Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Turbomachines الجمعة 8 مارس 2019 - 21:27 | |
|
أخوانى فى الله أحضرت لكم كتاب Fundamentals of Turbomachines Fluid Mechanics and Its Applications Erik Dick
ويتناول الموضوعات الأتية :
Contents 1 Working Principles . 1 1.1 Definition of a Turbomachine 1 1.2 Examples of Axial Turbomachines 2 1.2.1 Axial Hydraulic Turbine . 2 1.2.2 Axial Pump . 4 1.3 Mean Line Analysis 5 1.4 Basic Laws for Stationary Duct Parts 7 1.4.1 Conservation of Mass . 7 1.4.2 Conservation of Momentum 7 1.4.3 Conservation of Energy 9 1.4.4 Forms of Energy: Mechanical Energy and Head . 10 1.4.5 Energy Dissipation: Head Loss 12 1.5 Basic Laws for Rotating Duct Parts . 14 1.5.1 Work and Energy Equations in a Rotating Frame with Constant Angular Velocity . 14 1.5.2 Moment of Momentum in the Absolute Frame: Rotor Work . 16 1.5.3 Moment of Momentum in the Relative Frame: Forces Intervening in the Rotor Work 21 1.5.4 Energy Component Changes Caused By the Rotor Work 23 1.5.5 Rotor Work in the Mean Line Representation of the Flow 24 1.6 Energy Analysis of Turbomachines 25 1.6.1 Mechanical Efficiency and Internal Efficiency 25 1.6.2 Energy Analysis of an Axial Hydraulic Turbine 26 1.6.3 Energy Analysis of an Axial Pump 30 1.7 Examples of Radial Turbomachines . 33 1.8 Performance Characteristics . 36 1.9 Exercises 40 References . 46 2 Basic Components . 47 2.1 Aerofoils . 47 2.1.1 Force Generation 47 2.1.2 Performance Parameters . 49xviii Contents 2.1.3 Pressure Distribution 51 2.1.4 Boundary Layer Separation 52 2.1.5 Loss Mechanism Associated to Friction: Energy Dissipation 55 2.1.6 Profile Shapes . 58 2.1.7 Blade Rows with Low Solidity 59 2.2 Linear Cascades . 60 2.2.1 Relation with the Real Machine . 60 2.2.2 Cascade Geometry . 61 2.2.3 Flow in Lossless Cascades: Force Components . 62 2.2.4 Significance of Circulation 65 2.2.5 Flow in Lossless Cascades: Work 67 2.2.6 Flow in Cascades with Loss: Force Components 68 2.2.7 Flow in Cascades with Loss: Energy Dissipation and Work by Drag Force 70 2.2.8 The Zweifel Tangential Force Coefficient . 72 2.2.9 The Lieblein Diffusion Factor 74 2.2.10 Performance Parameters of Axial Cascades . 75 2.3 Channels . 75 2.3.1 Straight Channels . 75 2.3.2 Bends 77 2.4 Diffusers . 79 2.4.1 Dump Diffusers 79 2.4.2 Inlet Flow Distortion 79 2.4.3 Flow Separation . 81 2.4.4 Flow Improvement . 81 2.4.5 Representation of Diffuser Performance 82 2.4.6 Equivalent Opening Angle . 84 2.4.7 Diffusion in a Bend 85 2.5 Exercises 87 References . 95 3 Fans 97 3.1 Fan Aplications and Fan Types 97 3.1.1 Fan Applications . 97 3.1.2 Large Radial Fans 98 3.1.3 Small Radial Fans 99 3.1.4 Large Axial Fans 99 3.1.5 Small Axial Fans 100 3.1.6 Cross-Flow Fans . 100 3.2 Idealised Mean Line Analysis of a Radial Fan . 101 3.2.1 Idealised Flow Concept: Infinite Number of Blades 101 3.2.2 Degree of Reaction . 102 3.2.3 Relation Between Rotor Blade Shape and Performance Parameters . 103 3.2.4 Performance Characteristics with Idealised Flow 105Contents xix 3.3 Radial Fan Analysis for Lossless Two-Dimensional Flow with Finite Number of Rotor Blades 106 3.3.1 Relative Vortex in Blade Channels . 