Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced mechanics of materials and applied elasticity Fifth Edition الأربعاء 05 يوليو 2017, 1:10 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced mechanics of materials and applied elasticity Fifth Edition Ansel C. Ugural, Saul K. Fenster
ويتناول الموضوعات الأتية :
Contents Preface xii Acknowledgments xiv About the Authors xv List of Symbols xvi Chapter 1 Analysis of Stress 1 1.1 Introduction 1 1.2 Scope of Treatment 3 1.3 Analysis and Design 5 1.4 Conditions of Equilibrium 7 1.5 Definition and Components of Stress 9 1.6 Internal Force-Resultant and Stress Relations 13 1.7 Stresses on Inclined Sections 17 1.8 Variation of Stress within a Body 19 1.9 Plane-Stress Transformation 22 1.10 Principal Stresses and Maximum In-Plane Shear Stress 26 1.11 Mohr’s Circle for Two-Dimensional Stress 28 1.12 Three-Dimensional Stress Transformation 33 1.13 Principal Stresses in Three Dimensions 36 1.14 Normal and Shear Stresses on an Oblique Plane 40 1.15 Mohr’s Circles in Three Dimensions 43 1.16 Boundary Conditions in Terms of Surface Forces 47 1.17 Indicial Notation 48 References 49 Problems 49 Chapter 2 Strain and Material Properties 65 2.1 Introduction 65 2.2 Deformation 66 2.3 Strain Defined 67 2.4 Equations of Compatibility 72 v2.5 State of Strain at a Point 73 2.6 Engineering Materials 80 2.7 Stress–Strain Diagrams 82 2.8 Elastic versus Plastic Behavior 86 2.9 Hooke’s Law and Poisson’s Ratio 88 2.10 Generalized Hooke’s Law 91 2.11 Hooke’s Law for Orthotropic Materials 94 2.12 Measurement of Strain: Strain Rosette 97 2.13 Strain Energy 101 2.14 Strain Energy in Common Structural Members 104 2.15 Components of Strain Energy 106 2.16 Saint-Venant’s Principle 108 References 110 Problems 111 Chapter 3 Problems in Elasticity 124 3.1 Introduction 124 3.2 Fundamental Principles of Analysis 125 Part A—Formulation and Methods of Solution 126 3.3 Plane Strain Problems 126 3.4 Plane Stress Problems 128 3.5 Comparison of Two-Dimensional Isotropic Problems 131 3.6 Airy’s Stress Function 132 3.7 Solution of Elasticity Problems 133 3.8 Thermal Stresses 138 3.9 Basic Relations in Polar Coordinates 142 Part B—Stress Concentrations 147 3.10 Stresses Due to Concentrated Loads 147 3.11 Stress Distribution Near Concentrated Load Acting on a Beam 151 3.12 Stress Concentration Factors 153 3.13 Contact Stresses 159 3.14 Spherical and Cylindrical Contacts 160 3.15 Contact Stress Distribution 163 3.16 General Contact 167 References 170 Problems 171 Chapter 4 Failure Criteria 181 4.1 Introduction 181 4.2 Failure 181 4.3 Failure by Yielding 182 4.4 Failure by Fracture 184 4.5 Yield and Fracture Criteria 187 4.6 Maximum Shearing Stress Theory 188 4.7 Maximum Distortion Energy Theory 189 vi Contents4.8 Octahedral Shearing Stress Theory 190 4.9 Comparison of the Yielding Theories 193 4.10 Maximum Principal Stress Theory 195 4.11 Mohr’s Theory 195 4.12 Coulomb–Mohr Theory 196 4.13 Fracture Mechanics 200 4.14 Fracture Toughness 203 4.15 Failure Criteria for Metal Fatigue 206 4.16 Impact or Dynamic Loads 212 4.17 Dynamic and Thermal Effects 215 References 217 Problems 218 Chapter 5 Bending of Beams 226 5.1 Introduction 226 Part A—Exact Solutions 