Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Mathematical Tools for Automatic Control Engineers الجمعة 05 يوليو 2013, 11:03 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Mathematical Tools for Automatic Control Engineers Volume 1: Deterministic Techniques Alexander S. Poznyak September 21, 2007
ويتناول الموضوعات الأتية :
I MATRICES AND RELATED TOPICS 1 1 Determinants 3 1.1 Basic definitions 3 1.1.1 Rectangularmatrix 3 1.1.2 Permutations, number of inversions and diagonals 4 1.1.3 Determinants 5 1.2 Properties of numerical determinants, minors and cofactors 7 1.2.1 Basic properties of determinants 7 1.2.2 Minors and cofactors 12 1.2.3 Laplace’s theorem. 14 1.2.4 Binet-Cauchy formula 16 1.3 Linear algebraic equations and the existence of solutions 17 1.3.1 Gauss’smethod 17 1.3.2 Kronecker-Capelli criterion 19 1.3.3 Cramer’s rule 20 2 Matrices and Matrix Operations 21 2.1 Basic definitions 21 2.1.1 Basic operations overmatrices 21 2.1.2 Special forms of squarematrices 22 2.2 Somematrix properties 24 2.3 Kronecker product 29 2.4 Submatrices, partitioning of matrices and Schur’s formulas 32 2.5 Elementary transformations onmatrices 35 2.6 Rank of amatrix 40 2.7 Trace of a quadraticmatrix 42 3 Eigenvalues and Eigenvectors 45 3.1 Vectors and linear subspaces 45 3.2 Eigenvalues and eigenvectors 49 3.3 The Cayley-Hamilton theorem 59 3.4 The multiplicities and generalized eigenvectors 60 3.4.1 Algebraic and geometric multiplicities 60 3.4.2 Generalized eigenvectors 62 4 Matrix Transformations 65 4.1 Spectral theorem for Hermitian matrices 65 4.1.1 Eigenvectors of a multiple eigenvalue forHermitianmatrices 65 4.1.2 Gram-Schmidt orthogonalization 66 4.1.3 Spectral theorem 67 4.2 Matrix transformation to the Jordan form 68 4.2.1 The Jordan block 68 4.2.2 The Jordanmatrix form 69 4.3 Polar and singular-value decompositions 70 4.3.1 Polar decomposition 70 4.3.2 Singular-value decomposition 73 4.4 Congruent matrices and the inertia of a matrix 77 4.4.1 Congruentmatrices 77 4.4.2 Inertia of a squarematrix 78 4.5 Cholesky factorization 81 4.5.1 Upper triangular factorization 81 4.5.2 Numerical realization 83 5 Matrix Functions 85 5.1 Projectors 85 5.2 Functions of amatrix 87 5.2.1 Main definition 87 5.2.2 Matrix exponent 89 5.2.3 Square root of a positive semidefinite matrix 93 5.3 The resolvent formatrix 94 5.4 Matrix norms 98 5.4.1 Norms in linear spaces and in Cn 98 5.4.2 Matrix norms 100 5.4.3 Compatible norms 103 5.4.4 Inducematrix norm 104 6 Moore-Penrose Pseudoinverse 107 6.1 Classical Least Squares Problem 107 6.2 Pseudoinverse characterization 110 6.3 Criterion for pseudoinverse checking 113 6.4 Some identities for pseudoinversematrices 115 6.5 Solution of Least Square Problem using pseudoinverse 117 6.6 Cline’s formulas 120 6.7 Pseudo-ellipsoids 120 6.7.1 Definition and basic properties 120 6.7.2 Support function 122 6.7.3 Pseudo-ellipsoids containing vector sum of two pseudo-ellipsoids 123 6.7.4 Pseudo-ellipsoids containing intersection of two pseudo-ellipsoids 125 7 Hermitian and Quadratic Forms 127 7.1 Definitions 127 7.2 Nonnegative definitematrices 130 7.2.1 Nonnegative definiteness 130 7.2.2 Nonnegative (positive) definiteness of a partitionedmatrix 133 7.3 Sylvester criterion 136 vi CONTENTS 7.4 The simultaneous transformation of pair of quadratic forms 138 7.4.1 The case when one of quadratic form is strictly positive 138 7.4.2 The case when both quadratic forms are nonnegative . 