Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Molecularly Imprinting Materials الجمعة 28 ديسمبر 2018, 7:36 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Molecularly Imprinting Materials Ashutosh Tiwari and Lokman Uzun من سلسلة علم المواد المتقدمة Advanced Material Series
ويتناول الموضوعات الأتية :
Contents Preface xvii Part 1 Strategies of Afnity Materials 1 Recent Molecularly Imprinted Polymer-based Methods for Sample Preparation 3 Antonio Mart?n-Esteban 1.1 Introduction 3 1.2 Molecularly Imprinted Solid-phase Extraction 6 1.2.1 General Considerations 6 1.2.2 Online and Inline Protocols 11 1.2.3 Improved Batch Protocols 13 1.3 Molecularly Imprinted Solid-phase Microextraction 14 1.3.1 MIP-coated Fibers 14 1.3.2 MIP Fibers (Monoliths) 16 1.4 Molecularly Imprinted Stir Bar Sorptive Extraction 17 1.5 Other Formats 18 1.5.1 Matrix Solid-phase Dispersion 18 1.5.2 Liquid Membranes and MIPs Combination 19 1.6 Conclusions 21 References 21 2 A Genuine Combination of Solvent-free Sample Preparation Technique and Molecularly Imprinted Nanomaterials 29 Santanu Patra, Ekta Roy, Rashmi Madhuri and Prashant K. Sharma 2.1 Introduction 30 2.1.1 Te Overview 30 2.1.2 General Procedure for Solid-phase Microextraction and Teir Basic Components 33vi Contents 2.1.3 Some Recent Examples of Solid-phase Microextraction Technique and Teir Reviews 36 2.1.4 Selectivity Problem: Introduction of Molecularly Imprinted Polymer (MIP) 37 2.2 Molecularly Imprinted Polymer Modifed Fiber for Solid-phase Microextraction 40 2.2.1 MISPME Using Modifed Silica fber as Stationary Phase 40 2.2.2 MISPME Using Modifed Metal Fiber as Stationary Phase 49 2.2.3 Other MISPME Fibers 54 2.3 In-tube Solid-phase Microextraction Technique 55 2.4 Monolithic Fiber 58 2.5 Micro-solid-phase Extraction 70 2.6 Stir-bar Sorptive Extraction 73 2.7 Conclusion and Future Scope 76 Acknowledgments 76 Abbreviations 77 References 78 3 Fluorescent Molecularly Imprinted Polymers 89 Kornelia Gawlitza, Wei Wan, Sabine Wagner and Knut Rurack 3.1 Introduction 89 3.2 Classes of Emitters to Endow MIPs with Fluorescence 91 3.2.1 Fluorescent Dyes 91 3.2.1.1 Changes in the Local Environment Induced by Template Rebinding 92 3.2.1.2 Hydrogen-bonding Interactions Between Template and Fluorescent Dye 95 3.2.1.3 Electrostatic Interactions Between Template and Fluorescent Dye 96 3.2.1.4 Coordinative Interactions Between Template and Fluorescent Dye 97 3.2.1.5 Covalent Bonds Between Template and Fluorescent Dye 98 3.2.2 Fluorescent Probes 99 3.2.3 Lanthanide-based Systems 101 3.2.4 Quantum Dots 103 3.2.5 Carbon Dots 105 3.2.6 Upconversion Nanoparticles 107Contents vii 3.3 Fluorescent Molecularly Imprinted Silica 108 3.4 Post-imprinting of MIPs 111 3.5 fMIPs as Labels 113 3.6 Formats for fMIPs 115 3.6.1 Bulk fMIPs 115 3.6.2 fMIP Films 116 3.6.3 fMIPs-containing Micro- and Nanoparticles 117 3.7 Conclusion 119 References 120 4 Molecularly Imprinted Polymer-based Micro- and Nanotraps for Solid-phase Extraction 129 R?dvan Say, Rüstem Keçili and Arzu Ers?z 4.1 Introduction 130 4.2 MIPs as SPE Materials 130 