Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب A Modern Course in Aeroelasticity الأحد 05 أبريل 2015, 11:59 pm | |
|
أخوانى فى الله أحضرت لكم كتاب A Modern Course in Aeroelasticity by EARL H. DOWELL (Editor) Duke University, Durham, NC, U.S.A. ROBERT CLARK Duke University, Durham, NC, U.S.A. DAVID COX NASA Langley Research Center, Hampton, VA, U.S.A. H.C. CURTISS, JR. Princeton University, Princeton, NJ, U.S.A. JOHN W. EDWARDS NASA Langley Research Center, Hampton, VA, U.S.A. KENNETH C. HALL Duke University, Durham, NC, U.S.A. DAVID A. PETERS Washington University, St. Louis, MO, U.S.A. ROBERT SCANLAN Johns Hopkins University, Baltimore, MD, U.S.A. EMIL SIMIU National Institute for Standards and Technology, Gaithersburg, MD, U.S.A. FERNANDO SISTO Stevens Institute of Technology, Hoboken, NJ, U.S.A. and THOMAS W. STRGANAC Texas A&M University, College Station, TX, U.S.A.
ويتناول الموضوعات الأتية :
P r e f a c e xvii Preface to the First Edition xvii Preface to the Second Edition xix Preface to the Third Edition xx Preface to the Fourth Edition xxi Short Bibliography xxiii 1. INTRODUCTION (DOWELL) 1 2. STATIC AEROELASTICITY (DOWELL) 5 2.1 Typical Section Model of An Airfoil 5 Typical section model with control surface 10 Typical section model—nonlinear effects 16 2.2 One Dimensional Aeroelastic Model of Airfoils 18 Beam-rod representation of large aspect ratio wing 18 Eigenvalue and eigenfunction approach 22 Galerkin’s method 24 2.3 Rolling of a Straight Wing 26 Integral equation of equilibrium 26 Derivation of equation of equilibrium 27 Calculation of Cαα 28 Sketch of function S(y1, η) 28 Aerodynamic forces (including spanwise induction) 30 Aeroelastic equations of equilibrium and lumped element solution method 32 Divergence 33 Reversal and rolling effectiveness 34 vii v i i i A MODERN COURSE IN AEROELASTICITY I nt e g r a l e q u a t i o n e i g e nva l u e p r o b l e m a n d t h e e x p er i m e nt a l d e t e r m i n a t i o n o f i n fl u e n c e f u n c t i o n s 3 7 2 . 4 Two D i m e n s i o n a l A e r o el a s t i c M o d e l o f L i f t i n g S u r f a c e s 4 1 Two d imensional structures—integral representation 41 Two d imensional aero dynamic surfaces—integral representation 42 Solution by matrix-lump ed element approach 43 2.5 O ther Physical Phenomena 44 F l u i d fl ow t h r o u g h a fl e x i b l e p i p e 4 4 (Low sp eed) fluid fl ow over a fl exible wall 47 2 . 6 S wep tw i n g D i ver g e n c e 4 7 References for Chapter 2 51 3 . DY N A M I C A E RO E L A S T I C I T Y ( D OW E L L ) 5 3 3 . 1 H a m i l t o n ’ s P r i n c i p l e 5 4 S i n g l e p a r t i c l e 5 4 M a ny p a r t i c l e s 5 6 C o nt i nu o u s b o d y 5 6 Potential energy 56 Nonp otential forces 59 3 . 2 L a g r a n g e ’ s E q u a t i o n s 6 0 E x a m p l e — ty p i c a l se c t i o n eq u a t i o n s o f m o t i o n 6 1 3.3 Dynamics of the Ty pical S ection M o d el of An Airfoil 64 S i nu s o i d a l m o t i o n 6 4 Per i o d i c m o t i o n 67 A r b i t r a r y mo t i o n 6 7 R a n d o m mo t i o n 7 3 F l u t t e r - a n i nt r o d u c t i o n t o d y n a m i c a e r o el a s t i c i n s t a b i l i ty 8 1 Quasi-steady, aero d ynamic theory 85 3.4 Aero d ynamic Forces 87 A e r o d y n a m i c t h e o r i e s avai l a b l e 91 G e n e r a l a p p r ox i m a t i o n s 9 5 ‘ S t r i p t h e o r y ’ a p p r ox i m a t i o n 9 5 ‘ Q u a s i s t e a d y ’ a p p r ox i m a t i o n 95 Slender b o d y or slender ( low asp ect ratio) wing a p p r ox i m a t i o n 9 6 3 . 