106 3.3.2 Velocity Difference over a Rotating Blade 107 3.3.3 Slip: Reduction of Rotor Work . 112 3.3.4 Number of Blades and Solidity: Pfleiderer Moment Coefficient 115 3.3.5 Number of Blades: Examples . 118 3.4 Internal Losses with Radial Fans . 120 3.4.1 Turning Loss at Rotor Entrance . 120 3.4.2 Incidence Loss at Rotor Entrance 120 3.4.3 Displacement by Blade Thickness . 122 3.4.4 Rotor Friction Loss and Rotor Diffusion Loss . 123 3.4.5 Dump Diffusion Loss at Volute Entrance . 123 3.4.6 Incidence Loss at Volute Entrance . 125 3.4.7 Friction Loss Within the Volute . 126 3.4.8 Diffusion at the Rotor Inlet 126 3.4.9 Flow separation at Rotor Inlet and Rotor Outlet 127 3.4.10 Applicability of the Loss Models . 129 3.4.11 Optimisation of the Rotor Inlet of a Centrifugal Fan . 129 3.4.12 Characteristics Taking Losses into Account . 131 3.5 Overall Performance Evaluation 134 3.5.1 Mechanical Loss . 134 3.5.2 Leakage Loss 135 3.5.3 Overall Efficiency with Power Receiving Machines . 135 3.5.4 Overall Efficiency with Power Delivering Machines 136 3.6 Rotor Shape Choices with Radial Fans 136 3.7 Axial and Mixed-Flow Fans . 140 3.7.1 Degree of Reaction with Axial Fans 140 3.7.2 Free Vortex and Non-Free Vortex Types 141 3.7.3 Axial Fan Characteristics; Adjustable Rotor Blades 143 3.7.4 Mixed-Flow Fans . 144 3.8 Exercises 146 3.8.1 Centrifugal Pump (Idealised Flow) 146 3.8.2 Rotor of a Centrifugal Fan (Finite Number of Blades and Internal Losses) . 146 3.8.3 Number of Blades of a Rotor of a Centrifugal Fan 147 3.8.4 Volute of a Centrifugal Fan 147 3.8.5 Leakage Flow Rate with Centrifugal Fan 147 3.8.6 Centrifugal Pump (Finite Number of Blades and Internal Losses) 148 3.8.7 Axial Fan (Idealised Flow): Analysis on Average Diameter . 148 3.8.8 Axial Fan (Idealised Flow): Free Vortex and NonFree Vortex . 149xx Contents 3.8.9 Inlet Guide Vane with a Centrifugal Fan 149 3.8.10 Change of Rotational Speed with Centrifugal and Axial Fans 149 3.8.11 Two-Stage Axial Fan 150 3.8.12 Axial Turbine 151 References . 151 4 Compressible Fluids 153 4.1 Basic Laws . 153 4.2 Compressibility and Velocity of Sound 156 4.3 Compressibility Effect on the Velocity-Pressure Relation . 158 4.4 Shape of a Nozzle . 160 4.5 Nozzle with Initial Velocity 162 4.6 Nozzle with Losses: Infinitesimal Efficiency 163 4.7 Isentropic and Polytropic Efficiencies . 167 4.8 Exercises 171 References . 174 5 Performance Measurement 175 5.1 Pressure Measurement . 175 5.1.1 The Metal Manometer 175 5.1.2 The Pressure Transducer 175 5.1.3 The Digital Manometer 176 5.1.4 Calibration of Pressure Meters . 177 5.2 Temperature Measurement . 177 5.2.1 The Glass Thermometer . 177 5.2.2 The Temperature Transducer 177 5.2.3 The Digital Thermometer . 178 5.3 Flow Rate Measurement 178 5.3.1 Reservoir 178 5.3.2 Flow Over a Weir . 178 5.3.3 Pressure Drop Devices . 179 5.3.4 Industrial Mass Flow Rate Meters . 180 5.3.5 Positioning of Flow Rate Meters in Ducts . 180 5.4 Torque Measurement 181 5.4.1 Swinging Suspended Motor or Brake 181 5.4.2 Calibrated Motor 181 5.4.3 The Torque Transducer . 