|
|
| كتاب Mechanics of Materials, Volume 2 | |
| |
كاتب الموضوع | رسالة |
---|
Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanics of Materials, Volume 2 السبت 29 يونيو 2013, 3:20 pm | |
|
تذكير بمساهمة فاتح الموضوع : أخواني في الله أحضرت لكم كتاب Mechanics of Materials, Volume 2 THIRD EDITION An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials E. J. HEARN PhD; BSc(Eng) Hons; CEng; FIMechE; FIProdE; FIDiagE University of Warwick United Kingdom
و المحتوى كما يلي :
CONTENTS Introduction xv Notation xvii 1 Unsymmetrical Bending 1 Summary Introduction 1.7 Momenta1 ellipse 1.8 Stress determination 1.9 Alternative procedurefor stress determination 1.10 Alternative procedure using the momenta1 ellipse 1.11 Dejections Examples Problems Product second moment of area Principal second moments of area Mohr’s circle of second moments of area Land’s circle of second moments of area Rotation of axes: determination of moments of area in terms of the principal values The ellipse of second moments of area 2 Struts Summary Introduction 2.1 Euler’s theory 2.2 Equivalent strut length 2.3 2.4 Euler “validity limit” 2.5 Rankine or Rankine-Gordon formula 2.6 Perry- Robertsonformula 2.7 2.8 Struts with initial curvature 2.9 Struts with eccentric load 2.10 Laterally loaded struts 2.11 Comparison of Euler theory with experimental results British Standard procedure (BS 449) Alternative procedurefor any strut-loading condition Vvi Contents 2.12 Struts with unsymmetrical cross-section Examples Problems 3 Strains Beyond the Elastic Limit Summary Introduction Plastic bending of rectangular-sectioned beams Shapefactor - symmetrical sections Application to I-section beams Partially plastic bending of unsymmetrical sections Shapefactor - unsymmetrical sections Dejections of partially plastic beams Length of yielded area in beams Collapse loads -plastic limit design Residual stresses after yielding: elastic-perfectly plastic material Torsion ofshafts beyond the elastic limit -plastic torsion Angles of twist of shafts strained beyond the elastic limit Plastic torsion of hollow tubes Plastic torsion of case-hardened shafts Residual stresses after yield in torsion Plastic bending and torsion of strain-hardening materials (a)Inelastic bending (b)Inelastic torsion Residual stresses- strain-hardening materials Influence of residual stresses on bending and torsional strengths Plastic yielding in the eccentric loadirzg of rectangular sections Plastic yielding and residual stresses under axial loading with stress concentrations Plastic yielding of axially symmetric components (a)Thick cylinders - collapse pressure (b)Thick cylinders - “auto-frettage’’ (c)Rotating discs Examples Problems 4 Rings, Discs and Cylinders Subjected to Rotation and Thermal Gradients Summary 4.2 Rotating solid disc Thin rotating ring or cylinder Rotating disc with a central hole Rotating thick cylinders or solid shafs Rotating disc of uniform strength 125Contents 4.6 Combined rotational and thermal stresses in uniform discs and thick cylinders Examples Problems 5 Torsion of Non-Circular and Thin-Walled Sections Summary Rectangular sections Narrow rectangular sections Thin-walled open sections Thin-walled split tube Other solid (non-tubular)shafts Thin-walled closed tubes of non-circular section (Bredt-Batho theory) Use of “equivalentJ ” for torsion of non-circular sections Thin-walled cellular sections Torsion of thin-walled stifSened sections Membrane analogy EfSect of warping of open sections Examples Problems 6 Experimental Stress Analysis Introduction Brittle lacquers Strain gauges Unbalanced bridge circuit Null balance or balanced bridge circuit Gauge construction Gauge selection Temperature compensation Installation procedure Basic measurement systems D.C. and A.C. systems Other types of strain gauge Photoelasticity Plane-polarised light - basic polariscope arrangements Temporary birefringence Production offringe patterns Interpretation offringe patterns Calibration Fractional fringe order determination - compensation techniques Isoclinics-circular polarisation Stress separation procedures Three-dimensional photoelasticity VI11 Contents 6.22 Rejective coating technique 6.23 Other methods of strain measurement Bibliography 7 Circular Plates and Diaphragms Summary A. CIRCULAR PLATES Stresses Bending moments General equation for slope and dejection General case of a circular plate or diaphragm subjected to combined uniformly distributed load q (pressure)and central concentrated load F Uniformly loaded circular plate with edges clamped Uniformly loaded circular plate with edgesfreely supported Circular plate with central concentrated load F and edges clamped Circular plate with central concentrated load F and edges freely supported Circular plate subjected to a load F distributed round a circle Application to the loading of annular rings