Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Engineering Mathematics 2nd Ed الإثنين 18 سبتمبر 2017, 3:25 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Engineering Mathematics 2nd Ed Michael D. Greenberg
ويتناول الموضوعات الأتية :
Contents Part I: Ordinary Differential Equations 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS I Introduction 1 Definitions 2 Introduction to Modeling 2 EQUATIONS OF FIRST ORDER 2.1 Introduction 18 The Linear Equation Homogeneous case 19 Integrating factor method 22 Existence and uniqueness for the linear equation 25 Variation-of-parameter method 27 Applications of the Linear Equation 34 2.3. 1 Electrical circuits 34 2.3.2 Radioactive decay; carbon dating 39 2.3.3 Population dynamics 41 2.3.4 Mixing problems 2.4 Separable Equations 46 2.4.1 Separable equations 46 Existence and uniqueness (optional) 48 Applications 53 Nondimensionalization (optional) Exact Equations and Integrating Factors 62 2.5. 1 Exact differential equations 62 2.5.2 Integrating factors 66 Chapter 2 Review 3 LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER AND HIGHER 73 3.1 Introduction 73 3.2 Linear Dependence and Linear Independence 76 vvi Contents Homogeneous Equation: General Solution 83 3.3.1 General solution 83 3.3.2 Boundary-value problems Solution of Homogeneous Equation: Constant Coefficients Euler’s formula and review of the circular and hyperbolic functions 91 Exponential solutions 95 3.4.3 Higher-order equations (« > 2) 99 Repeated roots 102 Stability Application to Harmonic Oscillator: Free Oscillation 110 Solution of Homogeneous Equation: Nonconstant Coefficients Cauchy-Euler equation 118 Reduction of order (optional) 123 Factoring the operator (optional) Solution of Nonhomogeneous Equation 133 3.7.1 General solution 3.7.2 Undetermined coefficients Application to Harmonic Oscillator: Forced Oscillation 149 3.8. 1 Undamped case 149 3.8.2 Damped case 152 Systems of Linear Differential Equations 156 3.9.1 Examples 157 3.9.2 Existence and uniqueness 160 3.9.3 Solution by elimination 162 Chapter 3 Review 171 Variation of parameters 141 Variation of parameters for higher-order equations (optional) 4 POWER SERIES SOLUTIONS Introduction 173 Power Series Solutions 176 4.2.1 Review of power series 176 4.2.2 Power series solution of differential equations 182 The Method of Frobenius Singular points 193 i Method of Frobenius 195 Legendre Functions Singular Integrals; Gamma Function 218 4.5.1 Singular integrals 218 4.5.2 Gamma function 223 4.5.3 Order of magnitude 225 Bessel Functions 230 4.6. 1 v ^ integer Legendre polynomials 212 Orthogonality of the Pn ’s 214 Generating functions and properties 4.6.2 v = integer 233 General solution of Bessel equation 235 Hankel functions (optional) 236 Modified Bessel equation 236 Equations reducible to Bessel equations 238 Chapter 4 Review 5 LAPLACE TRANSFORM 5.1 Introduction 247 Calculation of the Transform 248 Properties of the Transform 254 Application to the Solution of Differential Equations 261 Discontinuous Forcing Functions; Heaviside Step Function 269 Impulsive Forcing Functions; Dirac Impulse Function (Optional) 275 Additional Properties 281 Chapter 5 Review 6 QUANTITATIVE METHODS: NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 292 / ) 6.1 Introduction 292 Euler’s Method 293 Improvements: Midpoint Rule and Runge-Kutta Application to Systems and Boundary-Value Problems 313 6.4.1 Systems and higher-order equations 313 6.4.2 Linear boundary-value problems 317 Stability and Difference Equations 323 6.5.1 Introduction 323 6.5.2 Stability 