorbed moisture, 588–9
delaminations, 589–91
temperature, 587–8
Polymers, 556–7
thermosets/thermoplastics, 557–62
Polymethylmethacrylimides (PMIs), 406
Polystyrene cores, 405
Polyurethane foams, 405
Polyvinyl chloride (PVC) foam, 406
Powder metallurgy (PM), 228, 432–4
forged alloys, 228–30
mechanical alloying, 230–2
Pressure infiltration casting (PIC), 430–1
Quartz fiber, 277
Rare earths (RE), 96
Resin transfer molding (RTM), 327–8
curing, 338
tooling, 338–9
Self-forming technique (SFT), 454
Silver, 96
Single crystal (SC) casting, 9
Slurry casting (compocasting), 427
Space shuttle, 477–9
Spray deposition, 431
Squeeze casting (liquid metal
infiltration), 427–30
Stir casting, 424–7
Stress corrosion cracking (SCC),
6, 586
Stress rupture, 582
Structural assembly, 12, 496, 535–6
fastener selection/installation,
515–18
blind fasteners, 527–8
bolts/nuts, 525–7
fatigue improvement/interference fit
fasteners, 528–32
pin/collar fasteners, 523–5
solid rivets, 520–3
special considerations for composite
joints, 518–20
framing, 496–8
hole drilling, 499–500
automated, 505–508
automated riveting equipment,
508–509
countersinking, 514–15
drill bit geometries, 509–14
manual, 500–504
power feed, 504–505
reaming, 514
painting, 534–5
sealing, 533–4
shimming, 498–9
Superalloys, 8–9, 212–13,
266–70
coating technology, 264
diffusion, 264–5
overlay, 265–6
thermal barrier, 266
commercial, 219–21
cobalt based, 225
iron–nickel based, 224–5
nickel based, 221–4
forging, 232–3
die lubrication, 234
furnace heated, 233
isothermal/hot die, 233,
235–6
open die, 233
plastic deformation, 234
quality, 235
recrystallization, 234
ring rolling, 233
roll, 233
slow strain rates, 234
upset/extrusion, 233
forming, 236
annealed condition, 237–8
cold operations, 236–7
hot, 237
heat treatment, 243
cast superalloy heat treatment,
247–8
precipitation strengthened
iron–nickel base, 246–7
precipitation strengthened nickel
base, 244–6
solution strengthened, 243–4
598Index
investment casting, 238–9
directional solidification (DS)
casting, 240–2
polycrystalline, 239–40
single crystal (SC) casting, 242–3
joining, 256
brazing, 260–3
transient liquid phase (TLP)
bonding, 263–4
welding, 256–60
machining, 248–50
grinding, 254
milling, 252–4
turning, 251–2
melting/primary fabrication, 225–6
electroslag remelting, 226–7
vacuum arc melting, 226–7
vacuum induction melting, 226
metallurgical considerations, 213
compositions, 215–16
creep failures, 218
forms/usage, 217–18
powder metallurgy (PM), 218
processes, 218
strengthening, 213–15
topologically closed-packed (TCP)
phases, 216–17
powder metallurgy, 228–32
Superplastic forming, 51–2
advantages, 52–3
Ashby and Verral model, 53–4
cavitation, 55–6
gas pressure, 56–7
requirements, 53
single sheet process, 54–5
Superplastic forming/diffusion bonding
(SPF/DB), 8
Thermal barrier coatings (TBC), 9
Thermomechanically affect zone
(TMAZ), 85
Thermoplastic composites, 343, 557–62
addition polymerization, 558
advantages, 344–5
amorphous, 559, 560–1
condensation reaction, 561
consolidation, 345–6
autoclave, 349
autoconsolidation/in-situ placement,
349–51
Autohesion process, 347–8
continuous, 348–9
film stacking, 346
processing temperature, 346–7
two press process, 348
joining, 355–61
adhesive bonding, 356
dual resin bonding, 356
induction welding, 358–9
mechanical fastening, 356
melt fusion, 356
resistance welding, 357
ultrasonic welding, 358
semi-crystalline, 559–60
thermoforming, 351–2
diaphragm forming, 354
matched metal dies, 352
preheating methods, 352
pultrusion, 354–5
resin transfer molding, 355
transfer time, 352–4
thermoset/thermoplastic
difference, 343–4
Titanium, 7–8, 120, 171–2
alloys, 126
brazing, 170
directed metal deposition (laser
powder, laser direct
manufacturing, electron beam
free form fabrication), 140–3
forging, 137–8
alpha–beta defects, 138–9
beta, 139–40
hot die/isothermal, 140
forming:
hot formed, 143–5
springback, 143
vacuum/creep forming, 145
heat treating, 150–1
annealing, 152
solution treating and aging,
152–4
stress relief, 151–2
investment casting, 154–8
599Index
Titanium, (Continued)
joining, 165
machining:
chemical milling, 164
cutting fluids, 160
cutting tools, 160
damage to surface, 163–4
difficulties, 158–9
flood coolant, 164
improper, 159
milling and drilling, 160–3
rigid machine tools, 159–60
successful, 159
melting/primary fabrication:
as-cast ingot conditioning, 136
cold hearth melting, 133
consumable vacuum arc
melting, 132
defects, 134–5
equiaxed structure, 136
hot rolling, 136–7
Hunter process, 132
Kroll process, 132
primary, 135–6
metallurgical considerations, 120
affinity for interstitial elements, 123
alpha/beta phases, 120–1
classification of alloys, 121–3
melting point, 126
microstructure/mechanical property
development, 124–6
strength, 123–4
superplastic forming:
advantages, 145–6
four-sheet process, 149–50
single-sheet process, 146–7
three-sheet process, 147–9
two-sheet process, 147
welding, 165–6
cleanliness, 166–7
diffusion bonding, 169–70
electron beam welding, 166, 168–9
gas metal arc welding, 166, 168
gas tungsten arc welding, 166,
167–8
laser beam welding, 169
plasma arc welding, 166, 168
spot/seam welding, 169
types, 166
Titanium alloys, 126
alpha–beta, 128–31
beta anneal (BA), 129
mill annealed (MA), 129
recrystallization anneal (RA), 129
solution treated and aged
(STA), 129
alpha/near-alpha, 127–8
beta, 131–2
commercially pure, 126–7
Titanium matrix composites (TMCs):
continuous fiber reinforced, 440–7
secondary fabrication, 447–51
Transient liquid phase (TLP)
bonding, 263–4
Turbine blades, 8
Vacuum arc remelting (VAR), 132–3,
226–7
Vacuum assisted resin transfer molding
(VARTM), 338, 339–41
Vacuum induction melting (VIM), 226
Vacuum melting, 7
Zinc, 96
Zirconium, 96


