Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Functional Materials الجمعة 11 يناير 2019, 10:57 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Functional Materials من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari and Lokman Uzun
ويتناول الموضوعات الأتية :
Contents Preface xv Part 1: Functional Metal Oxides: Architecture, Design, and Applications 1 Development of Toxic Chemicals Sensitive Chemiresistors Based on Metal Oxides, Conducting Polymers and Nanocomposites Tin Films 3 Sadia Ameen, M. Shaheer Akhtar, Hyung-Kee Seo, and Hyung-Shik Shin 1.1 Introduction 4 1.2 Semiconducting Metal Oxide Nanostructures for Chemiresistor 6 1.2.1 Prospective Electrode of TiO2 Nanotube Arrays for Sensing Phenyl Hydrazine 6 1.2.2 Aligned ZnO Nanorods with Porous Morphology as Potential Electrode for the Detection of p-Nitrophenylamine 10 1.2.3 ZnO Nanotubes as Smart Chemiresistor for the E?ective Detection of Ethanolamine Chemical 17 1.3 Conducting Polymers Nanostructures for Chemiresistors 21 1.3.1 Sea-Cucumber-Like Hollow Polyaniline Spheres as Efcient Electrode for the Detection of Aliphatic Alcohols 21 1.3.2 Te Sensing Properties of Layered Polyaniline Nanosheets toward Hazardous Phenol Chemical 30 1.3.3 Prospective Electrode of Polypyrrole Nanobelts for the Detection of Aliphatic Alcohols 36vi Contents 1.4 Semiconducting Nanocomposites for Chemoresistors 44 1.4.1 Hydrazine Chemical Sensing by Modifed Electrode of Polyaniline/Graphene Nanocomposite Tin Film 44 1.5 Conclusions and Outlook 48 Acknowledgments 49 References 49 2 Te Synthetic Strategy for Developing Mesoporous Materials through Nanocasting Route 59 Rawesh Kumar and Biswajit Chowdhury 2.1 Introduction to Nanocasting 59 2.2 Steps of Nanocasting 61 2.2.1 Infltration 61 2.2.2 Te Casting Step 67 2.2.3 Template Removal by Dissolution or by Oxidation at High Temperatures 68 2.3 Porous Silica as Template for Inorganic Compounds 68 2.3.1 Nanocast Cobalt Oxides, Cerium Oxide, and Copper Oxide 71 2.3.2 Nanocast Chromium Oxides 73 2.3.3 Nanocast Indium Oxides and Nickel Oxide 74 2.3.4 Nanocast Molybdenum and Manganese Oxide 75 2.3.5 Nanocast Iron Oxide 76 2.3.6 Nanocast Tungsten Oxide 77 2.3.7 Nanocast Tin Oxide 77 2.3.8 Nanocast BiVO 4 and B4C 78 2.3.9 Nanocast Metal 79 2.3.10 Nanocast Metal Sulfdes 80 2.3.11 Nanocasted Ceramics 83 2.3.12 Nanocasted Mesoporous YPO4 84 2.3.13 Potential Application 84 2.4 Porous Silica as Template for Mesoporous Carbon 86 2.4.1 CMK Family 86 2.4.2 NCC-1, UF-MCN, SNU-1, MCF, and MCCF 89 2.4.3 Hollow Mesoporous Carbon Sphere/Prism 92 2.4.4 Ordered Mesopores Carbon with Surface Grafed Magnetic Particles 94 2.4.5 Surface Modifed Mesoporous Nitrogen Rich Carbon by Nanocasting 98 2.4.6 Potential Application 100Contents vii 2.5 Porous Carbon as Template for Inorganic Compound 104 2.5.1 Nanocasted Silica by Porous Carbon Template 104 2.5.2 Nanocasted Alumina and Nanocasted MgO 106 2.5.3 Nanocasted CeO 2 and ZnO 107 2.5.4 Nanocasted CuO 109 2.5.5 Nanocasted Other Metal Oxide 109 2.5.6 Mesoporous Sphere of Metal Oxide and Phosphate 110 2.5.7 Nanocast Ceramics 110 2.5.8 Mesoporous Hydroxyapatite and Phosphates 112 2.5.9 Potential Application 113 2.6 Future Prescriptive 113 2.7 Limitation 114 2.8 Conclusion 115 Acknowledgments 116 References 