Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Engineering Mathematics with MATLAB السبت 12 مارس 2022, 11:50 pm | |
|
أخواني في الله أحضرت لكم كتاب Advanced Engineering Mathematics with MATLAB Advances in Applied Mathematics FIFTH EDITION Dean G. Duffy
و المحتوى كما يلي :
Contents Dedication v Contents vii Acknowledgments xiii Author xv Introduction xvii List of Definitions xix Chapter 1: First-Order Ordinary Differential Equations 1 1.1 Classification of Differential Equations 1 1.2 Separation of Variables 4 1.3 Homogeneous Equations 16 1.4 Exact Equations 17 1.5 Linear Equations 20 viiviii Advanced Engineering Mathematics with MATLAB 1.6 Graphical Solutions 31 1.7 Numerical Methods 34 Chapter 2: Higher-Order Ordinary Differential Equations 47 2.1 Homogeneous Linear Equations with Constant Coefficients 51 2.2 Simple Harmonic Motion 59 2.3 Damped Harmonic Motion 63 2.4 Method of Undetermined Coefficients 68 2.5 Forced Harmonic Motion 73 2.6 Variation of Parameters 80 2.7 Euler-Cauchy Equation 85 2.8 Phase Diagrams 88 2.9 Numerical Methods 93 am1 am2 · · · amn Chapter 3: Linear Algebra 101 3.1 Fundamentals 101 3.2 Determinants 109 3.3 Cramer’s Rule 113 3.4 Row Echelon Form and Gaussian Elimination 115 3.5 Eigenvalues and Eigenvectors 129 3.6 Systems of Linear Differential Equations 136 3.7 Matrix Exponential 141Table of Contents ix z (0,0,1) n C C 2 3 (0,1,0) y (1,0,0) C1 x amplitude spectrum (ft) times 10000 10000.0 1000.0 100.0 10.0 1.0 0.1 Bay bridge and tunnel 1 10 100 1000 10000 k |G(ω)| 11.0 10.0 9.0 c /km = 0.01 2 8.0 7.0 6.0 5.0 4.0 3.0 c /km = 0.1 2 2.0 c /km = 1 2 1.0 0.0 0.0 0.5 1.0 1.5 2.0 ω/ω 0 Chapter 4: Vector Calculus 147 4.1 Review 147 4.2 Divergence and Curl 154 4.3 Line Integrals 158 4.4 The Potential Function 163 4.5 Surface Integrals 164 4.6 Green’s Lemma 171 4.7 Stokes’ Theorem 174 4.8 Divergence Theorem 181 Chapter 5: Fourier Series 189 5.1 Fourier Series 190 5.2 Properties of Fourier Series 202 5.3 Half-Range Expansions 211 5.4 Fourier Series with Phase Angles 216 5.5 Complex Fourier Series 220 5.6 The Use of Fourier Series in the Solution of Ordinary Differential Equations 225 5.7 Finite Fourier Series 232 Chapter 6: The Fourier Transform 249 6.1 Fourier Transforms 249 6.2 Fourier Transforms Containing the Delta Function 262x Advanced Engineering Mathematics with MATLAB time (seconds) TIME 3.5 4 1 6.3 Properties of Fourier Transforms 264 6.4 Inversion of Fourier Transforms 275 6.5 Convolution 279 6.6 The Solution of Ordinary Differential Equations by Fourier Transforms 283 6.7 The Solution of Laplace’s Equation on the Upper Half-Plane 285 6.8 The Solution of the Heat Equation 287 Chapter 7: The Laplace Transform 295 7.1 Definition and Elementary Properties 295 7.2 The Heaviside Step and Dirac Delta Functions 299 7.3 Some Useful Theorems 307 7.4 The Laplace Transform of a Periodic Function 315 7.5 Inversion by Partial Fractions: Heaviside’s Expansion Theorem 317 7.6 Convolution 324 7.7 Solution of Linear Differential Equations with Constant Coefficients 329 Chapter 8: The Wave Equation 347 8.1 The Vibrating String 348 8.2 Initial Conditions: Cauchy Problem 351 8.3 Separation of Variables 351 8.4 D’Alembert’s Formula 365 8.5 Numerical Solution of the Wave Equation 372Table of Contents xi DISTANCE 2 TIME 0 0 Chapter 9: The Heat Equation 387 9.1 Derivation of the Heat Equation 387 9.2 Initial and Boundary Conditions 389 9.3 Separation of Variables 390 9.4 The Superposition Integral 405 9.5 Numerical Solution of the Heat Equation 409 u(R,θ ) Chapter 10: Laplace’s Equation 419 10.1 Derivation of Laplace’s Equation 419 10.2 Boundary Conditions 421 10.3 Separation of Variables 422 10.4 Poisson’s Equation on a Rectangle 429 10.5 Numerical