139 7.5 Simultaneous reduction of more than two quadratic forms141 7.6 A related maximum-minimum problem 142 7.6.1 Rayleigh quotient 142 7.6.2 Main properties of the Rayleigh quotient 143 7.7 The ratio of two quadratic forms 145 8 Linear Matrix Equations 147 8.1 General type of linear matrix equation 147 8.1.1 General linearmatrix equation 147 8.1.2 Spreading operator and Kronecker product 147 8.1.3 Relation between the spreading operator and theKronecker product 148 8.1.4 Solution of a general linear matrix equation 150 8.2 Sylvestermatrix equation 151 8.3 Lyapunovmatrix equation 152 9 Stable Matrices and Polynomials 153 9.1 Basic definitions 153 9.2 Lyapunov stability 154 9.2.1 Lyapunov matrix equation for stable matrices 154 9.3 Necessary condition of the matrix stability 159 9.4 The Routh-Hurwitz criterion 160 9.5 The Liénard-Chipart criterion 169 9.6 Geometric criteria 170 9.6.1 The principle of argument variation 170 9.6.2 TheMikhailov’s criterion 172 9.7 Polynomial robust stability 175 CONTENTS vii 9.7.1 Parametric uncertainty and robust stability 175 9.7.2 TheKharitonov’s theorem 177 9.7.3 The Polyak-Tsypkin geometric criterion 180 9.8 Controllable, stabilizable, observable and detectable pairs182 9.8.1 Controllability and a controllable pair of matrices 182 9.8.2 Stabilizability and a stabilizable pair of matrices 188 9.8.3 Observability and an observable pair of matrices 189 9.8.4 Detectability and a detectable pair of matrices 193 9.8.5 Popov-Belevitch-Hautus (PBH) test 193 10 Algebraic Riccati Equation 195 10.1 Hamiltonianmatrix 195 10.2 All solutions of the algebraic Riccati equation 196 10.2.1 Invariant subspaces 196 10.2.2 Main theorems on the solution presentation 197 10.2.3 Numerical example 200 10.3 Hermitian and symmetric solutions 201 10.3.1 No pure imaginary eigenvalues 201 10.3.2 Unobservablemodes 206 10.3.3 All real solutions 207 10.3.4 Numerical example 208 10.4 Nonnegative solutions 210 10.4.1 Main theorems on the algebraic Riccati equation solution 210 11 Linear Matrix Inequalities 215 11.1 Matrices as variables and LMI problem 215 11.1.1 Matrix inequalities 215 11.1.2 LMI as a convex constraint 217 11.1.3 Feasible and infeasible LMI 217 11.2 Nonlinear matrix inequalities equivalent to LMI 218 viii CONTENTS 11.2.1 Matrix normconstraint 218 11.2.2 Nonlinear weighted normconstraint 219 11.2.3 Nonlinear trace normconstraint 219 11.2.4 Lyapunov inequality 219 11.2.5 Algebraic Riccati - Lurie’s matrix inequality 220 11.2.6 Quadratic inequalities and S-procedure 220 11.3 Some characteristics of linear stationary systems (LSS) 221 11.3.1 LSS and their transfer function 221 11.3.2 H2 norm 222 11.3.3 Passivity and the positive-real lemma 222 11.3.4 Nonexpansivity and the bounded-real lemma 224 11.3.5 H norm 226 11.3.6 γ-Entropy 227 11.3.7 Stability of stationary time-delay systems 227 11.3.8 Hybrid time-delay linear stability 228 11.4 Optimization problems with LMI constraints 229 11.4.1 Eigenvalue problem(EVP) 229 11.4.2 Tolerance level optimization 230 11.4.3 Maximization of the quadratic stability degree 230 11.4.4 Minimization of linear function Tr (CP C|) under the Lyapunov-type constraint 231 11.4.5 The convex function log det A−1 (X) minimization 232 11.5 Numerical methods for LMIs resolution 233 11.5.1 What does itmean "to solve LMI"? 233 11.5.2 Ellipsoid algorithm 233 11.5.3 Interior-pointmethod 237 12 Miscellaneous 239 12.1 Λ-matrix inequalities 239 12.2 MatrixAbel identities 240 12.2.1 Matrix summation by parts 240 12.2.2 Matrix product identity 241 CONTENTS ix 12.3 S-procedure and Finsler lemma 242 12.3.1 Daneš’ theorem 242 12.3.2 S-procedure 244 12.3.3 Finsler lemma 247 12.4 Farkaš lemma 249 12.4.1 Formulation of the lemma 249 12.4.2 Axillary bounded LS-problem 250 12.4.3 Proof of Farkaš lemma 252 12.4.4 The steepest descent problem 253 12.5 Kantorovichmatrix inequality 253 II ANALYSIS 255 13 The Real and Complex Number Systems 257 13.1 Ordered sets 257 13.1.1 Order 257 13.1.2 Infimumand supremum 258 13.2 Fields 258 13.2.1 Basic definition andmain axioms 258 13.2.2 Some important properties 259 13.3 The real field 261 13.3.1 Basic properties 261 13.3.2 Intervals 262 13.3.3 Maximumandminimumelements 