181 5.5 Rotational Speed Measurement 182 5.5.1 Pulse Counters 182 5.5.2 The Speed Transducer 182 5.5.3 Electric Tachometer 182 5.6 Laboratory Test of a Pelton Turbine . 182 5.6.1 Test Rig 182 5.6.2 Measurements 183Contents xxi 5.6.3 Measurement Procedure . 183 5.6.4 Calculations 184 5.6.5 Measurement Example . 184 5.7 Laboratory Test of a Centrifugal Fan . 184 5.7.1 Test Rig 184 5.7.2 Measurements 187 5.7.3 Measurement Procedure . 187 5.7.4 Calculations 188 5.7.5 Measurement Example . 188 5.8 Laboratory Test of a Centrifugal Pump 189 5.8.1 Test Rig 189 5.8.2 Measurements 190 5.8.3 Measurement Procedure . 190 5.8.4 Calculations 191 5.8.5 Measurement Example . 192 6 Steam Turbines 193 6.1 Applications of Steam Turbines . 193 6.2 Working Principles of Steam Turbines . 195 6.3 The Steam Cycle 199 6.4 The Single Impulse Stage or Laval Stage 200 6.4.1 Velocity Triangles . 200 6.4.2 Work and Energy Relations 201 6.4.3 Stage Efficiency Definitions 204 6.4.4 Blade Profile Shape 205 6.4.5 Loss Representation . 208 6.4.6 Optimisation of Total-to-Static Efficiency . 209 6.5 The Pressure-Compounded Impulse Turbine or Rateau Turbine . 212 6.5.1 Principle . 212 6.5.2 Efficiency . 213 6.6 The Velocity-Compounded Impulse Turbine or Curtis Turbine . 214 6.7 The Reaction Turbine . 217 6.7.1 Degree of Reaction . 217 6.7.2 Efficiency . 218 6.7.3 Axial Inlet and Outlet . 222 6.8 Steam Turbine Construction Forms . 224 6.8.1 Large Steam Turbines for Power Stations 224 6.8.2 Industrial Steam Turbines 229 6.9 Blade Shaping 231 6.9.1 HP and IP Blades 231 6.9.2 LP Blades . 233 6.10 Exercises 236 References . 246xxii Contents 7 Dynamic Similitude . 247 7.1 Principles of Dynamic Similitude 247 7.1.1 Definition of Dynamic Similitude 247 7.1.2 Dimensionless Parameter Groups 248 7.1.3 Similitude Conditions . 248 7.1.4 Purpose of Similitude Analysis 250 7.1.5 Dimensional Analysis . 251 7.1.6 Independent and Dependent Parameter Groups . 252 7.1.7 Dimensionless Parameter Groups in Turbomachines with a Constant Density Fluid 252 7.1.8 Strong and Weak Similitude Conditions 254 7.2 Characteristic Numbers of Turbomachines 254 7.2.1 Definition of a Characteristic Number . 254 7.2.2 Specific Speed and Specific Diameter . 255 7.2.3 Relation Between Characteristic Numbers and Machine Shape 257 7.2.4 Design Diagrams 259 7.2.5 Shape of Characteristic Curves 261 7.2.6 Power Specific Speed . 262 7.3 Application Example of Similitude: Variable Rotational Speed with a Pump . 263 7.4 Imperfect Similitude . 266 7.4.1 Effect of Reynolds Number with the Same Fluid 266 7.4.2 Effect of Relative Roughness . 267 7.4.3 Effect of Viscosity 268 7.4.4 Rotor Diameter Reduction: Impeller Trimming . 270 7.4.5 Reduced Scale Models . 271 7.5 Series and Parallel Connection . 272 7.5.1 Parallel Connection of Fans . 272 7.5.2 Parallel Connection of Pumps 273 7.5.3 Series Connection of Fans 274 7.6 Turbomachine Design Example: Centrifugal Fan 276 7.7 Exercises 279 References . 282 8 Pumps . 283 8.1 Cavitation . 283 8.1.1 Cavitation Phenomenon and Cavitation Consequences . 