Solution of Laplace’s Equation 433 Chapter 11: The Sturm-Liouville Problem 443 11.1 Eigenvalues and Eigenfunctions 444 11.2 Orthogonality of Eigenfunctions 457 11.3 Expansion in Series of Eigenfunctions 461 11.4 Finite Element Method 485xii Advanced Engineering Mathematics with MATLAB Chapter 12: Special Functions 493 12.1 Legendre Polynomials 495 12.2 Bessel Functions 519 12.A Appendix A: Derivation of the Laplacian in Polar Coordinates 567 12.B Appendix B: Derivation of the Laplacian in Spherical Polar Coordinates 568 Answers to the Odd-Numbered Problems 571 Index 58 Index abscissa of convergence, 296 Adams-Bashforth method, 40 addition of matrices, 102 of vectors, 147 age of the earth, 289–290 aliasing, 239–241 amplitude spectrum, 251 Archimedes’ principle, 186–187 autonomous ordinary differential equation, 4, 50 auxiliary equation, 52 back substitution, 107, 118 bandlimited Fourier transform, 255 Bernoulli equation, 28–29 Bessel equation of order n, 519–524 function of the first kind, 521 expansion in, 529–534 function of the second kind, 521 function, modified, 524 recurrence formulas, 524–525 Bessel, Friedrich Wilhelm, 520 Biot number, 468 boundary condition Cauchy, 351 Dirichlet, 389 Neumann, 389 Robin, 390 boundary-value problems, 48 carrier frequency, 268 Cauchy boundary condition, 351 data, 351 problem, 351 centered finite differences, 373 characteristic polynomial, 129 equation, 52 value, 129, 444 vector, 129 characteristic function, 444 characteristics, 365 chemical reaction, 12–13 circular frequency, 60 circulation, 161 closed contour integral, 159 surface integral, 165 coefficient matrix, 117 cofactor, 109 column of a matrix, 102 column vector, 105 complementary error function, 301 complementary solution of an ordinary differential equation, 68 589590 Advanced Engineering Mathematics with MATLAB complex matrix, 102 components of a vector, 147 compound interest, 9 conformable for addition of matrices, 102 for multiplication of matrices, 103 conservative field, 161 consistency in finite differencing for the heat equation, 410 for the wave equation, 375 consistent system of linear eqns, 116 convergence of a Fourier integral, 251 of finite difference solution for heat equation, 412 for wave equation, 378 of Fourier series, 191 convolution theorem for Fourier transforms, 279–282 for Laplace transforms, 324–327 Coriolis force, 149 Cramer’s rule, 113 Crank-Nicholson method, 414 critical points, 33, 90 stable, 33, 90 stable node, 92 unstable, 33, 91 cross product, 148 curl, 156 curve, space, 148 d’Alembert’s formula, 367 d’Alembert’s solution, 365–370 d’Alembert, Jean Le Rond, 365 damped harmonic motion, 63 damping constant, 63 degenerate eigenvalue problem, 453 del operator, 150 delay differential equation, 340–341 delta function, 252–255, 304–306 design of film projectors, 321–324 design of wind vane, 66–67 determinant, 109–112 diagonal, principal, 102 differential equations nth order, 47–97 linear first-order, 1–46 nonlinear, 1 order, 1 ordinary, 1–100 partial, 1, 407 type, 1 differentiation of a Fourier series, 202 diffusivity, 388 dimension of a vector space, 130 direction fields, 31 Dirichlet conditions, 192 Dirichlet problem, 389 Dirichlet, Peter Gustav Lejeune, 193 dispersion, 358 divergence of a vector, 155 theorem, 181–187 dot product, 148 double Fourier series, 431 Duhamel’s theorem for the heat eqn, 405–408, 471–477 eigenfunctions, 444–478 expansion in, 461 orthogonality of, 458 eigenvalue(s) of a matrix, 129 of a Sturm-Liouville problem, 444–453 eigenvalue problem, 129–132, 376–377 for ordinary differential eqns, 444–453 singular, 444 eigenvectors, 129–132, 376–377 orthogonality of, 457 electrical circuits, 24, 78, 335–340 electrostatic