324 6.5.3 Difference equations (optional) 328 Chapter 6 Review Midpoint rule 299 Second-order Runge-Kutta 302 Fourth-order Runge-Kutta 304 Empirical estimate of the order (optional) 307 Multi-step and predictor-corrector methods (optional) 7 QUALITATIVE METHODS: PHASE PLANE AND NONLINEAR DIFFERENTIAL EQUATIONS 337 Introduction 337 The Phase Plane 338 Singular Points and Stability Applications Existence and uniqueness 348 Singular points 350 The elementary singularities and their stability 352 Nonelementary singularities Singularities of nonlinear systems 360 Applications 363 Bifurcations Limit Cycles, van der Pol Equation, and the Nerve Impulse Limit cycles and the van der Pol equation 372 Application to the nerve impulse and visual perception 375 The Duffing Equation: Jumps and Chaos 380 7.6. 1 Duffing equation and the jump phenomenon 380 7.6.2 Chaos 383 Chapter 7 Review Part II: Linear Algebra 8 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS; GAUSS ELIMINATION 391 Introduction 391 Preliminary Ideas and Geometrical Approach 392 Solution by Gauss Elimination 396 8.3.1 Motivation 396 8.3.2 Gauss elimination 401 8.3.3 Matrix notation 402 8.3.4 Gauss-Jordan reduction 404 8.3.5 Pivoting 405 Chapter 8 Review 9 VECTOR SPACE 412 Introduction 412 Vectors; Geometrical Representation 412 Introduction of Angle and Dot Product 416 n-Space 418 Dot Product, Norm, and Angle for /?-Space Dot product, norm , and angle 421 Properties of the dot product 423 Properties of the norm 425 Orthogonality 426 Normalization 427 9.6 Generalized Vector Space Vector space 430 Inclusion of inner product and/or norm 433 9.7 Span and Subspace 439 Linear Dependence 444 Bases, Expansions, Dimension Bases and expansions 448 Dimension 450 Orthogonal bases 453 9.10 Best Approximation 457Contents i x Best approximation and orthogonal projection 458 Kronecker delta Chapter 9 Review 462 ( •) 10 MATRICES AND LINEAR EQUATIONS 465 i \ Introduction 465 Matrices and Matrix Algebra 465 The Transpose Matrix 481 Determinants 486 Rank; Application to Linear Dependence and to Existence and Uniqueness for Ax — c 495 10.5. 1 Rank 495 10.5.2 Application of rank to the system Ax = c 500 Inverse Matrix, Cramer’s Rule, Factorization 508 10.6. 1 Inverse matrix 508 10.6.2 Application to a mass-spring system 514 10.6.3 Cramer’s rule 517 10.6.4 Evaluation of A ” 1 by elementary row operations 518 10.6.5 LU-factorization 520 Change of Basis (Optional) 526 Vector Transformation (Optional ) 530 Chapter 10 Review 11 THE EIGENVALUE PROBLEM 541 1 1 . 1 Introduction 541 11.2 Solution Procedure and Applications 542 11.2. 1 Solution and applications 542 11.2.2 Application to elementary singularities in the phase plane 549 11.3 Symmetric Matrices 554 Eigenvalue problem Ax = Xx 554 Nonhomogeneous problem Ax = Ax + c (optional) 11.4 Diagonalization 569 11.5 Application to First-Order Systems with Constant Coefficients (optional) 583 11.6 Quadratic Forms (Optional) 589 Chapter ! I Review 12 EXTENSION TO COMPLEX CASE (OPTIONAL) 599 12.1 Introduction 599 12.2 Complex n-Space 599 12.3 Complex Matrices 603 Chapter 12 Review 61 l Part III: Scalar and Vector Field Theory 13 DIFFERENTIAL CALCULUS OF FUNCTIONS OF SEVERAL VARIABLES 613x Contents 13.1 Introduction 613 13.2 Preliminaries 614 13.2.1 Functions 614 13.2.2 Point set theory definitions 614 13.3 Partial Derivatives 620 13.4 Composite Functions and Chain Differentiation 625 13.5 Taylor’s Formula and Mean Value Theorem 629 13.5.1 Taylor’s formula and Taylor series for f i x ) 630 13.5.2 Extension to functions of more than one variable 636 13.6 Implicit Functions and Jacobians 642 13.6. 