283 8.1.2 Types of Cavitation 284 8.1.3 Cavitation Assessment: Cavitation Number and Required Net Positive Suction Height . 286 8.1.4 Optimisation of the Inlet of a Centrifugal Pump Rotor 289 8.1.5 Net Positive Suction Head of the Installation 291 8.1.6 Increasing the Acceptable Suction Height . 292Contents xxiii 8.2 Priming of Pumps: Self-Priming Types . 293 8.2.1 Side Channel Pump 293 8.2.2 Peripheral Pump (regenerative pump) . 295 8.2.3 Self-Priming Centrifugal Pump 296 8.2.4 Jet Pump . 297 8.3 Unstable Operation . 297 8.4 Component Shaping . 299 8.4.1 Simply and Doubly Curved Blades in Radial Rotors . 299 8.4.2 Mixed-Flow and Axial Pumps . 300 8.4.3 Pump Inlet 300 8.4.4 Pump Outlet . 301 8.4.5 Vaneless Diffuser Rings . 301 8.4.6 Vaned Diffuser Rings . 302 8.4.7 Volute . 303 8.4.8 Return Channels . 305 8.5 Internal Parallel and Series Connection Of Rotors 305 8.5.1 Reason for Internal Parallel or Series Connection . 305 8.5.2 Internal Parallel Connection of Rotors . 306 8.5.3 Internal Series Connection of Rotors: Multistage Pumps 306 8.6 Constructional Aspects . 307 8.6.1 Rotor . 307 8.6.2 Stator 307 8.6.3 Shaft Sealing 307 8.6.4 Bearings 309 8.6.5 Axial Force Balancing with Single-Stage Pumps 309 8.6.6 Axial Force Balancing with Multistage Pumps 310 8.6.7 Wear Rings . 311 8.7 Special Pumps 311 8.7.1 Borehole Pumps . 312 8.7.2 High-Pressure Pumps . 312 8.7.3 Sealless Pumps: Circulation Pumps, Chemical Pumps 312 8.7.4 Slurry Pumps 313 8.7.5 Pumping of Solid Materials . 314 8.7.6 Vertical Submerged Pumps 314 8.7.7 Partial Emission Pumps 315 8.7.8 Pumps for Viscous Fluids . 315 8.8 Exercises 316 8.8.1 Looking up Pump Characteristics 316 8.8.2 Verification of an NPSH-Value 316 References . 317 9 Hydraulic Turbines . 319 9.1 Hydraulic Energy . 319 9.2 Hydraulic Turbine Types 320 9.2.1 Large Turbines (>10 MW) . 320 9.2.2 Small Turbines (<10 MW) . 322xxiv Contents 9.3 Pelton Turbines: Impulse Turbines . 324 9.3.1 Performance Characteristics . 324 9.3.2 Specific Speed 326 9.3.3 Determination of the Main Dimensions . 328 9.3.4 Flow Rate Control and Over-Speed Protection 328 9.4 Francis and Kaplan Turbines: Reaction Turbines 329 9.4.1 Shape of the Velocity Triangles: Kinematic Parameters 329 9.4.2 Optimisation of the Velocity Triangles 330 9.4.3 Degree of Reaction and Speed Ratio . 331 9.4.4 Velocity Triangles with Varying Degree of Reaction . 332 9.4.5 Specific Speed and Meridional Shape of Francis Turbines . 333 9.4.6 Flow Rate Control with Reaction Turbines 335 9.4.7 Examples (Figs. 9.16, 9.17) . 337 9.5 Bulb and Tube Turbines . 338 9.6 Reversible Pump-Turbines . 340 9.7 Exercises 342 References . 345 10 Wind Turbines . 347 10.1 Wind Energy . 347 10.2 Types of Wind Energy Conversion Systems 348 10.2.1 Drag Machines . 348 10.2.2 High-Speed Horizontal-Axis Turbines . 349 10.2.3 Technical Aspects of Horizontal-Axis Wind Turbines for Electricity Generation 351 10.2.4 Low-Speed Horizontal-Axis Wind Turbines 355 10.2.5 Vertical-Axis Wind Turbines 356 10.3 Wind Turbine Performance Analysis . 