Summary of end conditions Stress distributions in circular plates and diaphragms subjected to lateral pressures Discussion of results - limitations of theory Other loading cases of practical importance B. BENDING OF RECTANGULAR PLATES 7.15 7.16 Rectangular plates with simply supported edges carrying uniformly distributed loads Rectangular plates with clamped edges carrying uniformly distributed loads Examples Problems 8 Introduction to Advanced Elasticity Theory 8.1 Types of stress The Cartesian stress components: notation and sign convention 8.2.1 Sign conventions The state of stress at a point Direct, shear and resultant stresses on an oblique plane 8.4.1 8.4.2 Line of action of resultant stress Line of action of normal stress 227Contents ix Principal stresses and strains in three dimensions - Mohr 's circle representation Graphical determination of the direction of the shear stress r,, on an inclined plane in a three-dimensional principal stress system The combined Mohr diagram for three-dimensional stress and strain systems Application of the combined circle to two-dimensional stress systems Graphical construction for the state of stress at a point Constructionfor the state of strain on a general strain plane State of stress-tensor notation The stress equations of equilibrium Principal stresses in a three-dimensional Cartesian stress system 8.13.1 Solution of cubic equations Stress invariants - Eigen values and Eigen vectors Stress invariants Reduced stresses Strain invariants Alternative procedure for determination of principal stresses 8.18.1 Evaluation of direction cosines for principal stresses Octahedral planes and stresses Deviatoric stresses Deviatoric strains Plane stress and plane strain 8.22.1 Plane stress 8.22.2 Plane strain The stress-strain relations The strain-displacement relationships The strain equations of transformation Compatibility The stress function concept 8.27.1 Forms of Airy stressfunction in Cartesian coordinates 8.27.2 Case 1 - Bending of a simply supported beam by a uniformly 8.27.3 The use of polar coordinates in two dimensions 8.27.4 Forms of stress function in polar coordinates 8.27.5 Case 2 - hi-symmetric case: solid shaft and thick cylinder radially loaded with uniform pressure 8.27.6 Case 3 - The pure bending of a rectangular section curved beam 8.27.7 Case 4 - Asymmetric case n = 1. Shear loading of a circular arc cantilever beam 8.27.8 Case 5 - The asymmetric cases n >, 2 -stress concentration at a circular hole in a tension$eld Line of action of shear stress Shear stress in any other direction on the plane distributed loading 276X Contents 8.27.9 Other useful solutions of the biharmonic equation Examples Problems 9 Introduction to the Finite Element Method Introduction Basis of thefinite element method Applicability of thefinite element method Formulation of the Jinite element method General procedure of the Jinite element method 9.4.1 Identification of the appropriateness of analysis by the jinite element method 9.4.2 Identification of the type of analysis 9.4.3 Idealisation 9.4.4 Discretisation of the solution region 9.4.5 Creation of the material model 9.4.6 Node and element ordering 9.4.7 Application of boundary conditions 9.4.8 Creation of a data file 9.4.9 Computer, processing, steps 9.4.10 Interpretation and validation of results 9.4.11 Modification and re-run Fundamental arguments 9.5.1 Equilibrium 9.5.2 Compatibility 9.5.3 Stress-strain law 9.5.4 Forceldisplacement relation The principle of virtual work A rod element 9.7.1 Formulation of a rod element using fundamental equations 9.7.2 Formulation of a rod element using the principle of virtual work equation A simple beam element 9.8.1 Formulation of a simple beam element using fundamental equations 93.2 Formulation of a simple beam element using the principle of virtual work equation A simple triangular plane membrane element 9.9.1 Formulation of a simple triangular plane membrane element using the principle of virtual work equation Formation of assembled stcfiess matrix by use of a dof. correspondence table Amlieation of boundarv conditions and uartitioninn 349Contents xi 9.12 Solutionfor displacements and reactims Bibliography Examples Problems 10 Contact Stress, Residual Stress and Stress Concentrations Summary 10.1 Contact stresses Introduction 10.1.1 General case of contact between two curved surfaces 10.1.2 Special case I - Contact of parallel cylinders 10.1.3 Combined normal and tangential loading 10.1.4 Special case 2 - Contacting spheres 10.1.5 Design considerations 10.1.6 Contact loading of gear teeth 10.1.7 Contact stresses in spur and helical gearing 10.1.8 Bearing failures Introduction 10.2.1 Reasom for residual stresses (a)Mechanical processes (b)Chemical treatment (c)Heat treatment (d)Welds (e)Castings 10.2 Residual stresses 10.2.2 The injuence of residual stress onfailure 10.2.3 