Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Surface Engineering Materials الجمعة 28 ديسمبر 2018, 7:42 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Surface Engineering Materials Ashutosh Tiwari, Rui Wang, and Bingqing Wei من سلسلة علم المواد المتقدمة Advanced Material Series
ويتناول الموضوعات الأتية :
Contents Preface xvii Part 1 Functional Coatings and Adhesives 1 Bio-inspired Coatings and Adhesives 3 Saurabh Das and B. Kollbe Ahn 1.1 Introduction 4 1.2 Te Interfacial Biochemistry of a Mussel Adhesive 4 1.3 Tough Coating Proteins in the Mussel Tread 12 1.4 Mussel-inspired Coatings and Adhesives 15 1.5 Conclusions and Future Research Avenues for Bio-inspired Adhesives and Coatings 25 References 26 2 Advancement of Surface by Applying a Seemingly Simple Sol–gel Oxide Materials 33 Justyna Krzak, Beata Borak, Anna ?ukowiak, Anna Donesz-Sikorska, Bartosz Babiarczuk, Krzysztof Marycz and Anna Szczurek 2.1 Introduction 33 2.2 Are Simple Sol–gel Oxides Only Simple Materials? 35 2.2.1 Sol–gel Synthesis 36 2.2.1.1 Precursor 36 2.2.1.2 Water 39 2.2.1.3 Catalyst and pH 40 2.2.1.4 Solvents 41 2.2.1.5 Synthesis Drawbacks 42 2.2.2 Di?erences in Coating Techniques Depending on the Substrate Form 43 2.2.2.1 Planar Substrates 43vi Contents 2.2.2.2 Particles 44 2.2.2.3 Fibers 44 2.2.3 Sol–gel Oxides: Properties and Applications 45 2.3 Hybrid Coating Materials 55 2.4 Functionalized Oxide Coatings 62 2.4.1 Volume Functionalization 63 2.4.2 Surface Functionalization 68 2.5 Coatings for Cells 70 2.6 Sol–gel Materials as Interface Materials 75 2.7 Conclusions 81 References 83 3 Femtosecond Laser Texturing of Bio-based Polymer Films for Surface Functionalization 97 A. Daskalova 3.1 Introduction 98 3.2 Naturally Derived Biomaterials 100 3.2.1 Collagen 100 3.2.2 Gelatin 101 3.2.3 Elastin 102 3.2.4 Optical Properties of Biopolymers 102 3.3 Surface Modifcation Features 102 3.4 Mechanisms of Laser–tissue Interaction 104 3.4.1 Characteristics of Ultra-fast Laser Radiation 106 3.4.1.1 Ultra-short Pulses 107 3.4.2 Femtosecond Laser Interaction with Polymers 112 3.5 Laser-based Methods for Surface Treatment of Biomaterials 113 3.5.1 Laser Surface Patterning 114 3.5.2 Ultra-short Laser Processing 117 3.5.3 Material and Methods 119 3.5.4 Morphology of Surface Patterns of Tin Biopolymer Films 119 3.5.4.1 Wettability Studies 120 3.5.4.2 Morphological Analysis of Laser Produced Porous Matrices 120 3.5.4.3 Atomic Force Microscopy and Confocal Examination of the Laser Produced Modifcation 125 3.5.5 Cell Cultivation on Laser-modifed Substrates 129 3.5.6 Mechanism of Cell Locomotion 133Contents vii 3.6 Conclusion 134 Acknowledgments 135 References 135 4 Engineered Electromagnetic Surfaces and Teir Applications 141 Mirko Barbuto, Filiberto Bilotti, Alessio Monti, Davide Ramaccia and Alessandro Toscano 4.1 Introduction 142 4.2 Impedance Boundary Condition 143 4.3 Metasurfaces Based on Metallic Strips 145 4.3.1 Anisotropic Metasurfaces 145 4.3.2 Model Validation 151 4.3.3 Applications to Electromagnetic Cloaking 153 4.4 Metasurfaces Based on Circular Inclusions 155 4.4.1 Holey Metasurfaces 156 4.4.2 High-impedance