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials
رابط مباشر لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials
الرجوع الى أعلى الصفحة اذهب الى الأسفل

كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى


عدد المساهمات : 18996
تاريخ التسجيل : 01/07/2009

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأحد 17 فبراير 2013, 6:16 pm

أخوانى فى الله
أحضرت لكم كتاب
Manufacturing Technology for Aerospace Structural Materials
F.C. Campbell  

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 M_t_f_10
و المحتوى كما يلي :


Contents
Preface xiii
Chapter 1 Introduction 1
1.1 Aluminum 4
1.2 Magnesium and Beryllium 6
1.3 Titanium 7
1.4 High Strength Steels 8
1.5 Superalloys 8
1.6 Composites 9
1.7 Adhesive Bonding and Integrally Cocured Structure 10
1.8 Metal and Ceramic Matrix Composites 11
1.9 Assembly 12
Summary 12
References 13
Chapter 2 Aluminum 15
2.1 Metallurgical Considerations 17
2.2 Aluminum Alloy Designation 23
2.3 Aluminum Alloys 25
2.4 Melting and Primary Fabrication 31
2.4.1 Rolling Plate and Sheet 33
2.4.2 Extrusion 37
2.5 Heat Treating 37
2.5.1 Solution Heat Treating and Aging 37
2.5.2 Annealing 42
2.6 Forging 43
2.7 Forming 46
2.7.1 Blanking and Piercing 47
2.7.2 Brake Forming 48
2.7.3 Deep Drawing 49
2.7.4 Stretch Forming 50
vContents
2.7.5 Rubber Pad Forming 51
2.7.6 Superplastic Forming 51
2.8 Casting 57
2.8.1 Sand Casting 60
2.8.2 Plaster and Shell Molding 62
2.8.3 Permanent Mold Casting 63
2.8.4 Die Casting 64
2.8.5 Investment Casting 64
2.8.6 Evaporative Pattern Casting 64
2.8.7 Casting Heat Treatment 65
2.8.8 Casting Properties 65
2.9 Machining 66
2.9.1 High Speed Machining 68
2.9.2 Chemical Milling 76
2.10 Joining 76
2.11 Welding 77
2.11.1 Gas Metal and Gas Tungsten Arc Welding 78
2.11.2 Plasma Arc Welding 80
2.11.3 Laser Welding 81
2.11.4 Resistance Welding 82
2.11.5 Friction Stir Welding 83
2.12 Chemical Finishing 88
Summary 89
Recommended Reading 90
References 90
Chapter 3 Magnesium and Beryllium 93
MAGNESIUM 95
3.1 Magnesium Metallurgical Considerations 95
3.2 Magnesium Alloys 97
3.2.1 Wrought Magnesium Alloys 97
3.2.2 Magnesium Casting Alloys 99
3.3 Magnesium Fabrication 103
3.3.1 Magnesium Forming 103
3.3.2 Magnesium Sand Casting 104
3.3.3 Magnesium Heat Treating 106
3.3.4 Magnesium Machining 107
3.3.5 Magnesium Joining 107
3.4 Magnesium Corrosion Protection 108
BERYLLIUM 109
3.5 Beryllium Metallurgical Considerations 109
3.6 Beryllium Alloys 110
viContents
3.7 Beryllium Powder Metallurgy 111
3.8 Beryllium Fabrication 114
3.8.1 Beryllium Forming 114
3.8.2 Beryllium Machining 115
3.8.3 Beryllium Joining 116
3.9 Aluminum–Beryllium Alloys 116
Summary 116
References 118
Chapter 4 Titanium 119
4.1 Metallurgical Considerations 120
4.2 Titanium Alloys 126
4.2.1 Commercially Pure Titanium 126
4.2.2 Alpha and Near-Alpha Alloys 127
4.2.3 Alpha–Beta Alloys 128
4.2.4 Beta Alloys 131
4.3 Melting and Primary Fabrication 132
4.4 Forging 137
4.5 Directed Metal Deposition 140
4.6 Forming 143
4.7 Superplastic Forming 145
4.8 Heat Treating 150
4.8.1 Stress Relief 151
4.8.2 Annealing 152
4.8.3 Solution Treating and Aging 152
4.9 Investment Casting 154
4.10 Machining 158
4.11 Joining 165
4.12 Welding 165
4.13 Brazing 170
Summary 171
Recommended Reading 172
References 173
Chapter 5 High Strength Steels 175
5.1 Metallurgical Considerations 176
5.2 Medium Carbon Low Alloy Steels 182
5.3 Fabrication of Medium Carbon Low Alloy Steels 186
5.4 Heat Treatment of Medium Carbon Low Alloy Steels 191
5.5 High Fracture Toughness Steels 198
5.6 Maraging Steels 200
5.7 Precipitation Hardening Stainless Steels 202
viiContents
Summary 207
Recommended Reading 207
References 208
Chapter 6 Superalloys 211
6.1 Metallurgical Considerations 213
6.2 Commercial Superalloys 219
6.2.1 Nickel Based Superalloys 221
6.2.2 Iron–Nickel Based Superalloys 224
6.2.3 Cobalt Based Superalloys 225
6.3 Melting and Primary Fabrication 225
6.4 Powder Metallurgy 228
6.4.1 Powder Metallurgy Forged Alloys 228
6.4.2 Mechanical Alloying 230
6.5 Forging 232
6.6 Forming 236
6.7 Investment casting 238
6.7.1 Polycrystalline Casting 239
6.7.2 Directional Solidification (DS) Casting 240