Measurement of residual stresses The hole-drilling technique X-ray difiaction 10.2.4 Summary of the principal effects of residual stress Introduction 10.3.1 Evaluation of stress concentrationfactors 10.3.2 St. Venant'sprinciple 10.3.3 Theoretical considerations of stress concentrations due to 10.3 Stress concentrations concentrated loads (a)Concentrated load on the edge of an infiniteplate (b)Concentrated load on the edge of a beam in bending 10.3.4 Fatigue stress concentrationfactor 10.3.5 Notch sensitivity 10.3.6 Strain concentration-Neuber's rule 10.3.7 Designing to reduce stress concentrations (a)Fillet radius (b)Keyways or splines 427xii Contents (e)Grooves and notches ( d )Gear teeth (e)Holes cf) Oil holes (g) Screw threads (h)Press or shrink Jit members 10.3.8 Use of stress concentration factors with yield criteria 10.3.9 Design procedure References Examples Problems 11 Fatigue, Creep and Fracture Summary 11.1 Fatigue Introduction 11.1.1 The SIN curve 11.1.2 PISIN curves 11.1.3 Effect of mean stress 1 1.1.4 Effect of stress concentration 11.1.5 Cumulative damage 1 1.1.6 Cyclic stress-strain 11.1.7 Combating fatigue 11.1.8 Slip bands and fatigue Introduction 1 1.2.1 The creep test 11.2.2 Presentation of creep data 11.2.3 The stress-rupture test 11.2.4 Parameter methods 11.2.5 Stress relaxation 11.2.6 Creep-resistant alloys 11.3 Fracture mechanics Introduction 11.3.1 Energy variation in cracked bodies (a) Constant displacement (b)Constant loading (a)Grifith'scriterion for fiacture (b)Stress intensity factor 11.2 Creep 11.3.2 Linear elastic fracture mechanics (L.E.F.M.) 11.3.3 Elastic-plastic fracture mechanics (E.P.F.M.) 11.3.4 Fracture toughness 11.3.5 Plane strain and plane stress fracture modes 11.3.6 General yielding fracture mechanics 11.3.7 Fatigue crack growth 11.3.8 Crack tip plasticity under fatigue loading 488Contents X l l l ... 11.3.9 Measurement of fatigue crack growth References Examples Problems 12 Miscellaneous topics 509 12.1 Bending of beams with initial curvature 12.2 Bending of wide beams 12.3 General expression for stresses in thin-walled pressure or selj-weight 12.4 Bending stresses at discontinuities in thin shells 12.5 Viscoelasticity References Examples Problems shells subjected to Appendix 1. npical mechanical and physical properties for engineering metals Appendix 2. Typical mechanical properties of non-metals Appendix 3. Other properties of non-metals Index 537 INDEX AC system 179 Acoustic gauge 180 Acoustoelasticity 192 Active gauge 172, 176, 178-9 Airy stress function 263, 265 Allowable working load 73 Alternating stress amplitude 447 Annular rings 208 Area, principal moments of 4 Area, product moment of 3 Area, second moment of 3- 10 Auto frettage 89 Ayrton and Perry 42 Balanced circuit 173 Banded method 313 Basquin’s law 457 Beams, curved 509 Bending, of beams 509-16 Bending, unsymmetrical 1 Birefringence 183 Body force stress 220 Boundary condition, application 316, 349 Boundary stress 185 Bredt-Batho theory 147, 150 Brittle lacquers 167 Buckling of struts 30 Built-up girders 52 Calibration 69, 169, 186 Capacitance gauge 180 Carrier frequency system 180 Cartesian stress 220 Case-hardened shafts 79 Circular plates 193 Circular polarisation 188 Clarke 168 Coffin-Manson Law 457 Collapse 64 Columns 30 Combined circle (Mohr) 228 Combined diagram 229 Compatibility 261, 321 Compensation 187 Conjugate diameters 13 Contact stress 382 Corkscrew rule 12 Correspondence table 347 Crack detection 169 Crack tip plasticity 482, 488 Creep 169,462 Crinkling of struts 50 Crossed set-up 182 Cross-sensitivity 173 Crushing stress 37 Cyclic stress-strain 455 Cylinders, residual stresses in 87 Cylindrical components 239 Dark field 182 DC system 179 De Forrest 168 Deflections, unsymmetrical members 15 Deviatoric stress 251 Diaphragms 193 Directions cosine 223 Disc circular, solid 119 plastic yielding of 94 rotating 117 uniform strength 125 with central hole 122 Discretisation 305 Distortion 311 Dummy gauge 172, 175-6 Dye-etchant 169 Dynamic strain 171 Eccentric loading of struts 42 to collapse 85 momenta1 11 of second moments of area 9 Ellipse Ellis 168 Endurance limit 423 Equilibrium 319 Equilibrium Cartesian coordinates 236 cylindrical coordinates 239 Equivalent length 35 Equivalent length (of Struts) 35 Euler theory 31 Extensometers 180 Factor, load 41,65, 166 Fatigue 446 Fatigue crack growth 486,489 Finite element analysis 302 537538 Index Finite element mesh 308 Finite element method 300 Fixed-ended struts 33 Flexural stiffness 193. 