358 10.3.1 Momentum Analysis (Single Streamtube Analysis) 358 10.3.2 Multiple Streamtube Analysis 361 10.3.3 Blade Element Analysis . 363 10.4 Adaptation to a Wind Regime 365 References . 368 11 Power Gas Turbines 369 11.1 General Concept and Components . 369 11.1.1 Definition of a Gas Turbine 369 11.1.2 Comparison with Other Thermal Engines 371 11.1.3 Example of a Power Gas Turbine . 372 11.1.4 Compressor Part . 374 11.1.5 Turbine Part 377 11.1.6 Combustion Chamber . 381 11.2 Thermodynamic Modelling 384 11.2.1 Isentropic Efficiency with Adiabatic Compression or Expansion . 384 11.2.2 Reheat Effect 387Contents xxv 11.2.3 Infinitesimal Efficiency; Polytropic Efficiency 389 11.2.4 Thermodynamic Properties of Air and Combustion Gas . 392 11.2.5 Heat Capacity Representation 396 11.2.6 Cooled Expansion 396 11.2.7 Compression with Extraction . 401 11.3 Performance of Simple-Cycle Power Gas Turbines . 402 11.3.1 Idealised Simple Cycle . 402 11.3.2 Simple Cycle with Component Efficiencies and Different Heat Capacities of Air and Combustion Gas 403 11.3.3 Simple Cycle with Component Efficiencies, Cooling and Variable Gas Properties . 405 11.4 Performance of Power Gas Turbines with Enhanced Cycles . 409 11.4.1 Compression with Intercooling 409 11.4.2 Expansion with Reheat . 411 11.4.3 Recuperator 412 11.4.4 Combined Gas and Steam Cycles 413 11.4.5 Steam Injection . 416 References . 417 12 Thrust Gas Turbines . 419 12.1 Thrust Generation . 419 12.1.1 Screw or Propeller 419 12.1.2 Reactor or Jet Engine . 423 12.1.3 Rocket 426 12.2 Overview of Aircraft Gas Turbine Engines 427 12.2.1 Turbojet 427 12.2.2 Turboprop and Turbo-Shaft 427 12.2.3 Bypass Turbojet 428 12.2.4 Turbofan . 428 12.2.5 Prop-fan and Unducted Fan . 429 12.2.6 Geared Turbofan . 432 12.3 Performance Parameters of Aircraft Propulsion Systems 432 12.3.1 Specific Thrust . 432 12.3.2 Dynamic Power 433 12.3.3 Gas Power and Dynamic Efficiency 433 12.3.4 Thermal Power, Thermodynamic Efficiency and Thermal Efficiency . 433 12.3.5 Propulsive Power and Propulsive Efficiency . 434 12.3.6 Overall Efficiency 434 12.3.7 Rocket 435 12.3.8 Generalisation for Double-Flow Engines . 435 12.3.9 Specific Fuel Consumption 437 12.4 Performance of the Gas Generator and the Single-Jet Engine . 438 12.4.1 Analysis with Loss-Free Components 439 12.4.2 Analysis with Component Losses 441xxvi Contents 12.5 Performance of Double-Flow Engines . 444 12.5.1 Unmixed Flows (Double-Jet Engine: Turbofan, Turboprop) . 444 12.5.2 Mixed Flows (Bypass Engine) . 448 12.5.3 Intercooling and Recuperation . 450 12.6 Technological Aspects of the Turbofan Engine 451 12.6.1 Discs and Shafts . 451 12.6.2 Vanes and Blades 451 12.6.3 Combustion Chamber . 452 12.6.4 Mixer and Thrust Reverser . 454 12.7 Exercises 454 12.7.1 Single-Flow Jet Engine 454 12.7.2 Single-Flow Jet Engine with Post-Combustion . 455 12.7.3 Turbofan with Separate Flows . 456 12.7.4 Turbofan with Mixed Flows . 456 12.7.5 Optimisation of Turbine Inlet Temperature with a Turbofan Engine . 456 12.7.6 Helicopter Rotor . 456 12.7.7 Ramjet 457 References . 