potential, 547 element of a matrix, 102 elementary row operations, 116 elliptic partial differential equation, 419 equilibrium points, 33, 90 equilibrium systems of linear eqns, 116 error function, 301 Euler’s method, 34–37 Euler-Cauchy equation, 85–88 exact ordinary differential equation, 17 existence of ordinary differential eqns nth-order, 48 first-order, 8 explicit numerical methods for the heat equation, 410 for the wave equation, 372–373 exponential order, 296Index 591 fast Fourier transform (FFT), 239 filter, 242 final-value theorem for Laplace transforms, 311 finite difference approximation to derivatives, 372–373 finite Fourier series, 232–242 first-order ordinary differential eqns, 1–46 linear, 20–31 flux lines, 152 folding frequency, 241 forced harmonic motion, 73–77 Fourier coefficients, 190 cosine series, 196 cosine transform, 291 Joseph, 192 number, 395 series for a multivariable function, 224 series for an even function, 196 series for an odd function, 197 series in amplitude/phase form, 216–219 series on [−L, L], 190–201 sine series, 197 sine transform, 291 Fourier coefficients, 462 Fourier cosine series, 196 Fourier transform, 249–285 basic properties of, 264–274 convolution, 279–282 inverse of, 250, 275–276 method of solving heat eqn, 287–292 of a Bessel function, 254 of a constant, 262 of a derivative, 267 of a multivariable function, 255 of a sign function, 263 of a step function, 263 Fourier-Bessel coefficients, 530 expansions, 529 Fourier-Legendre coefficients, 502 expansion, 502 Fredholm integral eqn, 126 free underdamped motion, 60 frequency convolution, 282 frequency modulation, 270 frequency spectrum, 252 function even extension of, 211 generalized, 306 odd extension of, 211 vector-valued, 150 fundamental of a Fourier series, 190 Gauss’s divergence theorem, 181–187 Gauss, Carl Friedrich, 182 Gauss-Jordan elimination, 119 Gauss-Seidel method, 434 general solution to an ordinary differential equation, 4 generalized Fourier series, 462 generalized functions, 306 generating function for Legendre polynomials, 498 Gibbs phenomenon, 206–208, 505 gradient, 150 graphical stability analysis, 33 Green’s lemma, 171–174 grid point, 372 groundwater flow, 422–426 half-range expansions, 211–214 Hankel transform, 554 harmonic functions, 420 harmonics of a Fourier series, 190 heat conduction in a rotating satellite, 228–231 within a metallic sphere, 510–516 heat equation, 227–292, 387–416, 465–484, 538–562 for a semi-infinite bar, 287–289 for an infinite cylinder, 401, 538–541 nonhomogeneous, 389 one-dimensional, 390–393, 465 within a solid sphere, 399–401, 538 Heaviside expansion theorem, 317–324 step function, 299–302 Heaviside, Oliver, 300 homogeneous ordinary differential eqns, 16–17, 47 solution to ordinary differential eqn, 68 system of linear eqns, 106 hydraulic potential, 422 hydrostatic equation, 8 hyperbolic partial differential equation, 348592 Advanced Engineering Mathematics with MATLAB impulse function see (Dirac) delta function inconsistent system of linear eqns, 116 indicial admittance for heat equation, 472 inertia supercharging, 213 initial -value problem, 47, 329–342 conditions, 351 initial-boundary-value problem, 389 initial-value theorem for Laplace transforms, 310 inner product, 103 integral curves, 90 integrals, line, 158–162 integrating factor, 19 integration of a Fourier series, 203–205 interest rate, 9 inverse discrete Fourier transform, 233–235 Fourier transform, 250, 275–276 Laplace transform, 317–324 inverse formula for Fourier transform, 250 inversion of Fourier transform by direct integration, 275–276 by partial fraction, 276 inversion of Laplace transform by convolution, 324 by partial fractions, 317–319 in amplitude/phase