6.7.3 Single Crystal (SC) Casting 242
6.8 Heat Treatment 243
6.8.1 Solution Strengthened Superalloys 243
6.8.2 Precipitation Strengthened Nickel Base
Superalloys 244
6.8.3 Precipitation Strengthened Iron–Nickel Base
Superalloys 246
6.8.4 Cast Superalloy Heat Treatment 247
6.9 Machining 248
6.9.1 Turning 251
6.9.2 Milling 252
6.9.3 Grinding 254
6.10 Joining 256
6.10.1 Welding 256
6.10.2 Brazing 260
6.10.3 Transient Liquid Phase (TLP) Bonding 263
6.11 Coating Technology 264
6.11.1 Diffusion Coatings 264
6.11.2 Overlay Coatings 265
6.11.3 Thermal Barrier Coatings 266
Summary 266
Recommended Reading 270
References 270
viiiContents
Chapter 7 Polymer Matrix Composites 273
7.1 Materials 276
7.1.1 Fibers 277
7.1.2 Matrices 280
7.1.3 Product Forms 282
7.2 Fabrication Processes 286
7.3 Cure Tooling 286
7.3.1 Tooling Considerations 286
7.4 Ply Collation 291
7.4.1 Manual Lay-up 291
7.4.2 Flat Ply Collation and Vacuum Forming 294
7.5 Automated Tape Laying 295
7.6 Filament Winding 298
7.7 Fiber Placement 304
7.8 Vacuum Bagging 307
7.9 Curing 311
7.9.1 Curing of Epoxy Composites 313
7.9.2 Theory of Void Formation 314
7.9.3 Hydrostatic Resin Pressure 318
7.9.4 Resin and Prepreg Variables 322
7.9.5 Condensation Curing Systems 323
7.9.6 Residual Curing Stresses 324
7.10 Liquid Molding 327
7.11 Preform Technology 328
7.11.1 Fibers 329
7.11.2 Woven Fabrics 330
7.11.3 Multiaxial Warp Knits 331
7.11.4 Stitching 331
7.11.5 Braiding 333
7.11.6 Preform Handling 334
7.12 Resin Injection 336
7.12.1 RTM Curing 338
7.12.2 RTM Tooling 338
7.13 Vacuum Assisted Resin Transfer Molding 339
7.14 Pultrusion 341
7.15 Thermoplastic Composites 343
7.15.1 Thermoplastic Consolidation 345
7.15.2 Thermoforming 351
7.15.3 Thermoplastic Joining 355
7.16 Trimming and Machining Operations 361
Summary 364
Recommended Reading 366
References 366
ixContents
Chapter 8 Adhesive Bonding and Integrally Cocured Structure 369
8.1 Advantages of Adhesive Bonding 370
8.2 Disadvantages of Adhesive Bonding 371
8.3 Theory of Adhesion 372
8.4 Joint Design 372
8.5 Adhesive Testing 377
8.6 Surface Preparation 378
8.7 Epoxy Adhesives 383
8.7.1 Two-part Room Temperature Curing
Epoxy Liquid and Paste Adhesives 384
8.7.2 Epoxy Film Adhesives 385
8.8 Bonding Procedures 385
8.8.1 Prekitting of Adherends 385
8.8.2 Prefit Evaluation 386
8.8.3 Adhesive Application 387
8.8.4 Bond Line Thickness Control 388
8.8.5 Bonding 388
8.9 Sandwich Structures 390
8.9.1 Honeycomb Core 393
8.9.2 Honeycomb Processing 399
8.9.3 Balsa Wood 403
8.9.4 Foam Cores 404
8.9.5 Syntactic Core 406
8.9.6 Inspection 407
8.10 Integrally Cocured Structure 408
Summary 415
Recommended Reading 416
References 417
Chapter 9 Metal Matrix Composites 419
9.1 Discontinuously Reinforced Metal Matrix Composites 424
9.2 Stir Casting 424
9.3 Slurry Casting – Compocasting 427
9.4 Liquid Metal Infiltration (Squeeze Casting) 427
9.5 Pressure Infiltration Casting 430
9.6 Spray Deposition 431
9.7 Powder Metallurgy Methods 432
9.8 Secondary Processing of Discontinuous MMCs 434
9.9 Continuous Fiber Aluminum Metal Matrix
Composites 435
9.10 Continuous Fiber Reinforced Titanium Matrix
Composites 440
xContents
9.11 Secondary Fabrication of Titanium Matrix
Composites 447
9.12 Fiber Metal Laminates 452
Summary 455
Recommended Reading 456
References 456
Chapter 10 Ceramic Matrix Composites 459
10.1 Reinforcements 464
10.2 Matrix Materials 467
10.3 Interfacial Coatings 470
10.4 Fiber Architectures 471
10.5 Fabrication Methods 472
10.6 Powder Processing 472
10.7 Slurry Infiltration and Consolidation 474
10.8 Polymer Infiltration and Pyrolysis (PIP) 476
10.9 Chemical Vapor Infiltration (CVI) 482
10.10 Directed Metal Oxidation (DMO) 487
10.11 Liquid Silicon Infiltration (LSI) 488
Summary 490
Recommended Reading 492
References 492
Chapter 11 Structural Assembly 495
11.1 Framing 496
11.2 Shimming 498
11.3 Hole Drilling 499
11.3.1 Manual Drilling 500
11.3.2 Power Feed Drilling 504
11.3.3 Automated Drilling 505
11.3.4 Automated Riveting Equipment 508
11.3.5 Drill Bit Geometries 509
11.3.6 Reaming 514
11.3.7 Countersinking 514
11.4 Fastener Selection and Installation 515