262 13.3.4 Some properties of the supremum 263 13.3.5 Absolute value and the triangle inequality 264 13.3.6 The Cauchy-Schwarz inequality 266 13.3.7 The extended real number system 266 13.4 Euclidian spaces 267 13.5 The complex field 268 13.5.1 Basic definition and properties 268 13.5.2 The imaginary unite 269 13.5.3 The conjugate and absolute value of a complex number 270 13.5.4 The geometric representation of complex numbers272 13.6 Some simplest complex functions 274 13.6.1 Power 274 x CONTENTS 13.6.2 Roots 275 13.6.3 Complex exponential 276 13.6.4 Complex logarithms 277 13.6.5 Complex sines and cosines 278 14 Sets, Functions and Metric Spaces 281 14.1 Functions and sets 281 14.1.1 The function concept 281 14.1.2 Finite, countable and uncountable sets 282 14.1.3 Algebra of sets 283 14.2 Metric spaces 287 14.2.1 Metric definition and examples of metrics 287 14.2.2 Set structures 288 14.2.3 Compact sets 292 14.2.4 Convergent sequences in metric spaces 294 14.2.5 Continuity and function limits in metric spaces 301 14.2.6 The contraction principle and a fixed point theorem . 310 14.3 Resume 310 15 Integration 311 15.1 Naive interpretation 311 15.1.1 What is the Riemann integration? 311 15.1.2 What is the Lebesgue integration? 312 15.2 The Riemann-Stieltjes integral 313 15.2.1 Riemann integral definition 313 15.2.2 Definition of Riemann-Stieltjes integral 315 15.2.3 Main properties of the Riemann-Stieltjes integral 316 15.2.4 Different types of integrators 321 15.3 The Lebesgue-Stieltjes integral 332 15.3.1 Algebras, σ-algebras and additive functions of sets332 15.3.2 Measure theory 335 15.3.3 Measurable spaces and functions 344 15.3.4 The Lebesgue-Stieltjes integration 348 15.3.5 The "almost everywhere" concept 352 15.3.6 "Atomic" measures and δ - function 354 CONTENTS xi 16 Selected Topics of Real Analysis 357 16.1 Derivatives 357 16.1.1 Basic definitions and properties 357 16.1.2 Derivative of multivariable functions 362 16.1.3 Inverse function theorem 368 16.1.4 Implicit function theorem 371 16.1.5 Vector and matrix differential calculus 374 16.1.6 Nabla-operator in 3-dimensional space 376 16.2 OnRiemann-Stieltjes integrals 378 16.2.1 The necessary condition for existence of Riemann- Stieltjes integrals 378 16.2.2 The sufficient conditions for existence of Riemann- Stieltjes integrals 380 16.2.3 Mean-value theorems 381 16.2.4 The integral as a function of the interval 383 16.2.5 Derivative integration. 384 16.2.6 Integrals depending on a parameters and differentiation under integral sign 385 16.3 On Lebesgue integrals 388 16.3.1 Lebesgue’s monotone convergence theorem 388 16.3.2 Comparison with the Riemann integral 390 16.3.3 Fatou’s lemma 391 16.3.4 Lebesgue’s dominated convergence 393 16.3.5 Fubini’s reduction theorem 394 16.3.6 Coordinate transformation in an integral 399 16.4 Integral inequalities 401 16.4.1 Generalized Chebyshev Inequality 401 16.4.2 Markov and Chebyshev Inequalities 402 16.4.3 Hölder Inequality 403 16.4.4 Cauchy-Bounyakovski-Schwartz inequality 405 16.4.5 Jensen inequality 406 16.4.6 Lyapunov inequality 410 16.4.7 Kulbac inequality 412 16.4.8 Minkowski inequality 413 16.5 Numerical sequences 416 16.5.1 Infinite series 416 16.5.2 Infinite products 428 16.5.3 Teöplitz lemma 432 xii CONTENTS 16.5.4 Kronecker lemma 433 16.5.5 Abel-Dini lemma 434 16.6 Recurrent inequalities 436 16.6.1 On the sumof a series estimation 436 16.6.2 Linear recurrent inequalities 437 16.6.3 Recurrent inequalities with root terms 442 17 Complex Analysis 447 17.1 Differentiation 447 17.1.1 Differentiability 447 17.1.2 Cauchy-Riemann conditions 448 17.1.3 Theorem on a constant complex function 451 17.2 Integration 452 17.2.1 Paths and curves 452 17.2.2 Contour integrals 454 17.2.3 Cauchy’s integral law 456 17.2.4 Singular points and Cauchy’s residue theorem 460 17.2.5 Cauchy’s integral formula 463 17.2.6 Maximummodulus principle and Schwarz’s lemma468 17.2.7 Calculation of integrals and Jordan lemma 470 17.3 Series expansions 474 17.3.1 Taylor (power) series 474 17.3.2 Laurent series 478 17.3.3 Fourier series 483 17.3.4 Principle of argument 484 17.3.5 Rouché theorem. 