197 Foil gauge 171, 173 Fracture mechanics 47 Fringe order 185-6 Fringe pattern 181-2, Fringe value 185-6 Frontal method 315 Frozen stress technique Full bridge circuit 173 84- 192,420,481 190 Gauge acoustic 180 electrical resistance strain 171-80 factor 172 17 1-180 Girder, built-up 50, 52 Graphical pmedure, stress 228-9 Grid technique 192 Griffith’s criterion 475 Half-bridge 172-3 Het6nyi 84 Holography 192 Hydrostatic stress 249, 251 Idealisation 305 Inductance gauge 180 Initial curvature 41 Interference 181, 184 Isochromatic 185 Isoclinic 188 Johnson parabolic formula 36 Land’s circle of moments of area 7 Larson-Miller parameter 468 Laterally loaded struts 46 Light field 182 Load factor 41, 73 Manson-Haferd parameter 469 Material fringe value 185-6 Maximum compressive stress 381, 385,387 Mean stress 252.45 1 Membrane 152 Modulus. reduced 82 Mohr’s circle of second moments of area Mohr’s strain circle 228 Mohr’s stress circle 228 Moir6 192 Momenta1ellipse 1 I , 13 Monochromatic light 185 6 Neuber’s rule 425 Notch sensitivity 424 Null balance 173 Oblique plane, stress on 224 Octahedral planes 249 Octahedral shear stress 250 Octahedral stress 249 Overspeeding 95 Parallel set-up 183 Partitioning 349 Perry-Robertson 29.39 Photoelastic coating 190 Photoelasticity reflection 190 transmission 181 Piezo-resistive gauge 180 Plane polarisation 182 Plane strain 254 Plane stress 254 Plastic bending 64 Plastic deformation discs 94 thick cylinder 87 Plastic hinge 71 Plastic limit design 71 Plastic torsion 75, 79 Pneumatic gauge 180 Polariscope 182 Polariser 182 Principal axes 2 Principal second moments of area 4 Principal strain 228 Principal stress 228, 247 Product second moment of area 3 Quarter-bridge 173 Quarter-wave plates 187 Radial stress 117-23, 125-8, 193-9 Radius of gyration 28 Rankine-Gordon theory 38 Rectangular plates 213 Reduced modulus 82 Reflection polariscope 190 Reflective coating 190 Refraction 183 Replica technique 192 Residual stresses 73.79.84.86.95-6.394 Resistivity 172 Rotating cylinders 124 Rotating discs and rings 117 collapse 94 Rotating hollow discs 122 Rotating uniform strength discs 125 Ruge and Simmons 171Index 539 Safety factor 41, 65, 166 Saint-Venant 420 Sand heap analogy 78 Second moment of area 2- 10 ellipse of 9 principle 4 product 3 Semi-conductor gauges 180 Senarment 187 Shape factor 65 Shear flow 147 Shear stress 224 Sherby-Dom parameter 469 Skew loading 2 Slenderness ration 28 Smith-Southwell theory 42 Southwell 42 Specific resistance 172 Stem 168 Straight line formula 36 Strain deviatoric 251, 253 invariants 247 threshold 167 Strain circle 228 Strain gauge 171 Strain hardening 63-4, 80 Stress unsymmetrical sections 67,69 body force 220 boundary 185 Cartesian 220 concentration 86 concentration factor 408 concentration factor (evaluation) 413 crushing 37 deviatoric 246, 251 direct 224 equations of equilibrium 236 freezing technique 190 hydrostatic 249-51 invariants 243-4 mean 252,447,451 radial 193, 199 range 447 relaxation 470 separation 190 shear 224 tangential 193, 199 three-dimensional 220 trajectory 189 yield 61 Stress concentration, effects 453 Stress intensity factor 477 stresscoat 168 Struts 28 Tangential stress 193, 199 Tardy compensation 187 Temperature stresses 126 Temporary birefringence 183 Tensor notation 235 Thermal stresses 126 Thin membranes 194 Thin shells 517-18 Threshold strain 167 Timoshenko 142, 144, 146,212,214 Torsion of cellular sections 150 Torsion of non-circular sections 141 Torsion of open sections Torsion of rectangular sections 142 Torsion of square closed of closed section Torsion of thin-walled closed sections Torsion of thin-walled stiffened sections Torsion section modulus 144 Torsional rigidity 150 Toughness 473 Transformation 259, 326 Transverse sensitivity 173 Triangular plane membrane element 343 Twist, angle of 141-7, 149-52 143, 150 141 147 151 Unbalanced bridge 173 Uniform strength discs 125 Unsymmetrical bending 1 Unsymmetrical, section struts 49 Validity limit (Euler) 37 Virtual work 323 Viscoelasticity 521 Voight-Kelvin 522 Warping 153,310 Webb’s approximation 44 Wheatstonebridge 172 Wilson-Stokes equation 423 Wire gauge 171 X-rays 192 Yield stress 61
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanics of Materials, Volume 2 رابط مباشر لتنزيل كتاب Mechanics of Materials, Volume 2
عدل سابقا من قبل Admin في الإثنين 07 أكتوبر 2024, 12:08 am عدل 1 مرات |
| | |
كاتب الموضوع | رسالة |
---|
Admin مدير المنتدى
عدد المساهمات : 18992 تاريخ التسجيل : 01/07/2009
| موضوع: كتاب Mechanics of Materials, Volume 2 السبت 29 يونيو 2013, 3:20 pm | |
|
أخواني في الله أحضرت لكم كتاب Mechanics of Materials, Volume 2 THIRD EDITION An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials E. J. HEARN PhD; BSc(Eng) Hons; CEng; FIMechE; FIProdE; FIDiagE University of Warwick United Kingdom
و المحتوى كما يلي :