Surfaces with Circular Elements 160 4.5 Metasurfaces Based on Crossed Dipoles 163 4.5.1 Crossed-aperture Metasurfaces 164 4.5.2 Full-wave Numerical Simulations 167 References 169 5 Structural and Hydroxyapatite-like Surface Functionalization of Advanced Biomimetic Prototype Interface for RA Endoprostheses to Enhance Osteoconduction and Osteointegration 175 Ryszard Uklejewski, Piotr Rogala and Mariusz Winiecki 5.1 Introduction 176 5.2 Biomimetic Multi-spiked Connecting Sca?old Prototype – Te Promising Breakthrough in Bone-implant Advanced Interfacing in Joint Resurfacing Endoprostheses Fixation Technique 180 5.3 Bioengineering Design of the MSC-sca?old Prototype, Its Additive Manufacturing and Post-SLM_processing of Bone Contacting Surfaces 183 5.3.1 Bioengineering Design and the CAD Modelling of the Bone-RA Endoprostheses Interfacing MSC-sca?old 183 5.3.2 Additive Manufacturing in Selective Laser Melting Technology 192 5.3.3 Post-production Processing of Bone Contacting Surfaces 202viii Contents 5.4 Structural Pro-osteoconduction Functionalization of the MSC-sca?old Interfacing System for Biomimetic Entirely Cementless RA Endoprostheses 208 5.4.1 Possibilities of A?ecting the Structural– osteoconductive Potential of the MSC-sca?old Interfacing System 208 5.4.2 Initial Pilot Implantation Study on Structurally Functionalized MSC-sca?old Interfacing System 214 5.4.3 In Vitro Cytobiocompatibility (Biofunctionality) Tests on Prototypes of the MSC-sca?old 217 5.5 Hydroxyapatite-like Functionalization of Bone Contacting Surfaces of the MSC-sca?old to Enhance Osteointegration 220 5.5.1 Initial Attempts to Modify Bone Contacting Surfaces of the MSC-sca?old Prototype by the Method of Electrochemical Cathodic Deposition of Calcium Phosphates 220 5.5.2 Evaluation of Biointegration of the Implanted MSC-sca?old Preprototypes with Surfaces Modifed with Calcium Phosphates and Unmodifed Surfaces 224 5.5.3 Research on the MSC-sca?old Prototypes (Ca-P Surface Modifed and Non-modifed) in Osteoblast Cell Culture 227 5.6 Conclusions 229 Acknowledgments 232 References 232 Part 2 Engineering of Nanosurfaces 6 Biosynthesis of Metal Nanoparticles and Graphene 243 Ujjal Kumar Sur 6.1 Introduction 244 6.2 Synthesis of Gold and Silver Nanoparticles Using Microorganisms 257 6.2.1 Synthesis of Gold and Silver Nanoparticles Using Bacteria 258 6.2.2 Synthesis of Gold and Silver Nanoparticles Using the Fungal Systems 260 6.2.3 Synthesis of Gold and Silver Nanoparticles Using the Actinomycete 262Contents ix 6.3 Synthesis of Gold and Silver Nanoparticles Using Fruit Extract 263 6.4 Synthesis of Gold and Silver Nanoparticles Using Plant Extract 265 6.5 Synthesis of Gold and Silver Nanoparticles Using Honey 273 6.6 Synthesis of Gold and Silver Nanoparticles Using Animal Tissue 273 6.7 Synthesis of Semiconductor Nanoparticles from Plant, Fruit Extract and Honey 274 6.8 Biosynthesis of Other Nanoparticles 276 6.9 Biosynthesis of Graphene 279 6.10 Applications of Metal Nanoparticles and Graphene 283 6.11 Future Trends and Prospects 286 6.12 Conclusions 287 Acknowledgements 288 References 289 7 Surface Modifers for