Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: حل كتاب Fundamentals of Heat and Mass Transfer 7th Edition Solution Manual الجمعة 29 سبتمبر 2017, 7:21 pm | |
|
أخوانى فى الله أحضرت لكم حل كتاب Fundamentals of Heat and Mass Transfer 7th Edition Solution Manual THEODORE L. BERGMAN Department of Mechanical Engineering University of Connecticut ADRIENNE S. LAVINE Mechanical and Aerospace Engineering Department University of California, Los Angeles FRANK P. INCROPERA College of Engineering University of Notre Dame DAVID P. DEWITT School of Mechanical Engineering Purdue University
ويتناول الموضوعات الأتية :
Contents Symbols xxi CHAPTER 1 Introduction 1 1.1 What and How? 2 1.2 Physical Origins and Rate Equations 3 1.2.1 Conduction 3 1.2.2 Convection 6 1.2.3 Radiation 8 1.2.4 The Thermal Resistance Concept 12 1.3 Relationship to Thermodynamics 12 1.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy) 13 1.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines 31 1.4 Units and Dimensions 36 1.5 Analysis of Heat Transfer Problems: Methodology 381.6 Relevance of Heat Transfer 41 1.7 Summary 45 References 48 Problems 49 CHAPTER 2 Introduction to Conduction 67 2.1 The Conduction Rate Equation 68 2.2 The Thermal Properties of Matter 70 2.2.1 Thermal Conductivity 70 2.2.2 Other Relevant Properties 78 2.3 The Heat Diffusion Equation 82 2.4 Boundary and Initial Conditions 90 2.5 Summary 94 References 95 Problems 95 CHAPTER 3 One-Dimensional, Steady-State Conduction 111 3.1 The Plane Wall 112 3.1.1 Temperature Distribution 112 3.1.2 Thermal Resistance 114 3.1.3 The Composite Wall 115 3.1.4 Contact Resistance 117 3.1.5 Porous Media 119 3.2 An Alternative Conduction Analysis 132 3.3 Radial Systems 136 3.3.1 The Cylinder 136 3.3.2 The Sphere 141 3.4 Summary of One-Dimensional Conduction Results 142 3.5 Conduction with Thermal Energy Generation 142 3.5.1 The Plane Wall 143 3.5.2 Radial Systems 149 3.5.3 Tabulated Solutions 150 3.5.4 Application of Resistance Concepts 150 3.6 Heat Transfer from Extended Surfaces 154 3.6.1 A General Conduction Analysis 156 3.6.2 Fins of Uniform Cross-Sectional Area 158 3.6.3 Fin Performance 164 3.6.4 Fins of Nonuniform Cross-Sectional Area 167 3.6.5 Overall Surface Efficiency 170 3.7 The Bioheat Equation 178 3.8 Thermoelectric Power Generation 182 3.9 Micro- and Nanoscale Conduction 189 3.9.1 Conduction Through Thin Gas Layers 189 3.9.2 Conduction Through Thin Solid Films 190 3.10 Summary 190 References 193 Problems 193 xii ContentsCHAPTER 4 Two-Dimensional, Steady-State Conduction 229 4.1 Alternative Approaches 230 4.2 The Method of Separation of Variables 231 4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 235 4.4 Finite-Difference Equations 241 4.4.1 The Nodal Network 241 4.4.2 Finite-Difference Form of the Heat Equation 242 4.4.3 The Energy Balance Method 243 4.5 Solving the Finite-Difference Equations 250 4.5.1 Formulation as a Matrix Equation 250 4.5.2 Verifying the Accuracy of the Solution 251 4.6 Summary 256 References 257 Problems 257 4S.1 The Graphical Method W-1 4S.1.1 Methodology of Constructing a Flux Plot W-1 4S.1.2 Determination of the Heat Transfer Rate W-2 4S.1.3 The Conduction Shape Factor W-3 4S.2 The Gauss–Seidel Method: Example of Usage W-5 References W-9 Problems W-10 CHAPTER 5 Transient Conduction 279 5.1 The Lumped Capacitance Method 280 5.2 Validity of the Lumped Capacitance Method 283 