4.2.1 MIP-based SPE for Environmental Samples 132 4.2.2 MIP-based SPE for Biological Samples 142 4.2.3 MIP-based SPE for Food and Beverage Samples 148 4.3 Conclusions 149 References 153 5 Imprinted Carbonaceous Nanomaterials: A Tiny Looking Big Ting in the Field of Selective and Specifc Analysis 165 Ekta Roy, Santanu Patra, Rashmi Madhuri and Prashant K. Sharma 5.1 Introduction 166 5.1.1 Popularly Used Carbon-based Nanomaterials 169 5.1.1.1 Graphene 169 5.1.1.2 Carbon Nanotubes 172 5.1.1.3 Graphene Quantum Dots/Carbon Nanodots 174 5.1.1.4 Problems in Teir Use 175 5.1.2 Introduction of Molecularly Imprinted Polymers as a Selectivity Factor 176 5.1.3 Combination of MIPs and Carbonaceous Nanomaterials: Solution for Each Other 178 5.2 Graphene-modifed Imprinted Polymer 179 5.2.1 Graphene-modifed Imprinted Polymer in Combination with Nanoparticle 182 5.3 Carbon Nanotubes-modifed Imprinted Polymer 190viii Contents 5.4 Combination of Graphene, CNTs, and MIPs 196 5.5 Graphene Quantum Dots and/or Carbon Dots 198 5.6 Fullerene 201 5.7 Activated Carbon 202 5.8 Conclusions 203 Acknowledgments 204 List of Abbreviations 204 References 205 6 Molecularly Imprinted Materials for Fiber-optic Sensor Platforms 217 Yavuz Orhan Yaman, Necdet Ba?aran, Kübra Karayagiz, Zafer Vatansever, Cengiz Yegin, ?nder Haluk Tekba? and Müfrettin Murat Sari 6.1 Introduction 218 6.1.1 General Information 218 6.1.2 General Principle of Molecular Imprinting Materials 219 6.1.2.1 Characterization of Molecularly Imprinted Polymers 221 6.1.3 General Detection Principle and Molecular Aspect of MIPs for FO Sensors 222 6.2 Material Aspect: Morphology and Physical Forms of MIPs in FO Sensors 223 6.2.1 Morphology 223 6.2.2 Physical Forms 225 6.2.2.1 Microsphere 226 6.2.2.2 Nanoparticles 227 6.2.2.3 MIPs Layers/Tin Films 229 6.3 Molecularly Imprinting Technology for Fiber-optic Sensors 231 6.3.1 General Principle of Fiber-optic Sensing 231 6.3.1.1 Extrinsic Sensing 232 6.3.1.2 Intrinsic Sensing 233 6.3.1.3 Application Areas 234 6.3.2 Sensing Functionalities and Mechanisms of Current FO Sensors 235 6.3.2.1 Fluorescence-based FOs 236 6.3.2.2 Absorption-based FOs 240 6.3.2.3 Re?ectance-based FOs 241Contents ix 6.3.2.4 Resonance-based Sensors 246 6.3.2.5 Classifcation Based on Modulation Types 248 6.3.3 Design of MIPs for Fiber-optic Sensors 248 6.3.3.1 Design Process of MIPs 248 6.3.3.2 Development and Optimization of MIPs 252 6.3.3.3 Synthesis of MIPs 255 6.3.4 Characterization Methods for MIPs 260 6.3.4.1 Chemical Characterization 261 6.3.4.2 Morphological Characterization 262 6.3.4.3 Binding Behavior Characterization 264 6.4 State-of-the-art Fiber-optic Sensors Applications Using Molecularly Imprinted Materials 268 6.5 Conclusion 273 References 274 Part 2 Rational Design of MIP for Advanced Applications 7 Molecularly Imprinted Polymer-based Sensors for Biomedical and Environmental Applications 285 Anca Florea, Oana Hosu, Bianca Ciui and Cecilia Cristea 7.1 Introduction 285 7.1.1 General Aspects of Molecularly Imprinting Technology 286 7.1.2 Synthesis Strategies for MIPs 289 