11.4.1 Special Considerations for Composite
Joints 518
11.4.2 Solid Rivets 520
11.4.3 Pin and Collar Fasteners 523
xiContents
11.4.4 Bolts and Nuts 525
11.4.5 Blind Fasteners 527
11.4.6 Fatigue Improvement and Interference Fit
Fasteners 528
11.5 Sealing 533
11.6 Painting 534
Summary 535
Recommended Reading 537
References 537
Appendix A Metric Conversions 539
Appendix B A Brief Review of Materials Fundamentals 541
B.1 Materials 542
B.2 Metallic Structure 543
B.3 Ceramics 555
B.4 Polymers 556
B.5 Composites 562
Recommended Reading 565
References 566
Appendix C Mechanical and Environmental Properties 567
C.1 Static Strength Properties 568
C.2 Failure Modes 570
C.3 Fracture Toughness 572
C.4 Fatigue 576
C.5 Creep and Stress Rupture 581
C.6 Corrosion 582
C.7 Hydrogen Embrittlement 584
C.8 Stress Corrosion Cracking 586
C.9 High Temperature Oxidation and Corrosion 587
C.10 Polymeric Matrix Composite Degradation 587
Recommended Reading 591
References 591
Index
Index
Adhesive bonding, 10–11, 370,
415–16
advantages, 370–1
bonding procedures, 385
adhesive application, 387–8
bond line thickness control, 388
bonding, 388–90
prefit evaluation, 386–7
prekitting of adherends, 385–6
disadvantages, 371–2
epoxy adhesives, 383–4
film, 385
two-part room temperature curing
liquid/paste, 384
joint design, 372–7
sandwich structures, 390–3
balsa wood, 403–404
foam cores, 404–406
honeycomb core, 393–9
honeycomb processing, 399–403
inspection, 407–408
syntactic core, 406–407
surface preparation, 378–9
aluminum and titanium, 380–3
principles, 380
protection during handling, 383
techniques, 379–80
testing, 377–8
theory of adhesion, 372
Air travel, 2
Airbus A320, A330, A340, 10
Airframe durability, 2
Alloys, 6
Aluminum, 4–6, 89–90
advantages, 16–17
alloy designation, 23–5
alloys, 25–31
casting:
alloys, 57–8
chemical compositions, 57
contamination, 59–60
die casting, 64
evaporative pattern casting, 64–5
furnaces, 58–9
grain size control, 58
heat treatment, 65
investment casting, 64
permanent mold casting, 63–4
plaster/shell molding, 62–3
premium quality, 58
properties, 65–6
sand casting, 60–2
sludge formation/settling, 60
temperature control, 59
uses, 57
chemical finishing, 88–9
disadvantages, 17
forging, 43–6
blocker, 45–6
conventional, 46
high definition, 46
precision, 46
forming, 46–7
blanking/piercing, 47–8
brake forming, 48–9
deep drawing, 49–50
rubber pad forming, 51
stretch forming, 50–1
superplastic forming, 51–7
heat treating, 37
annealing, 42–3
solution heat treating/aging, 37–42Index
Aluminum, (Continued)
joining, 76
machining, 66–8
chemical milling, 76
high speed, 68–76
major attributes of wrought alloys, 18
melting/primary fabrication, 31–3
extrusion, 37
rolling plate/sheet, 33–6
metallurgical considerations, 17–23
strengthening solution, 96
welding, 77–8
friction stir, 83–8
gas metal/gas tungsten arc, 78–80
laser, 81–2
plasma arc, 80–1
resistance, 82–3
Aluminum MMCs, 435–40
Aluminum–beryllium alloys, 116
Aluminum–copper alloy (2XXX
series), 6
Aluminum–zinc alloy (7XXX
series), 6
Aramid fiber, 278
Assembly see Structural assembly
Automated tape laying (ATL), 295–8
Automated variable polarity plasma arc
(VPPA), 80–1
AV-8B Harrier, 2, 10
B-2 bomber, 10
Balsa wood, 403–404
Beryllium, 6–7, 94–5, 109, 116–18
alloys, 110
aluminum–beryllium alloys, 116
fabrication:
forming, 114–15
joining, 116
machining, 115–16
metallurgical considerations, 109
corrosion resistance, 109
toxicity, 110
powder metallurgy, 111–14
Boeing aircraft, 7, 10
Boron, 2
Boron fiber, 279–80
Carbon fiber, 2, 278–9
Carbon–carbon (C–C) composites,
12, 463
Ceramic matrix composites, 11–12,
460–4, 490–2, 563
chemical vapor infiltration (CVI),
482–7
directed metal oxidation (DMO),
487–8
fabrication methods, 472
fiber architectures, 471
interfacial coatings, 470
liquid silicon infiltration (LSI), 488–90
materials, 467–70
polymer infiltration/pyrolysis (PIP),
476–82
powder processing, 472–4
reinforcements, 464–7
slurry infiltration/consolidation, 474–6
Ceramics, 555–6
ionic/covalent bonds, 556
Chemical vapor infiltration (CVI),
482–7
Cobalt, 8
Cold hearth melting, 7
Commercial aircraft, 4
Compocasting (slurry casting), 427