5 S o l u t i o n s t o t h e A e r o el a s t i c E q u a t i o n s o f M o t i o n 9 7 Time domain solutions 98 Fr e q u e n c y d o m a i n so l u t i o n s 1 0 0 Contents ix 3.6 Representative Results and Computational Considerations 103 Time domain 103 Frequency domain 103 Flutter and gust response classification including parameter trends 105 Flutter 105 Gust response 121 3.7 Generalized Equations of Motion for Complex Structures 128 Lagrange’s equations and modal methods (Rayleigh-Ritz) 128 Kinetic energy 129 Strain (potential elastic) energy 130 Examples 133 (a) Torsional vibrations of a rod 133 (b) Bending-torsional motion of a beam-rod 134 Natural frequencies and modes-eigenvalues and eigenvectors135 Evaluation of generalized aerodynamic forces 136 Equations of motion and solution methods 137 Integral equations of equilibrium 139 Natural frequencies and modes 141 Proof of orthogonality 143 Forced motion including aerodynamic forces 144 Examples 147 (a) Rigid wing undergoing translation responding to a gust147 (b) Wing undergoing translation and spanwise bending 153 (c) Random gusts-solution in the frequency domain 155 3.8 Other Fluid-Structural Interaction Phenomena 156 Fluid flow through a flexible pipe: “firehose” flutter 156 (High speed) fluid flow over a flexible wall - a simple prototype for plate or panel flutter 158 References for Chapter 3 165 4. NONSTEADY AERODYNAMICS (DOWELL) 169 4.1 Basic Fluid Dynamic Equations 169 Conservation of mass 170 Conservation of momentum 171 Irrotational flow, Kelvin’s theorem and Bernoulli’s equation172 Derivation of a single equation for velocity potential 174 Small perturbation theory 175 x A MODERN COURSE IN AEROELASTICITY Reduction to classical acoustics 177 Boundary conditions 178 Symmetry and anti-symmetry 180 4.2 Supersonic Flow 182 Two-dimensional flow 182 Simple harmonic motion of the airfoil 183 Discussion of inversion 185 Discussion of physical significance of the results 187 Gusts 189 Transient motion 190 Lift, due to airfoil motion 191 Lift, due to atmospheric gust 192 Three dimensional flow 195 4.3 Subsonic Flow 201 Derivation of the integral equation by transform methods and solution by collocation 201 An alternative determination of the Kernel Function using Green’s Theorem 204 Incompressible, three-dimensional flow 207 Compressible, three-dimensional flow 211 Incompressible, two-dimensional flow 215 Simple harmonic motion of an airfoil 218 Transient motion 224 Evaluation of integrals 229 4.4 Representative Numerical Results 232 4.5 Transonic Flow 238 References for Chapter 4 270 5. STALL FLUTTER (SISTO) 275 5.1 Background 275 5.2 Analytical formulation 276 5.3 Stability and aerodynamic work 278 5.4 Bending stall flutter 279 5.5 Nonlinear mechanics description 281 5.6 Torsional stall flutter 282 5.7 General comments 285 5.8 Reduced order models 288 Contents xi 5.9 Computational stalled flow 289 References for Chapter 5 294 6. AEROELASTICITY IN CIVIL ENGINEERING (SCANLAN AND SIMIU) 299 6.1 Vortex-induced Oscillation 301 Vortex shedding 301 Modeling of vortex-induced oscillations 305 Coupled two-degree-of-freedom equations: wake oscillator models 306 Single-degree-of- freedom model of vortex-induced response310 6.2 Galloping 314 Equation of motion of galloping bodies. The Glauert-Den Hartog necessary condition for galloping instability 314 Description of galloping motion 320 Chaotic galloping of two