7.1.3 MIP Polymerization Strategies 289 7.1.4 Molecular Imprinted Polymer Bonding Techniques 292 7.1.4.1 Covalent Bond Method (Pre-assembly Method) 292 7.1.4.2 Noncovalent Method (Self-assembly Method) 292 7.1.4.3 Semicovalent Imprinting 292 7.1.4.4 Imprinting via Metal Coordination 293 7.1.4.5 Combinatorial Imprinting 293 7.1.5 Detection Methods for Molecularly Imprinted Polymer-based Sensors 293 7.1.5.1 Optical Detection Methods 293 7.1.5.2 Piezoelectrical Detection Methods 295 7.1.5.3 Electrochemical Detection Methods 295x Contents 7.2 Molecularly Imprinted Polymers for Analytes of Biomedical Interest 296 7.2.1 Motivation and Interest of Developing Molecularly Imprinted Polymers in the Biomedical Filed 296 7.2.2 Te Pretreatment of Biological Samples When Using Molecularly Imprinted Polymer-based Sensors 297 7.2.3 Electrochemical Sensors Based on Molecularly Imprinted Polymers 298 7.2.4 Massic Sensors Based on Molecularly Imprinted Polymers 304 7.2.5 Optical Sensors Based on Molecularly Imprinted Polymers 304 7.3 Molecularly Imprinted Polymers for Analytes of Environmental Interest 306 7.3.1 Pesticides 307 7.3.2 Explosives and Warfare Agents 312 7.4 Conclusion 314 Acknowledgments 316 References 316 8 Molecularly Imprinted Polymers: Te Afnity Adsorbents for Environmental Biotechnology 327 Bo Mattiasson and Gizem Ertürk 8.1 Introduction 327 8.2 Molecularly Imprinted Polymers 329 8.2.1 Monomers 329 8.2.2 Cross-linking Agents 331 8.2.3 Mode of Polymerization 332 8.3 Cryogels 334 8.4 Process Technology 336 8.5 Applications 338 8.5.1 Example: Capture of Compounds Binding to Estrogen Receptors 338 8.5.2 Example: Capture of Pesticides 338 8.5.3 Example: Capture of Pharmaceuticals and Teir Metabolites 339 8.5.4 Example: Capture of Heavy-metal Ions 339Contents xi 8.6 Elution of Captured Material 341 8.6.1 Example: MIPs as Sensing Elements in Environmental Monitoring 342 8.7 Concluding Remarks 343 8.8 Outlook 343 References 345 9 Molecular Imprinting Technology for Sensing and Separation in Food Safety 353 Baran ?nal Ulusoy, Mehmet Odaba?i and Ne?e Hayat Aksoy 9.1 Food Safety 354 9.2 Food Analysis 355 9.3 Current Separation Methods Used for Food Safety Purposes 356 9.4 What Is MIP? 357 9.5 MIP Applications Used for Food Safety Purposes 359 9.5.1 Contaminants 359 9.5.1.1 Mycotoxins 359 9.5.1.2 Color Compounds 363 9.5.1.3 Pesticide Residues 368 9.5.1.4 Antibiotics 370 9.5.1.5 Vitamins 373 9.5.1.6 Hormones 376 References 377 10 Advanced Imprinted Materials for Virus Monitoring 389 Zeynep Altintas 10.1 Introduction 390 10.2 Virus Imprinting 393 10.3 Artifcial MIP Receptors for Viruses 398 10.4 Virus Monitoring and Detection Using Biomimetic Sensors 399 10.5 Virus Imprinting for Separation Technologies 401 10.6 Conclusions 405 References 406xii Contents 11 Design and Evaluation of Molecularly Imprinted Polymers as Drug Delivery Systems 413 André Lu?s Morais Ruela and Gislaine Ribeiro Pereira 11.1 Introduction 414 11.1.1 Drug Delivery Systems 415 11.1.2 Polymers for DDS 416 11.2 Synthesis and Characterization of MIPs Intended for Drug Release