227 5.2 Pure Bending of Beams of Symmetrical Cross Section 227 5.3 Pure Bending of Beams of Asymmetrical Cross Section 230 5.4 Bending of a Cantilever of Narrow Section 235 5.5 Bending of a Simply Supported Narrow Beam 238 Part B—Approximate Solutions 240 5.6 Elementary Theory of Bending 240 5.7 Normal and Shear Stresses 244 5.8 Effect of Transverse Normal Stress 249 5.9 Composite Beams 250 5.10 Shear Center 256 5.11 Statically Indeterminate Systems 262 5.12 Energy Method for Deflections 264 Part C—Curved Beams 266 5.13 Elasticity Theory 266 5.14 Curved Beam Formula 269 5.15 Comparison of the Results of Various Theories 273 5.16 Combined Tangential and Normal Stresses 276 References 280 Problems 280 Chapter 6 Torsion of Prismatic Bars 292 6.1 Introduction 292 6.2 Elementary Theory of Torsion of Circular Bars 293 6.3 Stresses on Inclined Planes 298 6.4 General Solution of the Torsion Problem 300 6.5 Prandtl’s Stress Function 302 6.6 Prandtl’s Membrane Analogy 310 6.7 Torsion of Narrow Rectangular Cross Section 315 6.8 Torsion of Multiply Connected Thin-Walled Sections 317 Contents vii6.9 Fluid Flow Analogy and Stress Concentration 321 6.10 Torsion of Restrained Thin-Walled Members of Open Cross Section 323 6.11 Curved Circular Bars: Helical Springs 327 References 330 Problems 330 Chapter 7 Numerical Methods 337 7.1 Introduction 337 Part A—Finite Difference Method 338 7.2 Finite Differences 338 7.3 Finite Difference Equations 341 7.4 Curved Boundaries 343 7.5 Boundary Conditions 346 Part B—Finite Element Method 350 7.6 Fundamentals 350 7.7 The Bar Element 352 7.8 Arbitrarily Oriented Bar Element 354 7.9 Axial Force Equation 357 7.10 Force-Displacement Relations for a Truss 359 7.11 Beam Element 366 7.12 Properties of Two-Dimensional Elements 372 7.13 General Formulation of the Finite Element Method 374 7.14 Triangular Finite Element 379 7.15 Case Studies in Plane Stress 386 7.16 Computational Tools 394 References 395 Problems 396 Chapter 8 Axisymmetrically Loaded Members 407 8.1 Introduction 407 8.2 Thick-Walled Cylinders 408 8.3 Maximum Tangential Stress 414 8.4 Application of Failure Theories 415 8.5 Compound Cylinders: Press or Shrink Fits 416 8.6 Rotating Disks of Constant Thickness 419 8.7 Design of Disk Flywheels 422 8.8 Rotating Disks of Variable Thickness 426 8.9 Rotating Disks of Uniform Stress 429 8.10 Thermal Stresses in Thin Disks 431 8.11 Thermal Stresses in Long Circular Cylinders 432 8.12 Finite Element Solution 436 8.13 Axisymmetric Element 437 References 441 Problems 442 viii ContentsChapter 9 Beams on Elastic Foundations 448 9.1 Introduction 448 9.2 General Theory 448 9.3 Infinite Beams 449 9.4 Semi-Infinite Beams 454 9.5 Finite Beams 457 9.6 Classification of Beams 458 9.7 Beams Supported by Equally Spaced Elastic Elements 458 9.8 Simplified Solutions for Relatively Stiff Beams 460 9.9 Solution by Finite Differences 461 9.10 Applications 464 References 466 Problems 466 Chapter 10 Applications of Energy Methods 469 10.1 Introduction 469 10.2 Work Done in Deformation 470 10.3 Reciprocity Theorem 471 10.4 Castigliano’s Theorem 472 10.5 Unit- or Dummy-Load Method 479 10.6 Crotti–Engesser Theorem 481 10.7 Statically Indeterminate Systems 