the Generation of Advanced Nanomaterials 297 P?nar Akku? Süt, Melike Belenli, ?zlem ?en, Melis Emanet, Mine Altunbek and Mustafa Culha 7.1 Introduction 297 7.2 Most Commonly Used NMs and Teir Possible Surface Chemistry 298 7.3 Parameters In?uencing NP Functionalization 298 7.3.1 Nature of Attachment onto NM Surface 299 7.3.2 Molecular Density on NP Surface 299 7.3.3 Orientation of Attached Molecule on NP Surface 304 7.3.4 Separation Distance Between Modifer and NP Surface 304 7.3.5 Reproducibility of Chemistry 304 7.4 Modifcation Strategies 304 7.4.1 Noncovalent Interactions 304 7.4.1.1 ?–? Stacking Interactions 305 7.4.1.2 Electrostatic Interactions 306 7.4.1.3 Hydrogen Bonding 307 7.4.1.4 Hydrophobic Interactions 307 7.4.2 Covalent Modifcation 308 7.4.2.1 Carbodiimide Coupling 309 7.4.2.2 Maleimide Coupling 310x Contents 7.4.2.3 Imine Formation (Glutaraldehyde– Amine Coupling) 310 7.4.2.4 Epoxide Opening 312 7.4.2.5 Addition to Cyanates 312 7.4.2.6 Silanization 313 7.4.2.7 Click Chemistry 313 7.4.2.8 1,3-Dipolar Cycloaddition 313 7.4.2.9 Diels?Alder Reactions 314 7.4.2.10 Staudinger Ligation 315 7.4.2.11 Te Michael Addition 315 7.5 Te Potential Problems During NPs Modifcations 316 7.5.1 Over-activation of Surface Functional Groups 316 7.5.2 Dispersion During Modifcation 316 7.5.3 Purifcation 316 7.5.4 Inter NP–NP or Modifer–Modifer Cross-linking 317 7.5.5 Oxidation of NPs Surface and/or Modifer 317 7.5.6 Complex Reaction Conditions 317 7.6 Surface Modifers 317 7.6.1 Carbohydrates 317 7.6.1.1 Monosaccharide-, Disaccharide-, and Oligosaccharide-Functionalized NPs 320 7.6.2 Polysaccharide-functionalized NPs 321 7.6.2.1 Cellulose 321 7.6.2.2 Chitosan 322 7.6.2.3 Dextran 323 7.6.2.4 Pullulan 323 7.6.2.5 Starch 324 7.6.2.6 Xantham Gum 324 7.6.3 Oligonucleotides 326 7.6.4 Peptides 329 7.6.5 Polymers 332 7.6.5.1 Biodegradability 333 7.6.5.2 Amphiphilicity 333 7.6.5.3 Ionic Strength 333 7.7 Conclusions 334 References 335Contents xi 8 Nanoassisted Functional Modulation of Enzymes: Concept and Applications 349 Arka Mukhopadhyay and Hirak K. Patra 8.1 Introduction 349 8.2 Enzyme Modifying Nanomaterials 352 8.2.1 Carbon Nanotube 353 8.2.2 Graphene Oxide Nanomaterials 355 8.2.3 Quantom Dots 357 8.2.4 Single Enzyme Nanoparticles (SEN) 358 8.2.5 Nanoscale Enzyme Reactor (NER) 358 8.2.6 Nanofbers 360 8.2.7 Nanowires 361 8.2.8 Nanogels 361 8.2.9 Nano?owers 362 8.2.10 Magnetic Nanoparticles 362 8.3 Regulations of Enzyme Properties by Several Nanomaterials 365 8.3.1 Regulation of Enzyme Activity and Stability on Nanomaterial Interactions 367 8.3.2 Regulation of Enzyme Structure on Nanomaterial Interactions 373 8.4 Conclusions 376 Abbreviations 376 References 377 9 Electrospun Fibers Based on Biopolymers 385 Alicia Mujica-Garcia, Agueda Sonseca, Marina P. Arrieta, Maysa Yusef, Daniel L?pez, Enrique Gimenez, José M. Kenny and Laura Peponi 9.1 Electrospinning: Background and Set-up 386 9.2 Biopolymers 393 9.3 Electrospinning of Biopolymer Nanofbers 396 9.3.1 Cellulose and Cellulose Derivatives 401 9.3.2 Chitosan 402 9.3.3 Poly(vinyl Alcohol) 403 9.3.4 Silk 405 9.3.5 Collagen 406 9.3.6 Gelatin 407 