5.3 General Lumped Capacitance Analysis 287 5.3.1 Radiation Only 288 5.3.2 Negligible Radiation 288 5.3.3 Convection Only with Variable Convection Coefficient 289 5.3.4 Additional Considerations 289 5.4 Spatial Effects 298 5.5 The Plane Wall with Convection 299 5.5.1 Exact Solution 300 5.5.2 Approximate Solution 300 5.5.3 Total Energy Transfer 302 5.5.4 Additional Considerations 302 5.6 Radial Systems with Convection 303 5.6.1 Exact Solutions 303 5.6.2 Approximate Solutions 304 5.6.3 Total Energy Transfer 304 5.6.4 Additional Considerations 305 5.7 The Semi-Infinite Solid 310 5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 317 5.8.1 Constant Temperature Boundary Conditions 317 5.8.2 Constant Heat Flux Boundary Conditions 319 5.8.3 Approximate Solutions 320 Contents xiii5.9 Periodic Heating 327 5.10 Finite-Difference Methods 330 5.10.1 Discretization of the Heat Equation: The Explicit Method 330 5.10.2 Discretization of the Heat Equation: The Implicit Method 337 5.11 Summary 345 References 346 Problems 346 5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere W-12 5S.2 Analytical Solutions of Multidimensional Effects W-16 References W-22 Problems W-22 CHAPTER 6 Introduction to Convection 377 6.1 The Convection Boundary Layers 378 6.1.1 The Velocity Boundary Layer 378 6.1.2 The Thermal Boundary Layer 379 6.1.3 The Concentration Boundary Layer 380 6.1.4 Significance of the Boundary Layers 382 6.2 Local and Average Convection Coefficients 382 6.2.1 Heat Transfer 382 6.2.2 Mass Transfer 383 6.2.3 The Problem of Convection 385 6.3 Laminar and Turbulent Flow 389 6.3.1 Laminar and Turbulent Velocity Boundary Layers 389 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 391 6.4 The Boundary Layer Equations 394 6.4.1 Boundary Layer Equations for Laminar Flow 394 6.4.2 Compressible Flow 397 6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 398 6.5.1 Boundary Layer Similarity Parameters 398 6.5.2 Functional Form of the Solutions 400 6.6 Physical Interpretation of the Dimensionless Parameters 407 6.7 Boundary Layer Analogies 409 6.7.1 The Heat and Mass Transfer Analogy 410 6.7.2 Evaporative Cooling 413 6.7.3 The Reynolds Analogy 416 6.8 Summary 417 References 418 Problems 419 6S.1 Derivation of the Convection Transfer Equations W-25 6S.1.1 Conservation of Mass W-25 6S.1.2 Newton’s Second Law of Motion W-26 6S.1.3 Conservation of Energy W-29 6S.1.4 Conservation of Species W-32 References W-36 Problems W-36 xiv ContentsCHAPTER 7 External Flow 433 7.1 The Empirical Method 435 7.2 The Flat Plate in Parallel Flow 436 7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 437 7.2.2 Turbulent Flow over an Isothermal Plate 443 7.2.3 Mixed Boundary Layer Conditions 444 7.2.4 Unheated Starting Length 445 7.2.5 Flat Plates with Constant Heat Flux Conditions 446 7.2.6 Limitations on Use of Convection Coefficients 446 7.3 Methodology for a Convection Calculation 447 7.4 The Cylinder in Cross Flow 455 7.4.1 Flow Considerations 455 7.4.2 Convection Heat and Mass Transfer 457 7.5 The Sphere 465 7.6 Flow Across Banks of Tubes 468 7.7 Impinging Jets 477 7.7.1 Hydrodynamic and Geometric Considerations 477 7.7.2 Convection Heat and Mass Transfer 478 7.8 Packed Beds 482 7.9 Summary 483 References 486 Problems 486 CHAPTER 8 Internal Flow 517 8.1 Hydrodynamic Considerations 518 8.1.1 Flow Conditions 518 8.1.2 The Mean Velocity 519 8.1.3 Velocity Profile in the