483 10.8 Principle of Virtual Work 486 10.9 Principle of Minimum Potential Energy 487 10.10 Deflections by Trigonometric Series 489 10.11 Rayleigh–Ritz Method 493 References 496 Problems 496 Chapter 11 Stability of Columns 505 11.1 Introduction 505 11.2 Critical Load 505 11.3 Buckling of Pinned-End Columns 507 11.4 Deflection Response of Columns 509 11.5 Columns with Different End Conditions 511 11.6 Critical Stress: Classification of Columns 513 11.7 Allowable Stress 517 11.8 Imperfections in Columns 519 11.9 Eccentrically Loaded Columns: Secant Formula 520 11.10 Energy Methods Applied to Buckling 522 11.11 Solution by Finite Differences 529 11.12 Finite Difference Solution for Unevenly Spaced Nodes 534 References 536 Problems 536 Contents ixChapter 12 Plastic Behavior of Materials 545 12.1 Introduction 545 12.2 Plastic Deformation 546 12.3 Idealized Stress–Strain Diagrams 546 12.4 Instability in Simple Tension 549 12.5 Plastic Axial Deformation and Residual Stress 551 12.6 Plastic Defection of Beams 553 12.7 Analysis of Perfectly Plastic Beams 556 12.8 Collapse Load of Structures: Limit Design 565 12.9 Elastic–Plastic Torsion of Circular Shafts 569 12.10 Plastic Torsion: Membrane Analogy 573 12.11 Elastic–Plastic Stresses in Rotating Disks 575 12.12 Plastic Stress–Strain Relations 578 12.13 Plastic Stress–Strain Increment Relations 583 12.14 Stresses in Perfectly Plastic Thick-Walled Cylinders 586 References 590 Problems 590 Chapter 13 Plates and Shells 598 13.1 Introduction 598 Part A—Bending of Thin Plates 598 13.2 Basic Assumptions 598 13.3 Strain–Curvature Relations 599 13.4 Stress, Curvature, and Moment Relations 601 13.5 Governing Equations of Plate Deflection 603 13.6 Boundary Conditions 605 13.7 Simply Supported Rectangular Plates 607 13.8 Axisymmetrically Loaded Circular Plates 610 13.9 Deflections of Rectangular Plates by the Strain-Energy Method 613 13.10 Finite Element Solution 615 Part B—Membrane Stresses in Thin Shells 618 13.11 Theories and Behavior of Shells 618 13.12 Simple Membrane Action 618 13.13 Symmetrically Loaded Shells of Revolution 620 13.14 Some Common Cases of Shells of Revolution 622 13.15 Thermal Stresses in Compound Cylinders 626 13.16 Cylindrical Shells of General Shape 628 References 631 Problems 631 Appendix A Problem Formulation and Solution 637 x ContentsAppendix B Solution of the Stress Cubic Equation 640 B.1 Principal Stresses 640 B.2 Direction Cosines 641 Appendix C Moments of Composite Areas 645 C.1 Centroid 645 C.2 Moments of Inertia 648 C.3 Parallel-Axis Theorem 649 C.4 Principal Moments of Inertia 652 Appendix D Tables and Charts 659 D.1 Average Properties of Common Engineering Materials 660 D.2 Conversion Factors: SI Units to U.S. Customary Units 662 D.3 SI Unit Prefixes 662 D.4 Deflections and Slopes of Beams 663 D.5 Reactions Deflections of Statically Indeterminate Beams 664 D.6 Stress Concentration Factors for Bars and Shafts with Fillets, Grooves, and Holes 665 Answers to Selected Problems 669 Index 67
مقسم ومرفوع على جزأين جزء أجزاء كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط تنزيل كتاب Advanced mechanics of materials and applied elasticity Fifth Edition - Ansel C. Ugural, Saul K. Fenster
|
|