CONTENTS Introduction xv Notation xvii 1 Unsymmetrical Bending 1 Summary Introduction 1.7 Momenta1 ellipse 1.8 Stress determination 1.9 Alternative procedurefor stress determination 1.10 Alternative procedure using the momenta1 ellipse 1.11 Dejections Examples Problems Product second moment of area Principal second moments of area Mohr’s circle of second moments of area Land’s circle of second moments of area Rotation of axes: determination of moments of area in terms of the principal values The ellipse of second moments of area 2 Struts Summary Introduction 2.1 Euler’s theory 2.2 Equivalent strut length 2.3 2.4 Euler “validity limit” 2.5 Rankine or Rankine-Gordon formula 2.6 Perry- Robertsonformula 2.7 2.8 Struts with initial curvature 2.9 Struts with eccentric load 2.10 Laterally loaded struts 2.11 Comparison of Euler theory with experimental results British Standard procedure (BS 449) Alternative procedurefor any strut-loading condition Vvi Contents 2.12 Struts with unsymmetrical cross-section Examples Problems 3 Strains Beyond the Elastic Limit Summary Introduction Plastic bending of rectangular-sectioned beams Shapefactor - symmetrical sections Application to I-section beams Partially plastic bending of unsymmetrical sections Shapefactor - unsymmetrical sections Dejections of partially plastic beams Length of yielded area in beams Collapse loads -plastic limit design Residual stresses after yielding: elastic-perfectly plastic material Torsion ofshafts beyond the elastic limit -plastic torsion Angles of twist of shafts strained beyond the elastic limit Plastic torsion of hollow tubes Plastic torsion of case-hardened shafts Residual stresses after yield in torsion Plastic bending and torsion of strain-hardening materials (a)Inelastic bending (b)Inelastic torsion Residual stresses- strain-hardening materials Influence of residual stresses on bending and torsional strengths Plastic yielding in the eccentric loadirzg of rectangular sections Plastic yielding and residual stresses under axial loading with stress concentrations Plastic yielding of axially symmetric components (a)Thick cylinders - collapse pressure (b)Thick cylinders - “auto-frettage’’ (c)Rotating discs Examples Problems 4 Rings, Discs and Cylinders Subjected to Rotation and Thermal Gradients Summary 4.2 Rotating solid disc Thin rotating ring or cylinder Rotating disc with a central hole Rotating thick cylinders or solid shafs Rotating disc of uniform strength 125Contents 4.6 Combined rotational and thermal stresses in uniform discs and thick cylinders Examples Problems 5 Torsion of Non-Circular and Thin-Walled Sections Summary Rectangular sections Narrow rectangular sections Thin-walled open sections Thin-walled split tube Other solid (non-tubular)shafts Thin-walled closed tubes of non-circular section (Bredt-Batho theory) Use of “equivalentJ ” for torsion of non-circular sections Thin-walled cellular sections Torsion of thin-walled stifSened sections Membrane analogy EfSect of warping of open sections Examples Problems 6 Experimental Stress Analysis Introduction Brittle lacquers Strain gauges Unbalanced bridge circuit Null balance or balanced bridge circuit Gauge construction Gauge selection Temperature compensation Installation procedure Basic measurement systems D.C. and A.C. systems Other types of strain gauge Photoelasticity Plane-polarised light - basic polariscope arrangements Temporary birefringence Production offringe patterns Interpretation offringe patterns Calibration Fractional fringe order determination - compensation techniques Isoclinics-circular polarisation Stress separation procedures Three-dimensional photoelasticity VI11 Contents 6.22 Rejective coating technique 6.23 Other methods of strain measurement Bibliography 7 Circular Plates and Diaphragms Summary A. CIRCULAR PLATES Stresses Bending moments General equation for slope and dejection General case of a circular plate or diaphragm subjected to combined uniformly distributed load q (pressure)and central concentrated load F Uniformly loaded circular plate with edges clamped Uniformly loaded circular plate with edgesfreely supported Circular plate with central concentrated load F and edges clamped Circular plate with central concentrated load F and edges freely supported Circular plate subjected to a load F distributed round a circle Application to the loading of annular rings Summary of end conditions Stress distributions in circular plates and diaphragms subjected to lateral pressures Discussion of results - limitations of theory Other loading cases of practical importance B. BENDING OF RECTANGULAR PLATES 7.15 7.16 Rectangular plates with simply supported edges carrying uniformly distributed loads Rectangular plates with clamped edges carrying uniformly distributed loads Examples Problems 8 Introduction to Advanced Elasticity Theory 8.1 Types of stress The Cartesian stress components: notation and sign convention 8.2.1 Sign conventions The state of stress at a point Direct, shear and resultant stresses on an oblique plane 8.4.1 8.4.2 Line of action of resultant stress Line of action of normal stress 227Contents ix Principal stresses and strains in three dimensions - Mohr 's circle representation Graphical determination of the direction of the shear stress r,, on an inclined plane in a three-dimensional principal stress system The combined Mohr diagram for three-dimensional stress and strain systems Application of the combined circle to two-dimensional stress systems Graphical construction for the state of stress at a point Constructionfor the state of strain on a general strain plane State of stress-tensor notation The stress equations of equilibrium Principal stresses in a three-dimensional Cartesian stress system 8.13.1 Solution of cubic equations Stress invariants - Eigen values and Eigen vectors Stress invariants Reduced stresses Strain invariants Alternative procedure for determination of principal stresses 8.18.1 Evaluation of direction cosines for principal stresses Octahedral planes and stresses Deviatoric stresses Deviatoric strains Plane stress and plane strain 8.22.1 Plane stress 8.22.2 Plane strain The stress-strain relations The strain-displacement relationships The strain equations of transformation Compatibility The stress function concept 8.27.1 Forms of Airy stressfunction in Cartesian coordinates 8.27.2 Case 1 - Bending of a simply supported beam by a uniformly 8.27.3 The use of polar coordinates in two dimensions 8.27.4 Forms of stress function in polar coordinates 8.27.5 Case 2 - hi-symmetric case: solid shaft and thick cylinder radially loaded with uniform pressure 8.27.6 Case 3 - The pure bending of a rectangular section curved beam 8.27.7 Case 4 - Asymmetric case n = 1. Shear loading of a circular arc cantilever beam 8.27.8 Case 5 - The asymmetric cases n >, 2 -stress concentration at a circular hole in a tension$eld Line of action of shear stress Shear stress in any other direction on the plane distributed loading 276X Contents 8.27.9 Other useful solutions of the biharmonic equation Examples Problems 9 Introduction to the Finite Element Method Introduction Basis of thefinite element method Applicability of thefinite element method Formulation of the Jinite element method General procedure of the Jinite element method 9.4.1 Identification of the appropriateness of analysis by the jinite element method 9.4.2 Identification of the type of analysis 9.4.3 Idealisation 9.4.4 Discretisation of the solution region 9.4.5 Creation of the material model 9.4.6 Node and element ordering 9.4.7 Application of boundary conditions 9.4.8 Creation of a data file 9.4.9 Computer, processing, steps 9.4.10 Interpretation and validation of results 9.4.11 Modification and re-run Fundamental arguments 9.5.1 Equilibrium 9.5.2 Compatibility 9.5.3 Stress-strain law 9.5.4 Forceldisplacement relation The principle of virtual work A rod element 9.7.1 Formulation of a rod element using fundamental equations 9.7.2 Formulation of a rod element using the principle of virtual work equation A simple beam element 9.8.1 Formulation of a simple beam element using fundamental equations 93.2 Formulation of a simple beam element using the principle of virtual work equation A simple triangular plane membrane element 9.9.1 Formulation of a simple triangular plane membrane element using the principle of virtual work equation Formation of assembled stcfiess matrix by use of a dof. correspondence table Amlieation of boundarv conditions and uartitioninn 349Contents xi 9.12 Solutionfor displacements and reactims Bibliography Examples Problems 10 Contact Stress, Residual Stress and Stress Concentrations Summary 10.1 Contact stresses Introduction 10.1.1 General case of contact between two curved surfaces 10.1.2 Special case I - Contact of parallel cylinders 10.1.3 Combined normal and tangential loading 10.1.4 Special case 2 - Contacting spheres 10.1.5 Design considerations 10.1.6 Contact loading of gear teeth 10.1.7 Contact stresses in spur and helical gearing 10.1.8 Bearing failures Introduction 10.2.1 Reasom for residual stresses (a)Mechanical processes (b)Chemical treatment (c)Heat treatment (d)Welds (e)Castings 10.2 Residual stresses 10.2.2 The injuence of residual stress onfailure 10.2.3 Measurement of residual stresses The hole-drilling technique X-ray difiaction 10.2.4 Summary of the principal effects of residual stress Introduction 10.3.1 Evaluation of stress concentrationfactors 10.3.2 St. Venant'sprinciple 10.3.3 Theoretical considerations of stress concentrations due to 10.3 Stress concentrations concentrated loads (a)Concentrated load on the edge of an infiniteplate (b)Concentrated load on the edge of a beam in bending 10.3.4 Fatigue stress concentrationfactor 10.3.5 Notch sensitivity 10.3.6 Strain concentration-Neuber's rule 10.3.7 Designing to reduce stress concentrations (a)Fillet radius (b)Keyways or splines 427xii Contents (e)Grooves and notches ( d )Gear teeth (e)Holes cf) Oil holes (g) Screw threads (h)Press or shrink Jit members 10.3.8 Use of stress concentration factors with yield criteria 10.3.9 Design procedure References Examples Problems 11 Fatigue, Creep and Fracture Summary 11.1 Fatigue Introduction 11.1.1 The SIN curve 11.1.2 PISIN curves 11.1.3 Effect of mean stress 1 1.1.4 Effect of stress concentration 11.1.5 Cumulative damage 1 1.1.6 Cyclic stress-strain 11.1.7 Combating fatigue 11.1.8 Slip bands and fatigue Introduction 1 1.2.1 The creep test 11.2.2 Presentation of creep data 11.2.3 The stress-rupture test 11.2.4 Parameter methods 11.2.5 Stress relaxation 11.2.6 Creep-resistant alloys 11.3 Fracture mechanics Introduction 11.3.1 Energy variation in cracked bodies (a) Constant displacement (b)Constant loading (a)Grifith'scriterion for fiacture (b)Stress intensity factor 11.2 Creep 11.3.2 Linear elastic fracture mechanics (L.E.F.M.) 11.3.3 Elastic-plastic fracture mechanics (E.P.F.M.) 11.3.4 Fracture toughness 11.3.5 Plane strain and plane stress fracture modes 11.3.6 General yielding fracture mechanics 11.3.7 Fatigue crack growth 11.3.8 Crack tip plasticity under fatigue loading 488Contents X l l l ... 11.3.9 Measurement of fatigue crack growth References Examples Problems 12 Miscellaneous topics 509 12.1 Bending of beams with initial curvature 12.2 Bending of wide beams 12.3 General expression for stresses in thin-walled pressure or selj-weight 12.4 Bending stresses at discontinuities in thin shells 12.5 Viscoelasticity References Examples Problems shells subjected to Appendix 1. npical mechanical and physical properties for engineering metals Appendix 2. Typical mechanical properties of non-metals Appendix 3. Other properties of non-metals Index 537 INDEX AC system 179 Acoustic gauge 180 Acoustoelasticity 192 Active gauge 172, 176, 178-9 Airy stress function 263, 265 Allowable working load 73 Alternating stress amplitude 447 Annular rings 208 Area, principal moments of 4 Area, product moment of 3 Area, second moment of 3- 10 Auto frettage 89 Ayrton and Perry 42 Balanced circuit 173 Banded method 313 Basquin’s law 457 Beams, curved 509 Bending, of beams 509-16 Bending, unsymmetrical 1 Birefringence 183 Body force stress 220 Boundary condition, application 316, 349 Boundary stress 185 Bredt-Batho theory 147, 150 Brittle lacquers 167 Buckling of struts 30 Built-up girders 52 Calibration 69, 169, 186 Capacitance gauge 180 Carrier frequency system 180 Cartesian stress 220 Case-hardened shafts 79 Circular plates 193 Circular polarisation 188 Clarke 168 Coffin-Manson Law 457 Collapse 64 Columns 30 Combined circle (Mohr) 228 Combined diagram 229 Compatibility 261, 321 Compensation 187 Conjugate diameters 13 Contact stress 382 Corkscrew rule 12 Correspondence table 347 Crack detection 169 Crack tip plasticity 482, 488 Creep 169,462 Crinkling of struts 50 Crossed set-up 182 Cross-sensitivity 173 Crushing stress 37 Cyclic stress-strain 455 Cylinders, residual stresses in 87 Cylindrical components 239 Dark field 182 DC system 179 De Forrest 168 Deflections, unsymmetrical members 15 Deviatoric stress 251 Diaphragms 193 Directions cosine 223 Disc circular, solid 119 plastic yielding of 94 rotating 117 uniform strength 125 with central hole 122 Discretisation 305 Distortion 311 Dummy gauge 172, 175-6 Dye-etchant 169 Dynamic strain 171 Eccentric loading of struts 42 to collapse 85 momenta1 11 of second moments of area 9 Ellipse Ellis 168 Endurance limit 423 Equilibrium 319 Equilibrium Cartesian coordinates 236 cylindrical coordinates 239 Equivalent length 35 Equivalent length (of Struts) 35 Euler theory 31 Extensometers 180 Factor, load 41,65, 166 Fatigue 446 Fatigue crack growth 486,489 Finite element analysis 302 537538 Index Finite element mesh 308 Finite element method 300 Fixed-ended struts 33 Flexural stiffness 193. 197 Foil gauge 171, 173 Fracture mechanics 47 Fringe order 185-6 Fringe pattern 181-2, Fringe value 185-6 Frontal method 315 Frozen stress technique Full bridge circuit 173 84- 192,420,481 190 Gauge acoustic 180 electrical resistance strain 171-80 factor 172 17 1-180 Girder, built-up 50, 52 Graphical pmedure, stress 228-9 Grid technique 192 Griffith’s criterion 475 Half-bridge 172-3 Het6nyi 84 Holography 192 Hydrostatic stress 249, 251 Idealisation 305 Inductance gauge 180 Initial curvature 41 Interference 181, 184 Isochromatic 185 Isoclinic 188 Johnson parabolic formula 36 Land’s circle of moments of area 7 Larson-Miller parameter 468 Laterally loaded struts 46 Light field 182 Load factor 41, 73 Manson-Haferd parameter 469 Material fringe value 185-6 Maximum compressive stress 381, 385,387 Mean stress 252.45 1 Membrane 152 Modulus. reduced 82 Mohr’s circle of second moments of area Mohr’s strain circle 228 Mohr’s stress circle 228 Moir6 192 Momenta1ellipse 1 I , 13 Monochromatic light 185 6 Neuber’s rule 425 Notch sensitivity 424 Null balance 173 Oblique plane, stress on 224 Octahedral planes 249 Octahedral shear stress 250 Octahedral stress 249 Overspeeding 95 Parallel set-up 183 