9.4 Electrospun Fibers Based on Biopolymers Blends 4089.5 Bionanocomposites Electrospun Fibers 414 9.5.1 Electrospun Biopolymeric Fibers Reinforced with 0-D 414 9.5.2 Electrospun Biopolymeric Fibers Reinforced with 1-D 418 9.5.2.1 Electrospun Nanocomposites Fibers with Cellulose Nanocrystals 418 9.5.2.2 Electrospun Nanocomposite Fibers with Carbon Nanotubes 420 9.5.2.3 Electrospun Nanocomposite Fibers with Halloysite Nanotubes 421 9.5.3 Electrospun Biopolymeric Fibers Reinforced with 2-D 421 9.5.3.1 Electrospun Nanocomposites Fibers with Graphene 421 9.6 Conclusions 423 Acknowledgments 423 References 424 10 Nanostructured Materials as Biosensor Transducers: Achievements and Future Developments 439 N.F. Starodub, K.E. Shavanova, N.F. Shpyrka, M.M. Mel’nichenko and R.V. Viter 10.1 Introduction 440 10.2 Biosensors According to the Main Principles of Teir Classifcation 442 10.3 Ion-selective Field E?ect Transistors-based Biosensors: Origins and Perspective Development 446 10.3.1 Cerium Oxide IsFETs-based Biosensors 446 10.3.1.1 Technology of IsFETs Creation 447 10.3.1.2 Characterization of Physical–chemical Properties of IsFETs Based on the Silicon Nitride and Cerium Oxide 447 10.3.1.3 Preparation of IsFET-based Immune Biosensor 450 10.3.1.4 Determination of Main Conditions of the Immune Biosensor Analysis Fulfllment 450 10.3.1.5 IsFET-based Immune Detection of Patulin and Salmonella 452 10.3.1.6 Conclusions 456 xii Contents10.3.2 Nanostructured IsFETs-based Biosensors 457 10.3.2.1 Conclusions 461 10.4 Optical Biosensors 461 10.4.1 Nanostructured Porous Silicon-based Biosensors 462 10.4.1.1 Fabrication of the nSPS Layers and Teir Optochemical Characteristics 464 10.4.1.2 Biologically Used Components 469 10.4.1.3 Devices for Registering Specifc Signals of Biosensors 469 10.4.1.4 Te Main Algorithm of Analysis by the Immune Biosensors 471 10.4.1.5 E?ectiveness of the nSPS Immune Biosensor at the Diagnosis of RBL 471 10.4.1.6 Mycotoxin-level Control by the nSPS-based Immune Biosensors 473 10.4.1.7 Comparison of the Efciency of Mycotoxins Detection and Biochemical Diagnosis of RBL by Di?erent Types of Optical Immune Biosensors 474 10.4.2 PhL of Nanomaterials for Biosensor Applications 478 10.4.3 Graphene-based SPR Biosensors 483 10.4.4 Surface-enhanced Raman Scattering Biosensors 486 Acknowledgments 488 References 488 Part 3 High-tech Surface, Characterisation, and New Applications 11 Optical Emission Spectroscopy Investigation of Direct Current Micro-plasma for Carbon Structures Growth 497 Dana-Cristina Toncu 11.1 Teoretical Background of Optical Emission Spectroscopy in Plasma Diagnosis 498 11.2 Direct Current Micro-plasma Experimental Investigation for Carbon Structures 500 11.3 Optical Emission Spectroscopy Results 502 11.3.1 OES for Investigating Variation in Pressure 504 Contents xiii11.3.2 OES for Investigating the Variation in Electron Temperature 506 11.3.3 Optical Emission Temperature Measurement from C 2 Radical 507 11.3.4 OES Investigation for Variation in Substrate Temperature 510 11.3.5 OES Investigation during Diamond Deposition 511 Acknowledgement 514 References 515 12 Advanced