Composites, 2, 4, 9–10, 562–5
fiber, 562
interface, 562–3
matrix, 562
rule of mixtures, 563–5
see also Ceramic matrix composites;
Metal matrix composites
(MMCs); Polymer matrix
composites
Contour tape laying machines
(CTLM), 295
Corrosion, 582
chemical, 582
electrochemical, 582–3
exfoliation, 584
galvanic, 583–4
intergranular, 584
pitting, 584
Crack growth rate, 125–6
Creep, 581
594Index
Didymium, 96–7
Direct current electrode positive (DCEP)
arrangement, 78, 79
Directed metal oxidation (DMO), 487–8
Directionally solidified (DS) casting, 9
E-glass fiber, 277
Electron beam (EB) welding, 166,
168–9
Electroslag remelting (ESR), 226–7
Environmental properties
see Mechanical/environmental
properties
Fatigue, 576–7
crack growth rate, 578–81
crack initiation/growth, 6
endurance limit, 578
fracture mechanics approach, 580
high cycle tests, 579
strength, 125–6
strength/life, 578
Fiber metal laminates, 452–4
Fighter aircraft, 2, 7
Flat tape laying machines (FTLM), 295
Foam cores, 404–406
Fracture toughness, 6
Friction stir welding (FSW), 6, 83–8
Gas metal arc welding (GMAW), 78–80,
166, 168, 259
Gas tungsten arc welding (GTAW),
78–80, 166, 167–8, 258–9
Glass fiber, 277
Glass fiber reinforced aluminum
laminates (GLARE), 11, 453–4
Graphite fiber, 278–9
High fracture toughness steels, 198–200
High strength steels, 8, 176
high fracture toughness steels,
198–200
maraging steels, 200–202
medium carbon low alloy steels,
182–6
fabrication, 186–91
heat treatment, 191–7
metallurgical considerations, 176–82
precipitation hardening stainless
steels, 202–207
quality levels, 185
stress corrosion cracking, 190–1
High temperature oxidation/
corrosion, 587
hot corrosion, 587
oxidation, 587
Honeycomb core, 393–4
advantages, 396–7
cell configurations, 394–5
comparative properties, 396
corrosion protection, 397
expansion process, 395–6
freeze-thaw cycles, 397–8
liquid damage, 397–9
processing, 399
bonding, 401
cleaning/drying, 401
cocuring, 402–403
forming, 399
migration/crushing, 403
potting, 399–401
pressure selection, 401–402
splicing, 399
trimming, 399
Hot isostatic pressing (HIP), 8
Hydrogen embrittlement, 584–6
Impurities, 6
Integrally cocured structure, 10–11,
408–10
advantages, 410
cobonding, 413, 415
disadvantages, 410
hat, 410
spring-in, 410
terminations, 411, 413
Investment casting, 8
Iron–nickel, 8
Laser beam welding (LBW), 81–2, 169
Liquid metal infiltration (squeeze
casting), 427–30
Liquid molding, 327–8
595Index
Liquid silicon infiltration (LI),
488–90
Low velocity impact damage
(LVID), 590
Magnesium, 6–7, 94, 95
corrosion protection, 108–109
fabrication, 103
forming, 103–104
heat treating, 106–107
joining, 107–108
machining, 107
sand casting, 104–105
metallurgical considerations:
HCP crystalline structure, 95–6
melting point, 95–6
strengthening solution, 96–7
Magnesium alloys, 97
casting alloys, 99
Mg–Ag–Rare Earth, 102–103
Mg–Al/Mg–Zn, 99–101
Mg–Zn–Zr/Mg–Rare Earth–Zr,
101–102
wrought alloys, 97–9
Manganese, 96
Maraging steels, 200–202
Material density, 2
Materials, 542
Mechanical alloying (MA), 230–2
Mechanical/environmental
properties, 568
failure modes, 570
brittle fractures, 570–1
ductile, 570
ductile-to-brittle transition, 571
fatigue, 572
intergranularly, 572
transgranular, 572
transition temperature, 571–2
fracture control, 576
fracture critical, 576
fracture toughness, 572–4
critical stress intensity
factor, 574
plane-strain, 574–5
static strength, 568–9
Medium carbon low alloy steels, 182
43XX class, 183–4
classification, 183
elements, 182–3
fabrication:
annealed condition, 188
forging, 186–8
grinding, 189
machinability ratings, 188–9
welded/brazed, 189–90
hardening, 183, 192
austenitizing, 195–6
quenching, 196
tempering, 197
heat treatment, 191–4
one-step temper embrittlement, 197
stress relieving, 192
susceptible to decarburization, 192
two-step temper embrittlement, 197
Metal matrix composites (MMCs),
11–12, 420–4, 455–6
continuous fiber aluminum MMCs,
435–40
continuous fiber reinforced titanium
matrix composites, 440–7
discontinuously reinforced, 424
liquid metal infiltration (squeeze
casting), 427–30
powder metallurgy methods, 432–4