1 Implicit function theorem 642 13.6.2 Extension to multivariable case 645 13.6.3 Jacobians 649 13.6.4 Applications to change of variables 652 13.7 Maxima and Minima 656 13.7.1 Single variable case 656 13.7.2 Multivariable case 658 13.7.3 Constrained extrema and Lagrange multipliers 665 13.8 Leibniz Rule 675 Chapter 13 Review 14 VECTORS IN 3-SPACE 683 14.1 Introduction 683 14.2 Dot and Cross Product 683 14.3 Cartesian Coordinates 687 14.4 Multiple Products 692 14.4. 1 Scalar triple product 692 14.4.2 Vector triple product 693 14.5 Differentiation of a Vector Function of a Single Variable 695 14.6 Non-Cartesian Coordinates (Optional ) 699 14.6.1 Plane polar coordinates 700 14.6.2 Cylindrical coordinates 704 14.6.3 Spherical coordinates 705 14.6.4 Omega method 707 Chapter 14 Review 712 15 CURVES, SURFACES, AND VOLUMES 714 15.1 Introduction 714 15.2 Curves and Line Integrals 714 15.2.1 Curves 714 15.2.2 Arc length 716 15.2.3 Line integrals 718 15.3 Double and Triple Integrals 723 15.3. 1 Double integrals 723 15.3.2 Triple integrals 727 15.4 Surfaces 733/ Contents xi 15.4. 1 Parametric representation of surfaces 733 15.4.2 Tangent plane and normal 734 Surface Integrals 739 15.5. 1 Area element dA 739 15.5.2 Surface integrals 743 Volumes and Volume Integrals 748 15.6.1 Volume element clV 749 15.6.2 Volume integrals 752 Chapter 15 Review 16 SCALAR AND VECTOR FIELD THEORY 757 16.1 Introduction 757 16.2 Preliminaries 758 16.2.1 Topological considerations 758 16.2.2 Scalar and vector fields 758 16.3 Divergence 761 16.4 Gradient 766 16.5 Curl 774 16.6 Combinations; Lapiacian 778 16.7 Non-Cartesian Systems; Div, Grad, Curl, and Lapiacian (Optional) 782 16.7.1 Cylindrical coordinates 783 16.7.2 Spherical coordinates 786 16.8 Divergence Theorem 792 16.8. 1 Divergence theorem 792 16.8.2 Two-dimensional case 802 16.8.3 Non-Cartesian coordinates (optional) 803 16.9 Stokes’s Theorem 810 16.9. 1 Line integrals 814 16.9.2 Stokes’s theorem 814 16.9.3 Green’s theorem 818 16.9.4 Non-Cartesian coordinates (optional) 820 16.10 Irrotational Fields 826 16.10.1 Irrotational fields 826 16.10.2 Non-Cartesian coordinates 835 Chapter 16 Review Part IV: Fourier Methods and Partial Differential Equations 17 FOURIER SERIES, FOURIER INTEGRAL, FOURIER TRANSFORM 844 17.1 Introduction 844 17.2 Even, Odd, and Periodic Functions 846 17.3 Fourier Series of a Periodic Function 850 17.3. 1 Fourier series 850 17.3.2 Euler’s formulas 857 17.3.3 Applications 859xii Contents 17.3.4 Complex exponential form for Fourier series 864 Half- and Quarter-Range Expansions 869 Manipulation of Fourier Series (Optional) 873 17.6 Vector Space Approach 881 17.7 The Sturm-Liouvilie Theory 887 Sturm-Liouville problem 887 Lagrange identity and proofs (optional) 17.8 Periodic and Singular Sturm-Liouville Problems 905 17.9 Fourier Integral 913 17.10 Fourier Transform 919 17.10.1 Transition from Fourier integral to Fourier transform 920 17.10.2 Properties and applications 922 17.11 Fourier Cosine and Sine Transforms, and Passage from Fourier Integral to Laplace Transform (Optional ) 934 17.11. 1 Cosine and sine transforms 934 17.11.2 Passage from Fourier integral to Laplace transform 937 Chapter 17 Review 18 DIFFUSION EQUATION 943 18.1 Introduction 943 Preliminary Concepts 944 18.2.1 Definitions 944 18.2.2 Second-order linear equations and their classification 946 18.2.3 Diffusion equation and modeling 948 Separation of Variables 954 18.3.1 The method of separation of variables 954 18.3.2 Verification of solution (optional) 964 18.3.3 Use of Sturm-Liouville theory (optional ) 965 Fourier and Laplace Transforms (Optional ) 981 The Method of Images (Optional ) 992 18.5. 