116 3 Spray Pyrolysis of Nano-Structured Optical and Electronic Materials 127 Nurdan Demirci Sankir, Erkan Aydin, Esma Ugur, and Mehmet Sankir 3.1 Introduction 128 3.2 Spray Pyrolysis Technology 128 3.2.1 Flame Spray Pyrolysis 131 3.2.2 Mist Generation Technologies 132 3.3 Nanoparticles Created via Spray Pyrolysis Method 134 3.3.1 Copper Oxides 136 3.3.2 Indium Oxide 136 3.3.3 Tin Oxide 138 3.3.4 Titanium Dioxide 139 3.3.5 Zinc Oxide 141 3.4 Nanopillars and Nanoporous Structures 142 3.4.1 Hematite (?-Fe2O3) 143 3.4.2 Tin Oxide (SnO2) 146 3.4.3 Titanium Dioxide 146 3.4.4 Zinc Oxide 147 3.5 Nanocrystalline Tin Film Deposition by Spray Pyrolysis 150 3.5.1 Nanocrystalline Cu-Based Chalcopyrite Tin Films 150 3.5.2 Nanocrystalline Kesterite Tin Films 156viii Contents 3.5.3 Nanocrystalline Metal Oxide Tin Films 161 3.5.4 Nanocrystalline Chalcogenide Tin Films 165 3.6 Conclusion 167 Acknowledgments 168 References 168 4 Multifunctional Spinel Ferrite Nanoparticles for Biomedical Application 183 Noppakun Sanpo, Cuie Wen, Christopher C. Berndt, and James Wang 4.1 Introduction 183 4.2 Ferrites 187 4.2.1 Cubic Ferrites 187 4.2.2 Hexagonal Ferrites 189 4.3 Te Sol–Gel Method 189 4.3.1 Te Sol–Gel Processing Method 189 4.3.2 Applications 194 4.4 Chelating Agents 195 4.4.1 Mineral Processing Examples of Using Chelating Agents 195 4.4.2 Organic Acids 198 4.5 Approach and Methodology 199 4.5.1 Fabrication of Spinel Ferrite Nanoparticles 199 4.5.2 Analytical Techniques Employed 200 4.5.3 Biocompatibility Study 201 4.6 Experimental Results 202 4.6.1 Di?erential Scanning Calorimetry and Termo Gravimetric Analyses 202 4.6.2 Raman Analyses 202 4.6.3 Particle Size Analysis 204 4.6.4 Microstructure of Spinel Ferrite Nanoparticles 205 4.6.5 XRD Analysis 206 4.6.6 Contact Angle Measurement and Roughness Parameters 210 4.6.7 Antibacterial Activities of the Spinel Ferrite Nanoparticles 210 4.6.8 Biocompatibility of Spinel Ferrite Nanoparticles 212Contents ix 4.7 Concluding Remarks 213 Acknowledgements 214 References 214 5 Heterostructures Based on TiO 2 and Silicon for Solar Hydrogen Generation 219 Dilip Kumar Behara, Arun Prakash Upadhyay, Gyan Prakash Sharma, B.V. Sai Krishna Kiran, Sri Sivakumar and Raj Ganesh S. Pala 5.1 Introduction 220 5.2 Overview of Heterostructures 221 5.2.1 Motivation/Importance of Heterostructured Nanomaterials 221 5.2.2 Classifcation of Heterostructures 223 5.2.3 Discussion on Other Heterostructure Classifcations 232 5.2.4 Challenges/Key Issues in Forming Heterostructures 233 5.3 TiO 2 Heterostructures 234 5.3.1 Heterojunctions of TiO2 Polymorphic Phases 234 5.3.2 TiO 2 Heterojunctions with Metals (Metal-Semiconductor Junctions) 238 5.3.3 Core–Shell Structures 245 5.3.4 Janus Structures 251 5.4 Silicon Based Heterostructures 253 5.4.1 Silicon Based Heterostructures for PEC Application 253 5.4.2 Heterojunctions vs Multijunction Silicon 258 5.4.3 Pros/Cons in Improvement of Si Heterostructures for Energy Harvesting and Conversion 261 5.5 Some Unaddressed Issues of Heterostructures in Relation to Photocatalysis 261 5.5.1 Measures to be Taken in Perspective of Photocatalysis of Heteronanostructures 262 5.6 Summary/Conclusions and Future Outlook 262 Acknowledgment 263 Notes on Contributors 263 References 264x Contents 6 Studies