pressure infiltration casting, 430–1
secondary fabrication of titanium
matrix composites, 447–51
fiber metal laminates, 452–4
secondary processing of discontinuous
MMCs, 434–5
slurry casting (compocasting), 427
spray deposition, 431–2
stir casting, 424–7
Metallic structure, 543–55
annealing, 547
body centered cubic (BCC), 543
dislocation, 545–6
dispersion strengthened alloys, 552
eutectic reaction, 553
eutectoid reaction, 554
face centered cubic (FCC), 543
grain size, 548
596Index
hexagonal close-packed (HCP), 543
martensite, 551
pearlite, 551
peritectic reaction, 553
peritectoid reaction, 554
plastic deformation, 546
precipitation hardening, 549
slip direction, 546
slip planes, 546
slip system, 546
stress relieving, 547–8
substitutional/interstitial solid
solutions, 548–9
work hardening, 546–7
Metric conversions, 540
Mischmetal, 96
Multiaxial warp knits (MWKs), 331
Nickel, 8
Plasma arc welding (PAW), 166, 168
Polymer infiltration and pyrolysis (PIP),
476–7
conventional processes, 479–80
sol-gel infiltration, 480–2
space shuttle C–C, 477–9
Polymer matrix composites, 364–6
advantages, 274
automated tape laying, 295–8
cost drivers, 275–6
cure tooling, 286
considerations, 286–91
expansion/contraction, 289–90
inside/outside moldline
(IML/OML), 287
material selection, 287–9
spring-in, 290–1
curing, 311–13
condensation curing system,
323–4
epoxy composite, 313–14
hydrostatic resin pressure, 318–22
residual curing stresses, 324–7
resin/prepreg variables, 322–3
theory of void formation, 314–18
disadvantages, 274–5
fabrication processes, 286
fiber placement, 304–307
filament winding, 298–300
autoclave curing, 304
choice of mandrel material, 303
equipment, 300
fiber orientation, 300
helical, 300
hoop, 301–302
polar, 301
prepregs, 303
viscosity/pot life, 302
wet, 302–303
liquid molding, 327–8
materials, 276–7
fibers, 277–80
hybrids, 285
matrices, 280–2
preform, 285–6
prepregs, 282–3
product forms, 282–6
rovings, tows, yarns, 282
stitched fabric, 284–5
woven fabric, 283–4
ply collation, 291
flat ply collation/vacuum
forming, 294–5
manual lay-up, 291–4
preform technology, 328–9
braiding, 333–4
fibers, 329–30
multiaxial warp knits, 331
preform handling, 334–5
stitching, 331–3
woven fabrics, 330–1
pultrusion, 341–3
resin injection, 336–8
RTM curing, 338
RTM tooling, 338–9
thermoplastic composites, 343–5
consolidation, 345–51
joining, 355–61
thermoforming, 351–5
trimming/machining operations,
361–4
vacuum assisted resin transfer
molding, 339–41
vacuum bagging, 307–11
597Index
Polymeric matrix composite degradation:
absorbed moisture, 588–9
delaminations, 589–91
temperature, 587–8
Polymers, 556–7
thermosets/thermoplastics, 557–62
Polymethylmethacrylimides (PMIs), 406
Polystyrene cores, 405
Polyurethane foams, 405
Polyvinyl chloride (PVC) foam, 406
Powder metallurgy (PM), 228, 432–4
forged alloys, 228–30
mechanical alloying, 230–2
Pressure infiltration casting (PIC), 430–1
Quartz fiber, 277
Rare earths (RE), 96
Resin transfer molding (RTM), 327–8
curing, 338
tooling, 338–9
Self-forming technique (SFT), 454
Silver, 96
Single crystal (SC) casting, 9
Slurry casting (compocasting), 427
Space shuttle, 477–9
Spray deposition, 431
Squeeze casting (liquid metal
infiltration), 427–30
Stir casting, 424–7
Stress corrosion cracking (SCC),
6, 586
Stress rupture, 582
Structural assembly, 12, 496, 535–6
fastener selection/installation,
515–18
blind fasteners, 527–8
bolts/nuts, 525–7
fatigue improvement/interference fit
fasteners, 528–32
pin/collar fasteners, 523–5
solid rivets, 520–3
special considerations for composite
joints, 518–20
framing, 496–8
hole drilling, 499–500
automated, 505–508
automated riveting equipment,
508–509
countersinking, 514–15
drill bit geometries, 509–14
manual, 500–504
power feed, 504–505
reaming, 514
painting, 534–5
sealing, 533–4
shimming, 498–9
Superalloys, 8–9, 212–13,
266–70
coating technology, 264
diffusion, 264–5
overlay, 265–6
thermal barrier, 266
commercial, 219–21
cobalt based, 225
iron–nickel based, 224–5
nickel based, 221–4
forging, 232–3
die lubrication, 234
furnace heated, 233
isothermal/hot die, 233,
235–6
open die, 233
plastic deformation, 234