Using Non-covalent Approaches 418 11.2.1 Precipitation Polymerization 426 11.2.2 Characterization Studies 429 11.3 Design and Evaluation of Drug Delivery Systems Based on MIPs 436 11.3.1 Release Studies 438 11.3.2 Mathematical Modeling 443 11.4 Conclusions 445 References 446 12 Molecularly Imprinted Materials for Controlled Release Systems 455 Yagmur Yegin, G?khan Yilmaz, ?mer Karakoç, Cengiz Yegin, Servet Cete, Mustafa Akbulut and Müfrettin Murat Sari 12.1 Introduction 456 12.2 Selectivity, Release Mechanism and Functionality of MIPs-based CR Systems 459 12.2.1 Factors Tat In?uence the Selectivity 459 12.2.2 Recognition Characteristics of MIPs 460 12.2.2.1 Binding Site Heterogeneity 460 12.2.2.2 Restrictions on Recognition Characteristics of MIPs 460 12.2.3 Sustained-release MIP Drug Delivery Systems 461 12.2.3.1 Drug Delivery Based on Rate-programming 463 12.2.3.2 Drug Delivery Based on Activation-modulation 472 12.2.3.3 Feedback-regulated DDS 479 12.3 Molecularly Imprinted Polymers Production for Controlled Release 482 12.3.1 Synthesis and Characterization of Molecularly Imprinted Polymers 482 12.3.1.1 Synthesis Methods 482 12.3.1.2 Characterization of MIPs 484Contents xiii 12.3.2 Recognition Mechanisms and Types of Monomer/Template Interactions 485 12.3.2.1 Mechanism of Recognition 485 12.3.2.2 Types of Monomer/Template Interactions 486 12.3.3 Physical Forms of MIPs and Production Methods 487 12.3.3.1 Microbeads and Microspheres 488 12.3.3.2 Nanoparticles 488 12.3.3.3 MIPs Layers/Tin Films 489 12.3.3.4 Hydrogels 489 12.3.3.5 Membranes 490 12.3.3.6 Monoliths 490 12.4 Controlled Release Applications Using Molecularly Imprinted Materials-based Controlled Release 491 12.4.1 Controlled Drug Delivery Applications 491 12.4.1.1 Drug Release for Cancer Terapy 491 12.4.1.2 Oral Drug Delivery Applications 496 12.4.1.3 Transdermal and Percutaneous Delivery Applications 499 12.4.1.4 Ocular Delivery Applications and Contact Lenses 501 12.4.2 Other Controlled Release and Related Applications of MIPs in Food/Agriculture Technologies 503 12.5 Conclusion 506 References 507 13 Molecular Imprinting: Te Creation of Biorecognition Imprints on Biosensor Surfaces 523 Gizem Ertürk and Bo Mattiasson 13.1 Introduction 523 13.2 Molecular Imprinting 524 13.3 Microcontact Imprinting 525 13.4 Capacitive Biosensors 529 13.4.1 Applications 534 13.5 Surface Plasmon Resonance Biosensors 541 13.5.1 Applications 543 13.6 Concluding Remarks 549 References 550xiv Contents 14 Molecular Imprinted Polymers for Sensing of Volatile Organic Compounds in Human Body Odor 561 Sunil Kr. Jha 14.1 Introduction 562 14.1.1 Molecular Imprinted Polymers 562 14.1.2 Chemical Sensors 564 14.1.3 QCM Sensor 565 14.1.4 MIP-coated QCM Sensors 565 14.1.5 Human Body Odor and Its Characterization 567 14.1.6 Chemical Sensors Used in Identifcation of Body Odor and Related VOCs 570 14.2 MIP-QCM Sensor Array Preparation 573 14.2.1 Polyacrylic Acid Polymer as Host and Acids as Template Molecules-based MIPs (MIPs-1)-coated QCMs 573 14.2.2 Polyacrylic Acid Polymer as Host and Aldehyde as Template