486 17.3.6 Fundamental algebra theorem 488 17.4 Integral transformations 489 17.4.1 Laplace transformation (K (t, p) = e−pt) 490 17.4.2 Another transformations 498 18 Topics of Functional Analysis 507 18.1 Linear and normed spaces of functions 508 18.1.1 Space mn of all bounded complex numbers 508 18.1.2 Space ln p of all summable complex sequences 509 18.1.3 Space C [a, b] of continuous functions 509 18.1.4 Space Ck [a, b] of continuously differentiable functions . 509 CONTENTS xiii 18.1.5 Lebesgue spaces Lp [a, b] (1 ≤ p < ) 509 18.1.6 Lebesgue spaces L [a, b] 510 18.1.7 Sobolev spaces Slp (G) 510 18.1.8 Frequency domain spaces Lm×k p , RLm×k p , Lm×k
and RLm×k
. 510 18.1.9 Hardy spaces Hm×k p , RHm×k p , Hm×k
and RHm×k
511 18.2 Banach spaces 512 18.2.1 Basic definition 512 18.2.2 Examples of incomplete metric spaces 512 18.2.3 Completion ofmetric spaces 513 18.3 Hilbert spaces 515 18.3.1 Definition and examples 515 18.3.2 Orthogonal complement 516 18.3.3 Fourier series in Hilbert spaces 518 18.3.4 Linear n-manifold approximation 520 18.4 Linear operators and functionals in Banach spaces 521 18.4.1 Operators and functionals 521 18.4.2 Continuity and boundedness 522 18.4.3 Compact operators 530 18.4.4 Inverse operators 532 18.5 Duality 537 18.5.1 Dual spaces 537 18.5.2 Adjoint (dual) and self-adjoint operators 540 18.5.3 Riesz representation theorem for Hilbert spaces 543 18.5.4 Orthogonal projection operators in Hilbert spaces543 18.6 Monotonic, nonnegative and coercive operators 546 18.6.1 Basic definitions and properties 547 18.6.2 Galerkin method for equations with monotone operators 550 18.6.3 Main theorems on the existence of solutions for equations withmonotone operators 552 18.7 Differentiation of NonlinearOperators 555 18.7.1 Fréchet derivative 555 18.7.2 Gáteaux derivative 557 18.7.3 Relation with "Variation Principle" 558 18.8 Fixed-point Theorems 559 18.8.1 Fixed-points of a nonlinear operator 559 xiv CONTENTS 18.8.2 Brouwer fixed-point theorem 561 18.8.3 Schauder fixed-point theorem 565 18.8.4 The Leray-Schauder principle and a priory estimates . 567 III DIFFERENTIAL EQUATIONS AND OPTIMIZATION 569 19 Ordinary Differential Equations 571 19.1 Classes ofODE 571 19.2 RegularODE 572 19.2.1 Theorems on existence 572 19.2.2 Differential inequalities, extension and uniqueness 579 19.2.3 LinearODE 590 19.2.4 Index of increment for ODE solutions 599 19.2.5 Riccati differential equation 600 19.2.6 Linear first order partial DE 603 19.3 Carathéodory’s TypeODE 606 19.3.1 Main definitions 606 19.3.2 Existence and uniqueness theorems 607 19.3.3 Variable structure and singular perturbed ODE 610 19.4 ODE withDRHS 612 19.4.1 Why ODE with DRHS are important in Control Theory 612 19.4.2 ODE with DRHS and differential inclusions 617 19.4.3 Slidingmode control 623 20 Elements of Stability Theory 643 20.1 Basic Definitions 643 20.1.1 Origin as an equilibrium 643 20.1.2 Positive definite functions 644 20.2 Lyapunov Stability 646 20.2.1 Main definitions and examples 646 20.2.2 Criteria of stability: non - constructive theory 649 20.2.3 Sufficient conditions of asymptotic stability: constructive theory 658 CONTENTS xv 20.3 Asymptotic global stability 663 20.3.1 Definition of asymptotic global stability 663 20.3.2 Asymptotic global stability for stationary systems663 20.3.3 Asymptotic global stability for non - stationary system 666 20.4 Stability of Linear Systems 669 20.4.1 Asymptotic and exponential stability of linear time-varying systems 669 20.4.2 