Fully Developed Region 520 8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 522 8.2 Thermal Considerations 523 8.2.1 The Mean Temperature 524 8.2.2 Newton’s Law of Cooling 525 8.2.3 Fully Developed Conditions 525 8.3 The Energy Balance 529 8.3.1 General Considerations 529 8.3.2 Constant Surface Heat Flux 530 8.3.3 Constant Surface Temperature 533 8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 537 8.4.1 The Fully Developed Region 537 8.4.2 The Entry Region 542 8.4.3 Temperature-Dependent Properties 544 8.5 Convection Correlations: Turbulent Flow in Circular Tubes 544 8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 552 8.7 Heat Transfer Enhancement 555 Contents xv8.8 Flow in Small Channels 558 8.8.1 Microscale Convection in Gases (0.1 m Dh 100 m) 558 8.8.2 Microscale Convection in Liquids 559 8.8.3 Nanoscale Convection (Dh 100 nm) 560 8.9 Convection Mass Transfer 563 8.10 Summary 565 References 568 Problems 569 CHAPTER 9 Free Convection 593 9.1 Physical Considerations 594 9.2 The Governing Equations for Laminar Boundary Layers 597 9.3 Similarity Considerations 598 9.4 Laminar Free Convection on a Vertical Surface 599 9.5 The Effects of Turbulence 602 9.6 Empirical Correlations: External Free Convection Flows 604 9.6.1 The Vertical Plate 605 9.6.2 Inclined and Horizontal Plates 608 9.6.3 The Long Horizontal Cylinder 613 9.6.4 Spheres 617 9.7 Free Convection Within Parallel Plate Channels 618 9.7.1 Vertical Channels 619 9.7.2 Inclined Channels 621 9.8 Empirical Correlations: Enclosures 621 9.8.1 Rectangular Cavities 621 9.8.2 Concentric Cylinders 624 9.8.3 Concentric Spheres 625 9.9 Combined Free and Forced Convection 627 9.10 Convection Mass Transfer 628 9.11 Summary 629 References 630 Problems 631 CHAPTER 10 Boiling and Condensation 653 10.1 Dimensionless Parameters in Boiling and Condensation 654 10.2 Boiling Modes 655 10.3 Pool Boiling 656 10.3.1 The Boiling Curve 656 10.3.2 Modes of Pool Boiling 657 10.4 Pool Boiling Correlations 660 10.4.1 Nucleate Pool Boiling 660 10.4.2 Critical Heat Flux for Nucleate Pool Boiling 662 10.4.3 Minimum Heat Flux 663 10.4.4 Film Pool Boiling 663 10.4.5 Parametric Effects on Pool Boiling 664 xvi Contents10.5 Forced Convection Boiling 669 10.5.1 External Forced Convection Boiling 670 10.5.2 Two-Phase Flow 670 10.5.3 Two-Phase Flow in Microchannels 673 10.6 Condensation: Physical Mechanisms 673 10.7 Laminar Film Condensation on a Vertical Plate 675 10.8 Turbulent Film Condensation 679 10.9 Film Condensation on Radial Systems 684 10.10 Condensation in Horizontal Tubes 689 10.11 Dropwise Condensation 690 10.12 Summary 691 References 691 Problems 693 CHAPTER 11 Heat Exchangers 705 11.1 Heat Exchanger Types 706 11.2 The Overall Heat Transfer Coefficient 708 11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 711 11.3.1 The Parallel-Flow Heat Exchanger 712 11.3.2 The Counterflow Heat Exchanger 714 11.3.3 Special Operating Conditions 715 11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method 722 11.4.1 Definitions 722 11.4.2 Effectiveness–NTU Relations 723 11.5 Heat Exchanger Design and Performance Calculations 730 11.6 Additional Considerations 739 11.7 Summary 747 References 748 Problems 748 11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers W-40 11S.2 Compact Heat Exchangers W-44 References W-49 Problems W-50 CHAPTER 12 Radiation: Processes and Properties 767 12.1 Fundamental