elastically coupled square bars 321 Wake galloping : physical description and analysis 321 6.3 Torsional Divergence 327 6.4 Flutter and Buffeting in the Presence of Aeroelastic Effects 328 Formulation and analytical solution of the twodimensional bridge flutter problem in smooth flow 330 Bridge section response to excitation by turbulent wind in the presence of aeroelastic effects 334 6.5 Suspension-Span Bridges 336 Wind tunnel testing of suspended-span bridges 336 Torsional divergence analysis for a full bridge 338 Locked-in vortex-induced response 340 Flutter and buffeting of a full-span bridge 350 Reduction of bridge susceptibility to flutter 360 6.6 Tall Chimneys and Stacks, and Tall Buildings 361 Tall chimneys and stacks 361 Tall buildings 365 References for Chapter 6 367 7. AEROELASTIC RESPONSE OF ROTORCRAFT (CURTISS AND PETERS) 377 7.1 Blade Dynamics 379 Articulated, rigid blade motion 379 Elastic motion of hingeless blades 390 x i i A MODERN COURSE IN AEROELASTICITY 7 . 2 S t a l l F l u t t e r 4 0 3 7 . 3 R o t o r - B o d y C o u p l i n g 4 0 9 7.4 Unsteady Aero d ynamics 433 D y n a m i c i n fl ow 4 3 4 Fr equency d omain 440 Finite-state wake mo delling 441 S u m m a r y 4 4 4 References for Chapter 7 444 8 . A E RO E L A S T I C I T Y I N T U R B O M AC H I N E S ( S I S T O ) 4 5 3 8 . 1 A e r o el a s t i c E nv i r o n m e nt i n Tu r b o m a ch i n e s 4 5 4 8.2 The Compressor Performance Map 455 8 . 3 Bl a d e M o d e S h a p es a n d M a t e r i a l s o f Co n s t r u c t i o n 4 6 0 8.4 Nonsteady Potential Flow i n Cascades 462 8.5 Compressible Flow 467 8 . 6 Pe r i o d i c a l l y S t a l l e d F l ow i n Tu r b o m a ch i n e s 4 7 1 8 . 7 S t a l l F l u t t e r i n Tu r b o m a ch i n e s 4 7 5 8 . 8 Ch o k i n g F l u t t e r 4 7 7 8.9 Aero elastic Eigenvalues 479 8.10 Recent Trends 481 References for Chapter 8 487 9. MODELING OF FLUID-STRUCTURE I N T E R AC T I O N ( D OW E L L A N D H A L L ) 4 9 1 9 . 1 T h e R a n g e O f P hy s i c a l M o d e l s 4 9 1 The classical mo d els 491 The d istinction b etween linear and nonlinear mo d els 494 C o m p u t a t i o n a l fl u i d d y n a m i c s m o d e l s 4 9 5 T h e co m p u t a t i o n a l ch a l l e n g e o f fl u i d st r u c t u r e i nt e r a c t i o n mo deling 495 9.2 Time-Linearized Mo dels 496 Classical aero d ynamic theory 496 C l a s s i c a l hy d r o d y n a m i c st a b i l i ty t h e o r y 4 9 7 Pa r a l l e l sh e a r fl ow wi t h a n i nv i s c i d d y n a m i c p e r t u r b a t i o n 4 9 7 General time-linearized analysis 498 Some nu merical examples 500 9 . 3 N o n l i n e a r D y n a m i c a l M o d e l s 5 0 0 Harmonic b alance metho d 503 Contents xiii System identification methods 503 Nonlinear reduced-order models 504 Reduced-order models 504 Constructing reduced order models 505 Linear and nonlinear fluid models 506 Eigenmode computational methodology 507 Proper orthogonal decomposition modes 508 Balanced modes 509 Synergy among the modal methods 509 Input/output models 509 Structural, aerodynamic, and aeroelastic modes 511 Representative results 512 The effects of spatial discretization and a finite computational domain 512 The effects of mach number and steady angle of attack: subsonic and transonic flows 516 The effects of viscosity 521 Nonlinear aeroelastic reduced-order models 522 9.4 Concluding Remarks 524 References for Chapter 9 529 Appendix: Singular-Value Decomposition, Proper Orthogonal Decomposition, & Balanced Modes 538 10. EXPERIMENTAL AEROELASTICITY (DOWELL) 541 10.1 Review of Structural Dynamics Experiments 541 10.2 Wind Tunnel Experiments 543 Sub-critical flutter testing 543 Approaching the flutter boundary 544 Safety devices 544 Research tests vs. clearance tests 544 Scaling laws 544 10.3 Flight Experiments 545 Approaching the flutter boundary 545 When is flight flutter testing required? 