علاء عبدالحسن الخفاجي مهندس تحت الاختبار
عدد المساهمات : 8 التقييم : 12 تاريخ التسجيل : 30/08/2014 العمر : 33 الدولة : العراق العمل : طالب كلية هندسة الجامعة : جامعة ذي قار
| موضوع: كتاب Strength of Materials الثلاثاء 10 فبراير 2015, 10:15 am | |
|
تذكير بمساهمة فاتح الموضوع : أخوانى فى الله أحضرت لكم كتاب Strength of Materials Sadiq Muhsin Almosawy Second Class Lecturer College of Engineering Mech. Eng. Dept.
و المحتوى كما يلي :
Contents Simple Stress Tension Compression Normal stress Normal Strain Double shear stress Young's modulus. Poisson's Ratio Longitudinal Strain Lateral Strain Modulus of Rigidity ( G ) Statically Indeterminate Members Thermal Stresses T: Change in temperature of the member. L: The original length of the member. T: The change in length of the member Initial Position Final Position Steel Aluminum Steel Torsion The Torsion Formula T: The resultant internal torque acting on the cross section. J: The polar moment of inertia of the cross sectional area. Angle of Twist G: The shear modulus of elasticity or modulus of rigidity Torsion of Solid Noncircular Shafts Shape of cross section Thin walled tubes having closed cross sections Average shear stress The average shear stress acting over the thickness of the tube. T: The resultant internal torque at the cross section. t: The thickness of the tube where avg is to be determined. Am: The mean area enclosed within the boundary of the center line of the tube thickness Angle of Twist Thin Walled Cylinder, Thin Walled Pressure Vessels a. Circumferential or hoop stress b. Longitudinal or axial stress Circumferential or hoop strain d. Longitudinal strain longitudinal strain Change in internal volum longitudinal strain diametral strain 2. Spherical Vessels Cylindrical Vessels with Hemispherical Ends a) For the cylindrical portion hoop stress longitudinal stress hoop strain b) For the spherical ends hoop stress hoop strain Shear and Moment Diagram Point load Concentrated force Uniformly distributed load Uniformly varying load Sign Convention Procedure of Analysis Location of maximum moment Graphical Method for Constructing Shear and Moment Diagram Stresses in Beams S.F. Diagram B.M. Diagram Nonuniform bending Pure bending Assumptions: 1. The beam is initially straight and unstressed. 2. The material of the beam is perfectly homogeneous. 3. The elastic limit is nowhere exceeded. 4. Young's modulus for the material is the same in tension and compression. 5. Plane cross-sections remain plane before and after bending. 6. Every cross-section of the beam is symmetrical about the plane of bending i.e. about an axis perpendicular to the N.A. Composite Beams Transformation factor (modular ratio) Normal stress at the bar's top. Normal stress at the bar's bottom Slop and Deflection in Beams Sign convention and coordinates Boundary conditions Castigliano’s Theorem Applied to Beams Statically Indeterminate Beams 1. Method of Integration Moment Area Method(Statically Indeterminate) Combined Stresses Axial loading Torsional loading Flexural loading 1. Axial and flexural. 2. Axial and torsional. 3. Torsional and flexural. 4. Axial , torsional and flexural. Stresses at a Point General State of Stress Plane Stress Mohr's Circle Principal Stresses Maximum in Plane Shear Stress Stress on Arbitrary Plane Stresses Due to Axial Load and Torsion Mohr’s circle or from stress transformation equations. Theories of Failure Ductile Materials Maximum Shear Stress Theory Guest-Tresca Maximum Principal Strain Theory Saint-Venant Maximum Shear Strain Energy Per Unit Volume (Distortion Energy Theory) Triaxial stress (Maxwell-Huber-Von Mises) Total Strain Energy Per Unit Volume Maximum shear stress theory Columns
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Strength of Materials رابط مباشر لتنزيل كتاب Strength of Materials
|
|