Concepts 768 12.2 Radiation Heat Fluxes 771 12.3 Radiation Intensity 773 12.3.1 Mathematical Definitions 773 12.3.2 Radiation Intensity and Its Relation to Emission 774 12.3.3 Relation to Irradiation 779 12.3.4 Relation to Radiosity for an Opaque Surface 781 12.3.5 Relation to the Net Radiative Flux for an Opaque Surface 782 Contents xvii12.4 Blackbody Radiation 782 12.4.1 The Planck Distribution 783 12.4.2 Wien’s Displacement Law 784 12.4.3 The Stefan–Boltzmann Law 784 12.4.4 Band Emission 785 12.5 Emission from Real Surfaces 792 12.6 Absorption, Reflection, and Transmission by Real Surfaces 801 12.6.1 Absorptivity 802 12.6.2 Reflectivity 803 12.6.3 Transmissivity 805 12.6.4 Special Considerations 805 12.7 Kirchhoff’s Law 810 12.8 The Gray Surface 812 12.9 Environmental Radiation 818 12.9.1 Solar Radiation 819 12.9.2 The Atmospheric Radiation Balance 821 12.9.3 Terrestrial Solar Irradiation 823 12.10 Summary 826 References 830 Problems 830 CHAPTER 13 Radiation Exchange Between Surfaces 861 13.1 The View Factor 862 13.1.1 The View Factor Integral 862 13.1.2 View Factor Relations 863 13.2 Blackbody Radiation Exchange 872 13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 876 13.3.1 Net Radiation Exchange at a Surface 877 13.3.2 Radiation Exchange Between Surfaces 878 13.3.3 The Two-Surface Enclosure 884 13.3.4 Radiation Shields 886 13.3.5 The Reradiating Surface 888 13.4 Multimode Heat Transfer 893 13.5 Implications of the Simplifying Assumptions 896 13.6 Radiation Exchange with Participating Media 896 13.6.1 Volumetric Absorption 896 13.6.2 Gaseous Emission and Absorption 897 13.7 Summary 901 References 902 Problems 903 CHAPTER 14 Diffusion Mass Transfer 933 14.1 Physical Origins and Rate Equations 934 14.1.1 Physical Origins 934 14.1.2 Mixture Composition 935 14.1.3 Fick’s Law of Diffusion 936 14.1.4 Mass Diffusivity 937 xviii Contents14.2 Mass Transfer in Nonstationary Media 939 14.2.1 Absolute and Diffusive Species Fluxes 939 14.2.2 Evaporation in a Column 942 14.3 The Stationary Medium Approximation 947 14.4 Conservation of Species for a Stationary Medium 947 14.4.1 Conservation of Species for a Control Volume 948 14.4.2 The Mass Diffusion Equation 948 14.4.3 Stationary Media with Specified Surface Concentrations 950 14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 954 14.5.1 Evaporation and Sublimation 955 14.5.2 Solubility of Gases in Liquids and Solids 955 14.5.3 Catalytic Surface Reactions 960 14.6 Mass Diffusion with Homogeneous Chemical Reactions 962 14.7 Transient Diffusion 965 14.8 Summary 971 References 972 Problems 972 APPENDIX A Thermophysical Properties of Matter 981 APPENDIX B Mathematical Relations and Functions 1013 APPENDIX C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 1019 APPENDIX D The Gauss–Seidel Method 1025 APPENDIX E The Convection Transfer Equations 1027 E.1 Conservation of Mass 1028 E.2 Newton’s Second Law of Motion 1028 E.3 Conservation of Energy 1029 E.4 Conservation of Species 1030 APPENDIX F Boundary Layer Equations for Turbulent Flow 1031 APPENDIX G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 1035 Index 1039 Contents xixThis page intentionally left blan
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل حل كتاب Fundamentals of Heat and Mass Transfer 7th Edition Solution Manual رابط مباشر لتنزيل حل كتاب Fundamentals of Heat and Mass Transfer 7th Edition Solution Manual
|
|