form, 320–324 irrotational, 156 isoclines, 31 iterative methods Gauss-Seidel, 434 successive over-relaxation, 436 Kirchhoff’s law, 24 Klein-Gordon equation, 358 Kutta, Martin Wilhelm, 39 Laplace integral, 295 Laplace transform, 295–342 basic properties of, 307–313 convolution for, 324–327 definition of, 295 derivative of, 310 in solving delay differential equation, 340–341 integration of, 310 inverse of, 317–324 of derivatives, 298 of periodic functions, 315–317 of the delta function, 304–306 of the step function, 299–302 solving of ordinary differential eqns, 329–342 Laplace’s eqn, 286–287, 419–438, 484, 508–519, 547–567 in cylindrical coordinates, 420 in spherical coordinates, 421 numerical solution of, 433–438 solution by separation of variables, 422–427, 508–516, 547–554 solution on a half-plane, 285–287 Laplace’s expansion in cofactors, 109 Laplace, Pierre-Simon, 421 Laplacian, 155 Lax-Wendroff scheme, 381 Legendre polynomial, 497 expansion in, 502 generating function for, 498 orthogonality of, 501 recurrence formulas, 499 Legendre’s differential equation, 495 Legendre, Adrien-Marie, 495 length of a vector, 147 line integral, 158–162 line spectrum, 218–222 linear dependence of eigenvectors, 129 of functions, 55 linear Fredholm integral equation, 505 linear transformation, 107 linearity of Fourier transform, 264 of Laplace transform, 297 lines of force, 152 Liouville, Joseph, 446 logistic equation, 12 LU decomposition, 127 magnitude of a vector, 147 matrices addition of, 102 equal, 102 multiplication, 103Index 593 matrix, 101 algebra, 101 amplification, 376–377 augmented, 117 banded, 106 coefficient, 117 complex, 102 diagonalization, 134 exponential, 141 identity, 102 inverse, 104 invertible, 104 method of stability of a numerical scheme, 376 nonsingular, 104 null, 102 null space, 124 orthogonal, 128 real, 102 rectangular, 102 square, 102 symmetric, 102 tridiagonal, 106 unit, 102 upper triangular, 106 vector space, 105 zero, 102 maximum principle, 420 Maxwell’s field eqns, 158 mechanical filter, 324 method of partial fractions for Fourier transform, 276 for Laplace transform, 317–324 method of undetermined coefficients, 69–72 minor, 110 mixed-boundary-value problems, 440–442 modified Bessel function, first kind, 524 second kind, 524 modified Euler method, 34–37 modulation, 268–271 multiplication of matrices, 103 nabla operator, 150 natural vibrations, 357 Neumann problem, 389 Neumann’s Bessel function of order n, 522 Newton’s law of cooling, 467 non-local boundary conditions, 417 nondivergent, 155 nonhomogeneous heat equation, 389 ordinary differential equation, 47 system of linear eqns, 106 norm of a vector, 105, 147 normal differential equation, 47 normal mode, 357 normal to a surface, 150 null space, 124 numerical solution of heat equation, 409–416 of Laplace’s equation, 433–438 of the wave equation, 372–382 Nyquist frequency, 241 Nyquist sampling criteria, 239 one-sided finite difference, 373 order of a matrix, 102 orthogonal matrix, 128 orthogonality, 458 of eigenfunctions, 457–460 of eigenvectors, 457 orthonormal eigenfunction, 460 overdamped ordinary differential eqn, 64 overdetermined system of linear eqns, 121 parabolic partial differential eqn, 388 Parseval’s equality, 205–206 Parseval’s identity for Fourier series, 205 for Fourier transform, 271–272 partial fraction expansion for Fourier transform, 276 for Laplace transform, 317–324 particular solution to ordinary differential equation, 3–4, 68 path in line integrals, 159 path independence in line integrals, 161 phase angle in Fourier series, 216–219 diagram, 89 line, 33 path, 90 spectrum, 251 pivot, 117 pivotal row, 117594 Advanced Engineering Mathematics with MATLAB Poisson’s equation, 429–431 