1 Illustration of the method 992 18.5.2 Mathematical basis for the method 994 Numerical Solution 998 18.6. 1 The finite-difference method 998 18.6.2 Implicit methods: Crank-Nicolson, with iterative solution (optional) 1005 Chapter 18 Review 19 WAVE EQUATION 1017 { 19.1 Introduction 1017 19.2 Separation of Variables; Vibrating String 1023 19.2.1 Solution by separation of variables 19.2.2 Traveling wave interpretation 1027 19.2.3 Using Sturm-Liouville theory (optional) 1029 19.3 Separation of Variables; Vibrating Membrane 1035 19.4 Vibrating String; d’Alembert’s Solution 1043 19.4. 1 d’Alembert’s solution Contents xiii 19.4.2 Use of images 1049 19.4.3 Solution by integral transforms (optional) 1051 Chapter 19 Review 1055 20 LAPLACE EQUATION 1058 20.1 Introduction 1058 20.2 Separation of Variables; Cartesian Coordinates 1059 20.3 Separation of Variables; Non-Cartesian Coordinates 1070 20.3. 1 Plane polar coordinates 1070 20.3.2 Cylindrical coordinates (optional) 1077 20.3.3 Spherical coordinates (optional) 1081 20.4 Fourier Transform (Optional) 1088 20.5 Numerical Solution 1092 20.5. 1 Rectangular domains 1092 20.5.2 Nonrectangular domains 1097 20.5.3 Iterative algorithms (optional) 1100 Chapter 20 Review 1106 Part V: Complex Variable Theory 21 FUNCTIONS OF A COMPLEX VARIABLE 1108 21.1 Introduction 1108 Complex Numbers and the Complex Plane 1109 Elementary Functions 1114 21.3. 1 Preliminary ideas 1114 21.3.2 Exponential function 1116 21.3.3 Trigonometric and hyperbolic functions 1118 21.3.4 Application of complex numbers to integration and the solution of differential equations 1120 Polar Form, Additional Elementary Functions, and Multi-valuedness 21.4. 1 Polar form 1125 21.4.2 Integral powers of z and de Moivre's formula 1127 21.4.3 Fractional powers 1128 21.4.4 The logarithm of z 1129 21.4.5 General powers of z 1130 21.4.6 Obtaining single-valued functions by branch cuts 1131 21.4.7 More about branch cuts (optional ) 1132 The Differential Calculus and Analyticity 1136 Chapter 21 Review 22 CONFORMAL MAPPING 1150 22.1 Introduction 1150 22.2 The Idea Behind Conformal Mapping 22.3 The Bilinear Transformation 1158 1 150xiv Contents 22.4 Additional Mappings and Applications 1166 22.5 More General Boundary Conditions 1170 22.6 Applications to Fluid Mechanics 1174 Chapter 22 Review 1180 23 THE COMPLEX INTEGRAL CALCULUS 1182 23.1 Introduction 1182 23.2 Complex Integration Cauchy’s Theorem 1189 23.4 Fundamental Theorem of the Complex Integral Calculus 1195 23.5 Cauchy Integral Formula 1199 Chapter 23 Review 1207 Definition and properties 1182 Bounds 24 TAYLOR SERIES, LAURENT SERIES, AND THE RESIDUE THEOREM 1209 Introduction 1209 Complex Series and Taylor Series 1209 24.2.1 Complex series 1209 24.2.2 Taylor series 1214 Laurent Series 1225 Classification of Singularities 1234 Residue Theorem 1240 24.5.1 Residue theorem 1240 24.5.2 Calculating residues 1242 24.5.3 Applications of the residue theorem 1243 Chapter 24 Review REFERENCES 1260 APPENDICES A Review of Partial Fraction Expansions 1263 B Existence and Uniqueness of Solutions of Systems of Linear Algebraic Equations 1267 C Table of Laplace Transforms 1271 D Table of Fourier Transforms 1274 E Table of Fourier Cosine and Sine Transforms 1276 F Table of Conformal Maps 1278 ANSWERS TO SELECTED EXERCISES 1282 INDEX 1315
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط تنزيل كتاب Advanced Engineering Mathematics 2nd Ed
|
|