Molecules-based MIPs (MIPs-2)-coated QCMs 574 14.3 Chemical Vapor Sensing 576 14.3.1 Body Odor Characterization for VOCs Identifcation 576 14.3.2 Vapor Generation for Single and Mixtures of Acid Odors 584 14.3.3 Vapor Generation of Single and Mixtures of Aldehyde Odors 585 14.3.4 MIPs-1-QCM Sensors Response to Single and Mixture of Acid Odors 586 14.3.5 MIPs-1-QCM Sensors Response to Single and Mixture of Aldehyde Odors 589 14.3.6 MIPs-2-QCM Sensors Response for Single and Mixture Aldehyde Odors 595 14.3.7 Processing Methods for MIP-QCM Sensor Array Response Matrix 600 14.3.7.1 Preprocessing 600 14.3.7.2 Principal Component Analysis 601 14.3.7.3 Support Vector Machine 602 14.4 Analysis Outcomes 603 14.4.1 MIP-1-QCM Sensor Array Response Analysis for Recognition of Single Acid Odors 603Contents xv 14.4.2 MIP-1-QCM Sensor Array Response Analysis for Recognition of Binary Mixtures of Acid Odors 605 14.4.3 MIP-1-QCM Sensor Array Response Analysis for Recognition of Single and Binary Mixtures of Acid Odors Simultaneously 608 14.4.4 MIP-1-QCM Sensor Array Response Analysis for Recognition of Single Aldehyde Odors 608 14.4.5 MIP-1-QCM Sensor Array Response Analysis for Recognition of Binary Mixtures of Aldehyde Odors 609 14.4.6 MIP-1-QCM Sensor Array Response Analysis for Recognition of Tertiary Mixtures of Aldehyde Odors 612 14.4.7 MIP-1-QCM Sensor Array Response Analysis for Recognition of Single, Binary and Tertiary Mixtures of Aldehyde Odors 613 14.4.8 MIP-2-QCM Sensor Array Response Analysis for Recognition of Single Aldehyde Odors 615 14.4.9 MIP-2-QCM Sensor Array Response Analysis for Recognition of Binary Mixtures of Aldehyde Odors 616 14.4.10 MIP-2-QCM Sensor Array Response Analysis for Recognition of Tertiary Mixtures of Aldehyde Odors 620 14.4.11 MIP-2-QCM Sensor Array Response Analysis for Recognition of Single, Binary and Tertiary Mixtures of Acid Odors Simultaneously 621 14.5 Conclusion 624 Acknowledgments 624 References 624 15 Development of Molecularly Imprinted Polymer-based Microcantilever Sensor System 637 Meltem Okan and Memed Duman 15.1 Introduction to Mass Sensors 637 15.2 Principles of Mass Sensors 640 15.2.1 Teory Behind Mass Sensing via QCM 640 15.2.2 Teory Behind Mass Sensing via Microcantilever 642 15.2.2.1 Dynamic Sensing Mode 642 15.2.2.2 Static De?ection Mode 644xvi Contents 15.2.3 Parameters A?ecting the Measurements with Microcantilevers 645 15.2.3.1 Cantilever Choice 646 15.2.3.2 Signifcance of Quality Factor 646 15.2.3.3 Impact of E?ective Mass 647 15.2.3.4 Noise Processes 649 15.3 Mechanical Biosensors and Teir Fields of Use 649 15.3.1 Applications of QCM Sensors 650 15.3.2 Applications of Microcantilever Sensors 652 15.4 Molecularly Imprinted Polymer Technology 655 15.5 Molecularly Imprinted Polymer-based QCM Sensors 658 15.6 Ongoing Studies on Molecularly Imprinted Polymers-based Microcantilevers 661 Acknowledgments 669 References 669 Index 68
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Molecularly Imprinting Materials رابط مباشر لتنزيل كتاب Advanced Molecularly Imprinting Materials
|
|