quality, 235
recrystallization, 234
ring rolling, 233
roll, 233
slow strain rates, 234
upset/extrusion, 233
forming, 236
annealed condition, 237–8
cold operations, 236–7
hot, 237
heat treatment, 243
cast superalloy heat treatment,
247–8
precipitation strengthened
iron–nickel base, 246–7
precipitation strengthened nickel
base, 244–6
solution strengthened, 243–4
598Index
investment casting, 238–9
directional solidification (DS)
casting, 240–2
polycrystalline, 239–40
single crystal (SC) casting, 242–3
joining, 256
brazing, 260–3
transient liquid phase (TLP)
bonding, 263–4
welding, 256–60
machining, 248–50
grinding, 254
milling, 252–4
turning, 251–2
melting/primary fabrication, 225–6
electroslag remelting, 226–7
vacuum arc melting, 226–7
vacuum induction melting, 226
metallurgical considerations, 213
compositions, 215–16
creep failures, 218
forms/usage, 217–18
powder metallurgy (PM), 218
processes, 218
strengthening, 213–15
topologically closed-packed (TCP)
phases, 216–17
powder metallurgy, 228–32
Superplastic forming, 51–2
advantages, 52–3
Ashby and Verral model, 53–4
cavitation, 55–6
gas pressure, 56–7
requirements, 53
single sheet process, 54–5
Superplastic forming/diffusion bonding
(SPF/DB), 8
Thermal barrier coatings (TBC), 9
Thermomechanically affect zone
(TMAZ), 85
Thermoplastic composites, 343, 557–62
addition polymerization, 558
advantages, 344–5
amorphous, 559, 560–1
condensation reaction, 561
consolidation, 345–6
autoclave, 349
autoconsolidation/in-situ placement,
349–51
Autohesion process, 347–8
continuous, 348–9
film stacking, 346
processing temperature, 346–7
two press process, 348
joining, 355–61
adhesive bonding, 356
dual resin bonding, 356
induction welding, 358–9
mechanical fastening, 356
melt fusion, 356
resistance welding, 357
ultrasonic welding, 358
semi-crystalline, 559–60
thermoforming, 351–2
diaphragm forming, 354
matched metal dies, 352
preheating methods, 352
pultrusion, 354–5
resin transfer molding, 355
transfer time, 352–4
thermoset/thermoplastic
difference, 343–4
Titanium, 7–8, 120, 171–2
alloys, 126
brazing, 170
directed metal deposition (laser
powder, laser direct
manufacturing, electron beam
free form fabrication), 140–3
forging, 137–8
alpha–beta defects, 138–9
beta, 139–40
hot die/isothermal, 140
forming:
hot formed, 143–5
springback, 143
vacuum/creep forming, 145
heat treating, 150–1
annealing, 152
solution treating and aging,
152–4
stress relief, 151–2
investment casting, 154–8
599Index
Titanium, (Continued)
joining, 165
machining:
chemical milling, 164
cutting fluids, 160
cutting tools, 160
damage to surface, 163–4
difficulties, 158–9
flood coolant, 164
improper, 159
milling and drilling, 160–3
rigid machine tools, 159–60
successful, 159
melting/primary fabrication:
as-cast ingot conditioning, 136
cold hearth melting, 133
consumable vacuum arc
melting, 132
defects, 134–5
equiaxed structure, 136
hot rolling, 136–7
Hunter process, 132
Kroll process, 132
primary, 135–6
metallurgical considerations, 120
affinity for interstitial elements, 123
alpha/beta phases, 120–1
classification of alloys, 121–3
melting point, 126
microstructure/mechanical property
development, 124–6
strength, 123–4
superplastic forming:
advantages, 145–6
four-sheet process, 149–50
single-sheet process, 146–7
three-sheet process, 147–9
two-sheet process, 147
welding, 165–6
cleanliness, 166–7
diffusion bonding, 169–70
electron beam welding, 166, 168–9
gas metal arc welding, 166, 168
gas tungsten arc welding, 166,
167–8
laser beam welding, 169
plasma arc welding, 166, 168
spot/seam welding, 169
types, 166
Titanium alloys, 126
alpha–beta, 128–31
beta anneal (BA), 129
mill annealed (MA), 129
recrystallization anneal (RA), 129
solution treated and aged
(STA), 129
alpha/near-alpha, 127–8
beta, 131–2
commercially pure, 126–7
Titanium matrix composites (TMCs):
continuous fiber reinforced, 440–7
secondary fabrication, 447–51
Transient liquid phase (TLP)
bonding, 263–4
Turbine blades, 8
Vacuum arc remelting (VAR), 132–3,
226–7
Vacuum assisted resin transfer molding
(VARTM), 338, 339–41
Vacuum induction melting (VIM), 226
Vacuum melting, 7
Zinc, 96
Zirconium, 96