Partitioning 349 Perry-Robertson 29.39 Photoelastic coating 190 Photoelasticity reflection 190 transmission 181 Piezo-resistive gauge 180 Plane polarisation 182 Plane strain 254 Plane stress 254 Plastic bending 64 Plastic deformation discs 94 thick cylinder 87 Plastic hinge 71 Plastic limit design 71 Plastic torsion 75, 79 Pneumatic gauge 180 Polariscope 182 Polariser 182 Principal axes 2 Principal second moments of area 4 Principal strain 228 Principal stress 228, 247 Product second moment of area 3 Quarter-bridge 173 Quarter-wave plates 187 Radial stress 117-23, 125-8, 193-9 Radius of gyration 28 Rankine-Gordon theory 38 Rectangular plates 213 Reduced modulus 82 Reflection polariscope 190 Reflective coating 190 Refraction 183 Replica technique 192 Residual stresses 73.79.84.86.95-6.394 Resistivity 172 Rotating cylinders 124 Rotating discs and rings 117 collapse 94 Rotating hollow discs 122 Rotating uniform strength discs 125 Ruge and Simmons 171Index 539 Safety factor 41, 65, 166 Saint-Venant 420 Sand heap analogy 78 Second moment of area 2- 10 ellipse of 9 principle 4 product 3 Semi-conductor gauges 180 Senarment 187 Shape factor 65 Shear flow 147 Shear stress 224 Sherby-Dom parameter 469 Skew loading 2 Slenderness ration 28 Smith-Southwell theory 42 Southwell 42 Specific resistance 172 Stem 168 Straight line formula 36 Strain deviatoric 251, 253 invariants 247 threshold 167 Strain circle 228 Strain gauge 171 Strain hardening 63-4, 80 Stress unsymmetrical sections 67,69 body force 220 boundary 185 Cartesian 220 concentration 86 concentration factor 408 concentration factor (evaluation) 413 crushing 37 deviatoric 246, 251 direct 224 equations of equilibrium 236 freezing technique 190 hydrostatic 249-51 invariants 243-4 mean 252,447,451 radial 193, 199 range 447 relaxation 470 separation 190 shear 224 tangential 193, 199 three-dimensional 220 trajectory 189 yield 61 Stress concentration, effects 453 Stress intensity factor 477 stresscoat 168 Struts 28 Tangential stress 193, 199 Tardy compensation 187 Temperature stresses 126 Temporary birefringence 183 Tensor notation 235 Thermal stresses 126 Thin membranes 194 Thin shells 517-18 Threshold strain 167 Timoshenko 142, 144, 146,212,214 Torsion of cellular sections 150 Torsion of non-circular sections 141 Torsion of open sections Torsion of rectangular sections 142 Torsion of square closed of closed section Torsion of thin-walled closed sections Torsion of thin-walled stiffened sections Torsion section modulus 144 Torsional rigidity 150 Toughness 473 Transformation 259, 326 Transverse sensitivity 173 Triangular plane membrane element 343 Twist, angle of 141-7, 149-52 143, 150 141 147 151 Unbalanced bridge 173 Uniform strength discs 125 Unsymmetrical bending 1 Unsymmetrical, section struts 49 Validity limit (Euler) 37 Virtual work 323 Viscoelasticity 521 Voight-Kelvin 522 Warping 153,310 Webb’s approximation 44 Wheatstonebridge 172 Wilson-Stokes equation 423 Wire gauge 171 X-rays 192 Yield stress 61
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanics of Materials, Volume 2 رابط مباشر لتنزيل كتاب Mechanics of Materials, Volume 2
عدل سابقا من قبل Admin في الإثنين 07 أكتوبر 2024, 12:08 am عدل 1 مرات |
| | | rambomenaa كبير مهندسين
عدد المساهمات : 2041 تاريخ التسجيل : 21/01/2012
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 السبت 29 يونيو 2013, 6:56 pm | |
|
جزاك الله
خير الجزاء وجعلها الله فى ميزان حسناتك |
| | | Admin مدير المنتدى
عدد المساهمات : 18992 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 السبت 29 يونيو 2013, 8:41 pm | |
|
- rambomenaa كتب:
- جزاك الله
خير الجزاء وجعلها الله فى ميزان حسناتك
جزانا الله وإياك خيراً |
| | | ماهر88 مهندس فعال
عدد المساهمات : 160 تاريخ التسجيل : 18/02/2013
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 الأحد 30 يونيو 2013, 9:59 pm | |
|
كل الشكر والتقدير لهذا المجهود الرائع - وجزاك الله الف خير |
| | | Admin مدير المنتدى
عدد المساهمات : 18992 تاريخ التسجيل : 01/07/2009
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 الإثنين 01 يوليو 2013, 12:25 am | |
|
- ماهر88 كتب:
- كل الشكر والتقدير لهذا المجهود الرائع - وجزاك الله الف خير
لا شكر على واجب جزانا الله وإياك خيراً |
| | | محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 الجمعة 12 يوليو 2013, 1:34 am | |
| |
| | | Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 الجمعة 12 يوليو 2013, 12:53 pm | |
|
- محمد محمد أحمد كتب:
- جزاك الله خيرا
جزانا الله وإياك خيراً |
| | | ahmed123456789 مهندس تحت الاختبار
عدد المساهمات : 1 التقييم : 1 تاريخ التسجيل : 27/09/2024 العمر : 37 الدولة : العراق العمل : موظف الجامعة : بغداد
| موضوع: رد: كتاب Mechanics of Materials, Volume 2 الجمعة 27 سبتمبر 2024, 1:09 pm | |
|
السلام عليكم الاخ العزيز بارك الله في جهودك لكن هذا الرابط لايعمل |
| | | | كتاب Mechanics of Materials, Volume 2 | |
|
مواضيع مماثلة | |
|
| صلاحيات هذا المنتدى: | لاتستطيع الرد على المواضيع في هذا المنتدى
| |
| |
| |
|