Titanium Surfaces and Its Alloys for Orthopedic and Dental Applications Based on Digital SEM Imaging Analysis 517 Sahar A. Fadlallah, Amira S. Ashour and Nilanjan Dey 12.1 Introduction 518 12.2 Titanium Implants Basic Concepts 521 12.2.1 Titanium Oxide as Biocompatible Coatings 522 12.2.2 Nanostructures Importance 523 12.2.3 Natural Nanostructures 524 12.2.4 Fabrication of Titania Nanostructures 526 12.2.5 Electrochemical Anodization Method 528 12.2.6 Experimental Tools for Surface Characterization 529 12.2.7 In-vitro and In-vivo Studies 530 12.2.7.1 Stability of Titanium Implants 531 12.2.7.2 Mechanical Characterization 535 12.2.7.3 Antibacterial Activity 536 12.2.7.4 In-vivo and In-vitro Cellular Behavior 537 12.3 Automated Nanostructures Image Analysis-based Morphology 540 12.3.1 Nanostructures Morphology and Properties: TiO2 540 12.3.2 Image Processing and Analysis 540 12.3.3 Nanostructures/Particles Image Analysis in In-vitro and In-vivo Studies 545 12.3.4 Orthopedic and Dental Applications Using Titanium Surfaces and Its Alloys Based on Digital SEM Imaging Analysis 548 12.4 Conclusion 550 References 551 xiv ContentsContents xv 13 Deep-blue Organic Light-emitting Diodes: From Fluorophores to Phosphors for High-efciency Devices 561 Frédéric Dumur 13.1 Introduction 561 13.2 Fluorescent Emitters 565 13.2.1 Anthracene Derivatives 565 13.2.2 Fluorene Derivatives 578 13.2.3 Indeno?uorene and Indenopyrazine Derivatives 582 13.2.4 Spiro-annulated Emitters 586 13.2.5 Starburst Molecules 591 13.2.6 Benzimidazole and Phenanthroimidazole Derivatives 600 13.2.7 Styryl Derivatives 605 13.2.8 Polyaromatic Hydrocarbons 608 13.2.9 Other Structures 611 13.3 Phosphorescent Emitters 618 13.4 Future Perspectives and Ongoing Challenges 621 References 622 14 Plasma–material Interactions Problems and Dust Creation and Re-suspension in Case of Accidents in Nuclear Fusion Plants: A New Challenge for Reactors like ITER and DEMO 635 A. Malizia, L.A. Poggi, J.F. Ciparisse, S. Talebzadeh, M. Gelfusa, A. Murari and P. Gaudio 14.1 Introduction 636 14.2 Materials for Nuclear Fusion Plants 638 14.2.1 Nuclear Fusion Framework 639 14.2.1.1 Materials Containing Carbon 639 14.2.1.2 Beryllium 642 14.2.1.3 Material with High-Z Number 643 14.2.2 Other Frameworks 652 14.2.2.1 Steels (Austenitic and Ferritic/Martensitic) 654 14.2.2.2 Other Advanced Materials 657 14.3 Radioactive Dust in Nuclear Fusion Plants: Security Problems in Case of Re-suspension 660 14.3.1 Stardust-upgrade Facility 664 14.3.1.1 STARDUST-U Experimental and Numerical Results 667xvi Contents 14.3.1.2 Easy Computational Fluid Dynamic Guide Method 676 14.3.2 A New Approach to Estimate Radioactive Source Terms Products in Future Nuclear Fusion Plants 682 14.3.2.1 Information Gathering of the Methodology Proposed 683 14.3.2.2 Rough Screening 683 14.3.2.3 Sensitivity Analysis 683 14.3.2.4 Uncertainty Analysis 684 14.3.2.5 Source Terms Simplifed Estimation 685 14.4 Conclusion 687 References 689 Index 70
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Surface Engineering Materials رابط مباشر لتنزيل كتاب Advanced Surface Engineering Materials
|
|