on Electrochemical Properties of MnO2 and CuO Decorated Multi-Walled Carbon Nanotubes as High-Performance Electrode Materials 283 Mohan Raja 6.1 Introduction 283 6.2 Experimental 285 6.2.1 Materials 285 6.2.2 Preparation and Fabrication of Supercapacitor Cell 285 6.3 Characterization 286 6.4 Results and Discussion 286 6.5 Conclusion 292 References 293 Part 2: Multifunctional Hybrid Materials: Fundamentals and Frontiers 7 Discotic Liquid Crystalline Dimers: Chemistry and Applications 297 Shilpa Setia, Sandeep Kumar and Santanu Kumar Pal 7.1 Introduction 298 7.2 Structure-Property Relationship of Discotic Dimers 300 7.2.1 Discotic Dimers Based on Anthraquinone Core 300 7.2.2 Discotic Dimers Based on Benzene Core 304 7.2.3 Discotic Dimers Based on Cyclotetraveratrylene Core 309 7.2.4 Discotic Dimers Based on Dibenzo[a,c]phenazine Core 309 7.2.5 Discotic Dimers Based on Hexa-periHexabenzocoronene (HBC) Core 313 7.2.6 Discotic Dimers Based on Phthalocyanine Core 316 7.2.7 Discotic Dimers Based on Porphyrin Core 325 7.2.8 Discotic Dimers Based on Pyranose Sugars 330 7.2.9 Discotic Dimers Based on Pyrene Core 332 7.2.10 Discotic Dimers Based on Scylloinositol Dimer 334 7.2.11 Discotic Dimers Based on Triphenylene Core 334 7.3 Applications 357 7.3.1 Dopants for Liquid Crystal Display Mixtures 357 7.3.2 Organic Light-Emitting Diodes (OLEDs) 360 7.4 Conclusions and Outlook 361 References 362Contents xi 8 Supramolecular Nanoassembly and Its Potential 367 Alok Pandya, Heena Goswami, Anand Lodha and Pinkesh Sutariya 8.1 Supramolecular Chemistry 368 8.1.1 Supramolecular Interactions 371 8.1.2 Types of Supramolecules 373 8.2 Nanochemistry 376 8.2.1 Why Nano 379 8.2.2 Chemical Approach of Nanomaterials 379 8.2.3 Gold and Silver Nanoparticles 382 8.2.4 Self-Assembled Monolayer 383 8.3 Supramolecular Nanoassembly 384 8.3.1 Cations Receptors 384 8.3.2 Anion Receptors 387 8.3.3 Biomolecule Receptor 388 8.3.4 Pesticide Detection 390 8.3.5 Other Nanomaterials Supported Supramolecules 391 8.4 Conclusion and Future Prospects 394 References 396 Suggested Further Reading 397 9 Carbon-Based Hybrid Composites as Advanced Electrodes for Supercapacitors 399 S.T. Senthilkumar, K. Vijaya Sankar , J. S. Melo, A. Gedanken, and R. Kalai Selvana 9.1 Introduction 400 9.1.1 Background 400 9.2 Principle of Supercapacitor 402 9.2.1 Basics of Supercapacitor 402 9.2.2 Charge Storage Mechanism of SC 404 9.3 Activated Carbon and their Composites 410 9.4 Carbon Aerogels and Teir Composite Materials 411 9.5 Carbon Nanotubes (CNTs) and their Composite Materials 415 9.6 Two-Dimensional Graphene 417 9.6.1 Electrochemical Performance of Graphene 418 9.6.2 Graphene Composites 419 9.6.3 Doping of Graphene with Heteroatom 423 9.7 Conclusion and Outlook 424 Acknowledgements 425 References 425xii Contents 10 Synthesis, Characterization, and Uses of Novel-Architecture Copolymers through Gamma Radiation Technique 433 H. Iv?n Meléndez-Ortiz and Emilio Bucio 10.1 Introduction 434 10.2 Ionizing Radiation 435 10.2.1 Type of Radiation 435 10.2.2 X-Ray and Gamma-Rays 436 10.2.3 Electron Beam 437 10.2.4 Alpha Particles 437 10.2.5 Neutrons 438 10.3 Gamma-Ray Measurements 438 10.3.1 Dosimetry 438 10.3.2 Fricke Dosimetry Method 440 10.3.3 Units of Radioactivity and Radiation Absorption 