457 13 Axial Compressors 459 13.1 Mean Line Analysis 459 13.1.1 Velocity Triangles . 460 13.1.2 Fundamental Equations 461 13.1.3 Loss Representation . 462 13.1.4 Loss Coefficients 465 13.1.5 Force Components . 465 13.1.6 Diffusion Factor and Loss Correlations . 466 13.1.7 Kinematic Parameters 470 13.1.8 Secondary Flow: Principle . 471 13.1.9 Radial Variation of Flow: Principle 473 13.1.10 Optimisation of a Stage 474 13.1.11 Blade Shape 476 13.1.12 Attainable Pressure Ratio . 478 13.2 Secondary Flow 478 13.2.1 Definition of Secondary Flow 478 13.2.2 Passage Vortex and Trailing Vortices . 479 13.2.3 Corner Vortices . 480 13.2.4 Horseshoe Vortex . 480 13.2.5 Leakage Vortex and Scraping Vortex . 480 13.2.6 Loss Assessment . 481 13.3 Radial Flow Variation . 481 13.3.1 S 1-S2 Decomposition 481 13.3.2 Radial Equilibrium . 482 13.3.3 Free Vortex Blades . 483Contents xxvii 13.3.4 Forcing of the Vortex Distribution . 485 13.3.5 Effect of End Wall Boundary Layers . 487 13.3.6 Three-dimensional Blade Design . 488 13.4 Compressor Blade Profiles . 491 13.4.1 Subsonic and Supercritical Cascades . 491 13.4.2 Transonic Cascades 494 13.4.3 Supersonic Cascades and Transonic Cascades with High Inlet Mach Number . 496 13.5 Performance Characteristics and Operating Range 497 13.5.1 General Shape of a Characteristic Curve . 497 13.5.2 Rotating Stall 498 13.5.3 Choking 499 13.5.4 Surge 501 13.5.5 Operating Range . 502 13.6 Exercises 505 References . 506 14 Radial Compressors 509 14.1 Construction Forms and Applications 509 14.1.1 Rotor Types 509 14.1.2 General Shape of a Radial Compressor . 511 14.1.3 Comparison Between Radial and Axial Compressors . 512 14.1.4 Examples of Radial Compressors 513 14.2 Kinematic Parameters 516 14.3 Pressure Ratio . 519 14.4 Rotor Shape 521 14.4.1 Number of Blades 521 14.4.2 Inducer 523 14.5 Diffusers . 525 14.5.1 Flow Non-homogeneity at Rotor Outlet 525 14.5.2 Mixing Zone . 526 14.5.3 Vaneless Diffusers 527 14.5.4 Vaned Diffusers 527 14.6 Performance Characteristics . 528 14.6.1 Flow Instability 528 14.6.2 Choking 528 14.6.3 Operating Characteristics and Operating Range 529 14.7 Exercises 531 14.7.1 Velocity Variation at Constant Radius in a Rotor . 531 14.7.2 Variable Geometry . 533 References . 533 15 Axial and Radial Turbines for Gases . 535 15.1 Axial Turbines 535 15.1.1 Kinematic Parameters 535 15.1.2 Radial Variation of Flow Parameters . 541xxviii Contents 15.1.3 Blade Profiles . 542 15.1.4 Three-dimensional Blade Design . 545 15.1.5 Vane and Blade Clocking . 546 15.1.6 Operating Characteristic of Axial Turbines 546 15.2 Radial Turbines 549 15.2.1 Shape and Functioning . 549 15.2.2 Kinematic Parameters 551 15.2.3 Operating Characteristic of Radial Turbines 553 15.2.4 Radial Turbine Applications . 554 15.3 Dimensional Analysis with Compressible Fluids 554 15.3.1? ?Independent?and?Dependent??-groups? . 554 15.3.2 Dimensionless Compressor and Turbine Characteristics . 556 15.3.3 Corrected Quantities . 556 15.4 Exercises 557 References . 558 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Turbomachines رابط مباشر لتنزيل كتاب Fundamentals of Turbomachines
|
|