545 Excitation 545 Examples of recent flight flutter test programs 546 10.4 The Role of Experimentation and Theory in Design 546 References for Chapter 10 548 x i v A MODERN COURSE IN AEROELASTICITY 1 1 . N O N L I N E A R A E RO E L A S T I C I T Y ( D OW E L L , E DWA R D S A N D S T RG A N AC ) 551 11.1 Introduction 551 11.2 Generic Nonlinear Aeroelastic Behavior 552 11.3 Flight Experience with Nonlinear Aeroelastic Effects 554 Nonlinear aerodynamic effects 556 Freeplay 556 Geometric structural nonlinearities 557 11.4 Physical Sources of Nonlinearities 557 11.5 Efficient Computation of Unsteady Aerodynamic Forces: Linear and Nonlinear 558 11.6 Correlations of Experiment/Theory and Theory/Theory 560 Aerodynamic forces 560 11.7 Flutter Boundaries in Transonic Flow 566 11.8 Limit Cycle Oscillations 573 Airfoils with stiffness nonlinearities 573 Nonlinear internal resonance behavior 575 Delta wings with geometrical plate nonlinearities 577 Very high aspect ratio wings with both structural and aerodynamic nonlinearities 578 Nonlinear structural damping 581 Large shock motions and flow separation 581 Abrupt wing stall 594 Uncertainty due to nonlinearity 595 References for Chapter 11 598 12. AEROELASTIC CONTROL (CLARK AND COX) 611 12.1 Introduction 611 12.2 Linear System Theory 612 System interconnections 612 Controllability and observability 615 12.3 Aeroelasticity: Aerodynamic Feedback 617 Development of a typical section model 617 Aerodynamic model, 2D 619 Balanced model reduction 622 Combined aeroelastic model 623 Development of a delta wing model 627 Transducer effects 630 Contents xv Aerodynamic model, 3D 633 Coupled system 634 12.4 Open-Loop Design Considerations 636 HSVs and the modal model 637 Optimization strategy 638 Optimization results 641 12.5 Control Law Design 642 Control of the typical section model 644 Control of the delta wing model 647 12.6 Parameter Varying Models 647 Linear matrix inequalities 648 LMI controller specifications 649 An LMI design for the typical section 652 12.7 Experimental Results 654 Typical section experiment 655 LPV system identification 656 Closed-loop results 658 Delta wing experiment 664 12.8 Closing Comments 667 References for Chapter 12 669 13. MODERN ANALYSIS FOR COMPLEX AND NONLINEAR UNSTEADY FLOWS IN TURBOMACHINERY (HALL) 675 13.1 Linearized Analysis of Unsteady Flows 676 13.2 Analysis of Unsteady Flows 683 13.3 Harmonic Balance Method 688 13.4 Conclusions 699 References for Chapter 13 701 Appendices 705 Appendix A: A Primer For Structural Response To Random Pressure Fluctuations A.1 Introduction 705 A.2 Excitation-Response Relation For The Structure 705 A.3 Sharp Resonance or Low Damping Approximation 709 Nomenclature 710 References for Appendix A 710 x v i A MODERN COURSE IN AEROELASTICITY A p p en d i x B: S o m e E x a m p l e P r o b l e m s 711 B.1 For Chapter 2 711 B.2 For Section 3.1 724 B.3 For Section 3.3 730 B.4 For Section 3.6 735 B.5 For Section 4.1 738 Index 743
أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط تنزيل كتاب A Modern Course in Aeroelasticity
|
|