Stability of linear system with periodic coefficients672 20.4.3 BIBO stability of linear time-varying systems 673 20.5 Absolute Stability 676 20.5.1 Linear systems with nonlinear feedbacks 676 20.5.2 Aizerman andKalman conjectures 677 20.5.3 Analysis of absolute stability 679 20.5.4 Popov’s sufficient conditions 682 20.5.5 Geometric interpretation of Popov’s conditions 684 20.5.6 Yakubovich-Kalman lemma 686 21 Finite-Dimensional Optimization 691 21.1 Some Properties of Smooth Functions 691 21.1.1 Differentiability remainder 691 21.1.2 Convex functions 696 21.2 UnconstrainedOptimization 703 21.2.1 Extremumconditions 703 21.2.2 Existence, uniqueness and stability of a minimum705 21.2.3 Some numerical procedure of optimization 708 21.3 ConstrainedOptimization 716 21.3.1 Elements of ConvexAnalysis 716 21.3.2 Optimization on convex sets 725 21.3.3 Mathematical programming and Lagrange principle . 728 21.3.4 Method of the subgradient projection to simplest convex sets 736 21.3.5 Arrow-Hurwicz-Uzawa method with the regularization 739 xvi CONTENTS 22 Variational Calculus and Optimal Control 749 22.1 Basic Lemmas of Variation Calculus 749 22.1.1 Du Bois-Reymond lemma 749 22.1.2 Lagrange lemma 753 22.1.3 Lemma on quadratic functional 754 22.2 Functionals and Their Variations 755 22.3 ExtremumConditions 756 22.3.1 Extremal curves 756 22.3.2 Necessary conditions 757 22.3.3 Sufficient conditions 758 22.4 Optimization of integral functionals 760 22.4.1 Curves with fixed boundary points 760 22.4.2 Curves with non-fixed boundary points 771 22.4.3 Curves with a non-smoothness point 774 22.5 Optimal Control Problem 775 22.5.1 Controlled plant, cost functionals and terminal set 775 22.5.2 Feasible and admissible control 777 22.5.3 Problem setting in the general Bolza form 777 22.5.4 Mayer formrepresentation 778 22.6 MaximumPrinciple 779 22.6.1 Needle-shape variations 779 22.6.2 Adjoint variables and MP formulation 782 22.6.3 The regular case 786 22.6.4 Hamiltonian form and constancy property 787 22.6.5 Non fixed horizon optimal control problem and Zero-property 789 22.6.6 Joint optimal control and parametric optimization problem. 792 22.6.7 Sufficient conditions of optimality 794 22.7 Dynamic Programming 800 22.7.1 Bellman´s Principle of Optimality 801 22.7.2 Sufficient conditions for BP fulfilling 802 22.7.3 Invariant embedding 804 22.7.4 Hamilton-Jacoby-Bellman equation 807 22.8 LinearQuadraticOptimal Control 811 22.8.1 Non stationary linear systems and quadratic criterion 22.8.2 LinearQuadratic Problem 812 22.8.3 Maximum Principle for DLQ problem 813 22.8.4 Sufficiency condition 814 22.8.5 Riccati differential equation and feedback optimal control 815 22.8.6 Linear feedback control 815 22.8.7 Stationary systems on the infinite horizon 819 22.9 Linear-Time optimization 827 22.9.1 General result 827 22.9.2 Theorem on n-intervals for stationary linear systems 23 H2 and H Optimization 831 23.1 H2 -Optimization 831 23.1.1 Kalman canonical decompositions 831 23.1.2 Minimal and balanced realizations 836 23.1.3 H2 normand its computing 840 23.1.4 H2 optimal control problem and its solution 844 23.2 H -Optimization 848 23.2.1 L, H norms 848 23.2.2 Laurent, Toeplitz and Hankel operator 852 23.2.3 Nehari problem in RLm×k 23.2.4 Model-matching (MMP) problem 870 23.2.5 Some control problem converted to MMP 881
أتمنى أن تستفيدوا منه وأن ينال إعجابكم
رابط تنزيل كتاب Advanced Mathematical Tools for Automatic Control Engineers
|
|
محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Advanced Mathematical Tools for Automatic Control Engineers الجمعة 26 يوليو 2013, 5:09 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Advanced Mathematical Tools for Automatic Control Engineers الجمعة 26 يوليو 2013, 5:12 pm | |
|
- محمد محمد أحمد كتب:
- جزاك الله عنا كل خير
جزانا الله وإياك خيراً |
|