441 10.4 Synthesis of Graf Polymers by Gamma-Rays 441 10.4.1 Radiation Grafing 441 10.4.2 Simultaneous or Mutual Method 442 10.4.3 Pre-irradiation Method 443 10.4.4 Pre-irradiation Oxidative Method 444 10.4.5 Parameter In?uencing Grafed Copolymers Synthesis 444 10.5 Di?erent Architecture of Polymers 449 10.5.1 Stimuli-Responsive Networks Grafed onto Polypropylene for the Sustained Delivery of NSAIDs 449 10.5.2 Radiation Grafing of Glycidyl Methacrylate onto Cotton Gauzes for Functionalization with Cyclodextrins and Elution of Antimicrobial Agents 450 10.5.3 Binary Graf Modifcation of Polypropylene for Anti-in?ammatory Drug-Device Combo Products 450 10.5.4 Temperature- and pH-Sensitive IPNs Grafed onto Polyurethane by Gamma Radiation for Antimicrobial Drug-Eluting Insertable Devices 452 10.5.5 Temperature-Responsiveness and Biocompatibility of DEGMA/OEGMA Radiation Grafed onto PP and LDPE Films 453 10.5.6 Acrylic Polymer-Grafed Polypropylene Sutures for Covalent Immobilization or Reversible Adsorption of Vancomycin 453Contents xiii 10.6 Polymer Characterization 455 10.6.1 Swelling Measurements 455 10.6.2 Surface Plasmon Resonance Spectroscopy (SPR) 455 10.6.3 Infrared (IR) 456 10.6.4 Nuclear Magnetic Resonance Spectroscopy (NMR) 456 10.6.5 Termal Transition 456 10.6.6 Contact Angle 457 10.6.7 Atomic Force Microscopy (AFM) 457 Acknowledgments 458 References 458 11 Advanced Composite Adsorbents: Chitosan versus Graphene 463 George Z. Kyzas 11.1 Introduction 463 11.2 Chitosan-Based Materials 465 11.2.1 Synthesis and Various Modifcations 466 11.3 Graphene-Based Materials 478 11.3.1 Adsorption Applications 479 11.4 Graphene/Chitosan Composite Adsorbents 483 11.5 Conclusions 488 References 489 12 Antimicrobial Biopolymers 493 S. Sayed and M.A. Jardine 12.1 Introduction 493 12.2 Biopolymers 496 12.2.1 ?-Poly-l-Lysine 496 12.2.2 Chitin and Chitosan 500 12.3 Synthetic Biodegradable Polymers 506 12.3.1 Quaternary Polymers 506 12.3.2 Polyethylenimine 510 12.3.3 Antimicrobial Peptide Mimics 511 12.4 Metal Loading 514 12.4.1 Silver 515 12.4.2 Magnesium 516 12.4.3 Zinc 517 12.4.4 Titanium 517 12.5 Assessment of Antimicrobial/Antifungal Testing Methods 518xiv Contents 12.5.1 Di?usion 519 12.5.2 Dilution 520 12.5.3 Metabolic Based Assays 521 12.5.4 Discrepancies in Testing Methods 522 12.6 Conclusion 525 References 526 13 Organometal Halide Perovskites for Photovoltaic Applications 535 Sai Bai, Yizheng Jin, and Feng Gao 13.1 Introduction 535 13.2 Fundamentals of Organometal Halide Perovskite Solar Cells 537 13.2.1 Brief History of Perovskite Solar Cells 537 13.2.2 Crystal Structure and Optoelectronic Properties of Perovskites 538 13.2.3 Device Architecture Evolution of Solid-State Perovskite Solar Cells 542 13.3 Deposition Methods and Crystal Engineering of Organometal Halide Perovskites 547 13.3.1 One-Step Precursor Deposition 547 13.3.2 Vapor Assisted Solution Process and Interdi?usion Method 551 13.3.3 Vacuum Deposition 553 13.3.4 Solution and Crystal Engineering 555 13.4 Commercialization Challenges and Possible Solutions 558 13.5 Summary and Conclusion 561 Acknowledgements 562 References 562 Index 56
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Functional Materials رابط مباشر لتنزيل كتاب Advanced Functional Materials
|
|