integral formula for a circular disk, 426–427 for a upper half-plane, 287 summation formula, 272–275 Poisson, Sim´eon-Denis, 430 population growth and decay, 11 position vector, 147 potential flow theory, 157 potential function, 163–164 power content, 205 power spectrum, 272 principal diagonal, 102 principle of linear superposition, 52, 354 QR decomposition, 128 quieting snow tires, 197–201 radiation condition, 351, 467 rank of a matrix, 119 real matrix, 102 rectangular matrix, 102 recurrence relation for Bessel functions, 524–525 for Legendre polynomial, 499–502 in finite differencing, 94 reduced row echelon, 119 reduction in order, 49 regular Sturm-Liouville problem, 444 relaxation methods, 434–438 resonance, 77, 226, 332 rest points, 33 Robin problem, 390 Rodrigues’s formula, 498 row echelon form, 118 row vector, 105 rows of a matrix, 102 Runge, Carl, 38 Runge-Kutta method, 37–40, 95–100 Saulyev’s method, 415–416 scalar, 147 Schwarz’s integral formula, 287 second shifting theorem, 301 secular term, 226 separation of variables for heat equation, 390–401, 465–471, 538–547 for Laplace’s equation, 422–427, 508–516, 547–554 for ordinary differential eqns, 4–14 for Poisson’s equation, 429–431 for wave equation, 351–362, 536–538 shifting in the ω variable, 268 in the s variable, 307 in the t variable, 264, 308 sifting property, 253 simple eigenvalue, 447 simple harmonic motion, 60, 331 simple harmonic oscillator, 59–63 sinc function, 251 singular solutions to ordinary differential eqns, 6 Sturm-Liouville problem, 444 singular Sturm-Liouville problem, 444 singular value decomposition, 135 slope field, 31 solenoidal, 155 solution curve, 31 solution of ordinary differential eqns by Fourier series, 225–231 by Fourier transform, 283–285 space curve, 148 spectral radius, 129 spectrum of a matrix, 129 square matrix, 102 stability of numerical methods by Fourier method for heat eqn, 411 by Fourier method for wave eqn, 376 by matrix method for wave eqn, 376 steady-state heat equation, 10, 394 steady-state output, 33 steady-state solution to ordinary differential eqns, 75 step function, 299–302 Stokes’ theorem, 174–180 Stokes, Sir George Gabriel, 175 streamlines, 152 Sturm, Charles-Fran¸cois, 445 Sturm-Liouville equation, 444 problem, 444–453 subtraction of matrices, 102 of vectors, 147 successive over-relaxation, 434Index 595 superposition integral of heat equation, 405–408, 471–477 superposition principle, 354 surface conductance, 467 surface integral, 164–170 system of linear differential eqns, 136–140 homogeneous eqns, 106 nonhomogeneous eqns, 106 tangent vector, 148 telegraph equation, 360 terminal velocity, 9, 27 thermal conductivity, 388 threadline equation, 350–351 time shifting, 264–265, 307 trace, 102 trajectories, 90 transform Fourier, 249–285 Laplace, 295–342 transient solution to ordinary differential equations, 75 transpose of a matrix, 104 tridiagonal matrix, solution of, 106–107 underdamped, 64 underdetermined system of linear eqns, 118 uniformitarianism, 290 uniqueness of ordinary differential eqns nth-order, 48 first-order, 3 unit normal, 151 step function, 299–302 vector, 147 Vandermonde’s determinant, 113 variation of parameters, 80–85 vector, 105, 147 vector element of area, 167 vector space, 105, 130 vibrating string, 348–350 vibrating threadline, 350–351 vibration of floating body, 62 volume integral, 181–187 wave equation, 347–382, 479, 535–538 damped, 359–362 for a circular membrane, 535–538 for an infinite domain, 365–371 one-dimensional, 350 weight function, 458 Wronskian, 56 zero vector, 147 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Engineering Mathematics with MATLAB رابط مباشر لتنزيل كتاب Advanced Engineering Mathematics with MATLAB
|
|