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials
رابط مباشر لتنزيل كتاب Manufacturing Technology for Aerospace Structural Materials
الرجوع الى أعلى الصفحة اذهب الى الأسفل
mohamed younis
مهندس تحت الاختبار
مهندس تحت الاختبار


عدد المساهمات : 45
تاريخ التسجيل : 08/12/2011

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأحد 17 فبراير 2013, 6:27 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى


عدد المساهمات : 18996
تاريخ التسجيل : 01/07/2009

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأحد 17 فبراير 2013, 6:50 pm

mohamed younis كتب:
ألف شكر يا بشمهندس
ربنا يكرمك
دا أنا دوخت عليه

لاشكر على واجب
أطلب انت بس ولا يهمك
الرجوع الى أعلى الصفحة اذهب الى الأسفل
دينا السيد الدسوقي
مهندس تحت الاختبار
مهندس تحت الاختبار


عدد المساهمات : 2
تاريخ التسجيل : 02/03/2013

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالسبت 09 مارس 2013, 7:40 pm

بعد أذن حضرتك يا بشمهندس ..الرابط موجود بس بدخل عليه موش بيرضي يحمل ..موش عارفه أحمل الملف خالص
الرجوع الى أعلى الصفحة اذهب الى الأسفل
دينا السيد الدسوقي
مهندس تحت الاختبار
مهندس تحت الاختبار


عدد المساهمات : 2
تاريخ التسجيل : 02/03/2013

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالسبت 09 مارس 2013, 7:45 pm

متشكره جدا يا بشمهندس خلاص عرفت أحمله ...
وشكرا لحضرتك ع الكتاب
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالسبت 09 مارس 2013, 7:50 pm

دينا السيد الدسوقي كتب:
بعد أذن حضرتك يا بشمهندس ..الرابط موجود بس بدخل عليه موش بيرضي يحمل ..موش عارفه أحمل الملف خالص


غيرى المتصفح يابشمهندسة
وإن شاء الله يشتغل تمام
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالسبت 09 مارس 2013, 8:05 pm

دينا السيد الدسوقي كتب:
متشكره جدا يا بشمهندس خلاص عرفت أحمله ...
وشكرا لحضرتك ع الكتاب


كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 259976 كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 259976 كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 259976
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأربعاء 26 يونيو 2013, 12:57 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
rambomenaa
كبير مهندسين
كبير مهندسين
rambomenaa

عدد المساهمات : 2041
التقييم : 3379
تاريخ التسجيل : 21/01/2012
العمر : 47
الدولة : مصر
العمل : مدير الصيانة بشركة تصنيع ورق
الجامعة : حلوان

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأربعاء 26 يونيو 2013, 6:02 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Empty
مُساهمةموضوع: رد: كتاب Manufacturing Technology for Aerospace Structural Materials    كتاب Manufacturing Technology for Aerospace Structural Materials  - صفحة 2 Emptyالأربعاء 26 يونيو 2013, 6:26 pm

rambomenaa كتب:

جزاك الله

خير الجزاء وجعلها الله فى ميزان حسناتك

جزانا الله وإياك خيراً
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Manufacturing Technology for Aerospace Structural Materials
الرجوع الى أعلى الصفحة 
صفحة 3 من اصل 3انتقل الى الصفحة : الصفحة السابقة  1, 2, 3  الصفحة التالية
 مواضيع مماثلة
-
» كتاب Additive Manufacturing of Metals - The Technology, Materials, Design and Production
» كتاب Handbook of Materials Failure Analysis With Case Studies from the Aerospace and Automotive Industries
» كتاب Structural Composite Materials
» كتاب Tribology in Manufacturing Technology
» كتاب Manufacturing and Engineering Technology

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: