Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Dynamics - Analytical and Numerical Calculations with MATLAB الأربعاء 04 سبتمبر 2019, 11:25 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Dynamics - Analytical and Numerical Calculations with MATLAB Dan B. Marghitu , Mihai Dupac
و المحتوى كما يلي :
Contents 1 Vector Algebra . 1 1.1 Terminology and Notation 1 1.2 Position Vector . 10 1.3 Scalar (Dot) Product of Vectors . 11 1.4 Vector (Cross) Product of Vectors 13 1.5 Scalar Triple Product of Three Vectors . 15 1.6 Vector Triple Product of Three Vector 18 1.7 Derivative of a Vector Function . 18 1.8 Cauchy’s Inequality, Lagrange’s Identity, and Triangle Inequality 20 1.9 Coordinate Transformation 22 1.10 Tensors . 26 1.10.1 Operations with Tensors . 34 1.10.2 Some Further Properties of Second-Order Tensor 35 1.11 Examples . 36 1.12 Problems . 65 1.13 Program 69 2 Centroids and Moments of Inertia . 73 2.1 Centroids and Center of Mass . 73 2.1.1 First Moment and Centroid of a Set of Points 73 2.1.2 Centroid of a Curve, Surface, or Solid 75 2.1.3 Mass Center of a Set of Particles 77 2.1.4 Mass Center of a Curve, Surface, or Solid 77 2.1.5 First Moment of an Area . 79 2.1.6 Center of Gravity . 82 2.1.7 Theorems of Guldinus–Pappus 82 2.2 Moments of Inertia 85 2.2.1 Introduction 85 2.2.2 Translation of Coordinate Axes . 88 viiviii Contents 2.2.3 Principal Axes 90 2.2.4 Ellipsoid of Inertia . 92 2.2.5 Moments of Inertia for Areas 93 2.3 Examples . 100 2.4 Problems . 130 3 Kinematics of a Particle . 143 3.1 Introduction 143 3.1.1 Position, Velocity, and Acceleration 143 3.1.2 Angular Motion of a Line . 144 3.1.3 Rotating Unit Vector . 145 3.2 Rectilinear Motion . 146 3.3 Curvilinear Motion 147 3.3.1 Cartesian Coordinates 147 3.3.2 Normal and Tangential Coordinates 148 3.3.3 Circular Motion 154 3.3.4 Polar Coordinates 155 3.3.5 Cylindrical Coordinates 157 3.4 Relative Motion 158 3.5 Frenet’s Formulas 159 3.6 Examples . 166 3.7 Problems . 201 4 Dynamics of a Particle . 209 4.1 Newton’s Second Law . 209 4.2 Newtonian Gravitation 210 4.3 Inertial Reference Frames . 211 4.4 Cartesian Coordinates . 211 4.4.1 Projectile Problem . 212 4.4.2 Straight Line Motion . 213 4.5 Normal and Tangential Components 213 4.6 Polar and Cylindrical Coordinates 214 4.7 Principle of Work and Energy . 215 4.8 Work and Power . 217 4.8.1 Work Done on a Particle by a Linear Spring . 218 4.8.2 Work Done on a Particle by Weight . 219 4.9 Conservation of Energy . 221 4.9.1 Exercise . 221 4.9.2 Exercise . 222 4.10 Conservative Forces . 227 4.10.1 Potential Energy of a Force Exerted by a Spring . 227 4.10.2 Potential Energy of Weight 228 4.10.3 Exercise . 229 4.10.4 Exercise . 232 4.11 Principle of Impulse and Momentum . 234 4.12 Conservation of Linear Momentum 235Contents ix 4.13 Principle of Angular Impulse and Momentum . 237 4.14 Examples . 238 4.15 Problems . 275 5 Kinematics of Rigid Bodies . 281 5.1 Introduction 281 5.2 Velocity Analysis for a Rigid Body . 282 5.3 Acceleration Analysis for a Rigid Body 285 5.3.1 Translation 286 5.3.2 Rotation 289 5.3.3 Helical Motion . 294 5.3.4 Planar Motion 298 5.4 Angular Velocity Vector of a Rigid Body 300 5.5 Motion of a Point that Moves Relative to a Rigid Body . 304 5.6 Planar Instantaneous Center . 309 5.7 Fixed and Moving Centrodes . 311 5.8 Closed Loop Equations 321 5.8.1 Closed Loop Velocity Equations 323 5.8.2 Closed Loop Acceleration Equations . 325 5.9 Independent Closed Loops Method . 328 5.10 Closed Kinematic Chains with MATLAB Functions 335 5.10.1 Driver Link . 335 5.10.2 Position Analysis . 337 5.10.3 Complete Rotation of the Driver Link 344 5.10.4 Velocity and Acceleration Analysis . 348 5.11 Examples . 357 5.12 Problems . 400 6 Dynamics of Rigid Bodies . 411 6.1 Equation of Motion for the Mass Center . 411 6.2 Linear Momentum and Angular Momentum . 414 6.3 Spatial Angular Momentum of a Rigid Body 417 6.4 Kinetic Energy of a Rigid Body 421 6.5 Equations of Motion . 423 6.6 Euler’s Equations of Motion 425 6.7 Motion of a Rigid Body About a Fixed Point 426 6.8 Rotation of a Rigid Body About a Fixed Axis . 426 6.9 Plane Motion of Rigid Body 427 6.9.1 D’Alembert’s Principle 431 6.9.2 Free-Body Diagrams . 432 6.9.3 Force Analysis for Closed Kinematic Chains Using MATLAB Functions 437 6.10 Examples . 446 6.11 Problems . 510x Contents 7 Analytical Dynamics . 521 7.1 Introduction 521 7.2 Equations of Motion . 525 7.3 Hamilton’s Equations 528 7.4 Poisson Bracket 531 7.5 Rotation Transformation 533 7.6 Examples . 537 7.7 Problems . 594 References . 601 Index . Index A Absolute angular acceleration, 325, 396, 400 angular velocity, 323, 324, 329, 395, 398 value, 1, 3, 406 Angle, 9, 13, 14, 36, 37, 45, 48, 49, 52, 65–68, 98, 99, 101, 102, 116, 144, 145, 150, 152, 154, 155, 161, 173, 189, 195, 200, 202, 204, 205, 208, 223, 238, 244, 246, 259, 267, 271, 289, 300, 329, 335, 338, 339, 342–344, 348, 350, 352, 356, 365, 372, 374, 376, 377, 379, 394, 397, 400–404, 429, 462, 465, 466, 470, 477, 482, 488, 495, 510–516, 518, 519, 533, 534, 536, 544, 552, 558, 567, 595, 596 Angular acceleration, 144, 155, 157, 257, 269, 285, 291, 292, 306, 309, 325, 326, 329, 335, 352, 356, 381, 385, 391, 396, 400–402, 424, 429, 430, 437, 463–466, 472, 482, 489, 497, 498, 569, 570, 586 impulse, 237–238 momentum, 237, 238, 245, 414–426, 428, 532 position, 144 velocity, 144, 145, 156, 197, 202, 204, 205, 245, 267, 268, 276, 279, 284, 291, 292, 294, 296, 300–304, 306, 309–311, 318, 322–325, 329, 332–335, 350–357, 365, 381, 383, 389, 393–398, 400, 402, 404–406, 418–421, 424, 426, 428, 463, 464, 466, 471, 479, 482, 489, 497, 498, 552, 568–570, 572–574, 577, 579, 586 Associative, 4, 34 B Base, 17 Bilinearity, 532 Binormal, 161, 162, 164, 165, 190, 192, 193, 197 Body centrode, 311 Body-fixed reference frame, 281, 286, 288, 296, 304–306, 365 Bound vector, 2 C Cartesian, 6, 9, 10, 14, 20, 22, 23, 26–28, 31, 35, 48, 50, 53, 74, 75, 78, 87, 88, 92, 94, 127, 147–148, 152, 155, 156, 166, 203, 211–213, 219, 228, 229, 268, 271, 281, 282, 329, 339, 373, 381, 414, 427, 430, 521, 537, 544, 558, 565, 595 Cauchy, 20–22, 27, 474 Central principal moments, 91, 420 Centripetal acceleration, 157 Centrode, 311–321 Centroid, 73–141, 347, 348 Centroidal axis, 80, 94, 95, 420 Circular motion, 154–155, 256 Closed kinematic chain, 322–328, 335–357, 436–446 loop equation, 321–328 loop method, 328–335 Commutative, 4, 11, 14, 34 Configuration space, 521–522, 530 Constraint conditions, 344, 377 configuration, 522–524 D.B. Marghitu and M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with MATLAB, DOI 10.1007/978-1-4614-3475-7, Springer Science+Business Media, LLC 2012 603604 Index Constraint (cont.) equation, 522, 523 equations in velocity form, 523 force, 522 holonomic, 523, 524 non-holonomic, 524 relation, 523 Contour method, 392, 436, 452 Contraction, 35, 36 Coordinates cylindrical, 157–158, 203, 214–215, 229 generalized, 462, 470, 477, 482, 488, 492, 497, 521–523, 525, 527, 537, 539, 544, 552, 555, 558, 567, 568, 577, 584 Coplanar, 56, 82, 86 Coriolis acceleration, 157, 269, 306, 307, 309, 322, 326, 328, 365, 368–370, 385, 386 Cross product, 13–15, 45, 49, 52, 53, 88, 161, 237, 465, 586 Curvature, 150–153, 155, 161, 164, 165, 177, 181, 182, 202, 203, 205, 311, 314 Curve, 75–79, 81–83, 104, 127, 130, 135, 149, 150, 161, 163, 164, 175, 193, 205, 206, 213, 254, 277, 279, 311, 314, 315, 468, 476, 595 D D’Alembert’s principle, 431–432, 525 Decomposition, 74, 78, 106 Degrees of freedom, 295, 329, 470, 477, 487, 488, 497, 522, 525 Density, 78, 86, 100, 101, 112, 113, 122, 133, 141, 446, 449, 487, 510–515, 519, 520 Derivative, 18–19, 98, 143, 145, 146, 149, 150, 153, 154, 156, 158–163, 173, 182, 186, 187, 198, 224, 236, 237, 245, 268, 269, 282, 283, 285, 288, 300, 302, 305, 306, 349, 350, 352, 412, 416, 424, 465, 470, 471, 479, 488, 489, 492, 497, 499, 522, 530, 531, 540, 569, 571 Determinant, 14–16, 24, 30, 57, 58, 62 Diagonal elements, 15, 36 Differential, 75, 78, 86, 87, 94, 101, 102, 104, 109–111, 116, 122, 124, 127, 228, 240, 411, 412, 414, 465, 467, 468, 474, 476, 477, 495, 523, 529, 530, 543, 582, 583, 592 Direction angle, 534 cosines, 9, 10, 22, 42–44, 49, 66, 67, 87, 91, 534 Displacement infinitesimal, 216–218 relative, 277 vertical, 273 weighed average, 414 Distributive, 4, 12, 14, 35 Dot product, 11–13, 88, 159, 161, 216, 220, 524, 545, 573, 574, 586 Driver link, 335–337, 339, 341, 344, 348, 353, 372, 377, 379, 393, 396, 400, 402–404, 445, 446, 452, 510–515 moment, 461, 595 Dyad, 335, 337–339, 342, 348–350, 432–435, 437–444, 450, 451, 573–575, 586, 597 Dynamical system, 521–523 Dynamics, 77, 196, 209–280, 411–520, 522–600 E Elastic constant, 277, 518, 537, 594, 595 force, 277 Ellipsoid of inertia, 92–93 Energy, 215–218, 221–230, 232, 233, 248, 250, 280, 421–423, 526–528, 530, 538–540, 545, 546, 549, 552, 553, 560, 561, 573–575, 593 Equilibrium equations, 431, 436, 445 moment, 445, 446 position, 462 Euler equation, 430, 465, 472, 473, 480, 484, 491, 492, 515–517 External force, 216, 218, 236, 245, 307, 412–415, 428, 429, 431, 432, 436, 446, 456, 510, 512–514 F First moment, 73–74, 79–81, 84, 95, 102, 104–106, 115, 116, 129 Fixed axis, 289–291, 294, 299, 405, 426–427, 429, 464 centrode, 311, 320, 321 point, 37, 90, 168, 171, 244, 250, 281, 299, 319, 417, 420–422, 425, 426, 429–431, 465, 472, 480 reference frame, 197, 200, 232, 268, 269, 281, 283, 286, 317, 323, 325, 365–367, 397, 424, 426, 495, 497, 509, 568, 586Index 605 Force, 1–3, 67, 68, 77, 81, 82, 209–219, 221, 227–236, 245, 247, 250, 255–257, 259, 263, 267, 270, 277, 279, 280, 307, 309, 412–416, 423, 426, 428–446, 449–461, 464–466, 471, 474, 479, 480, 482, 486, 491, 492, 503, 504, 510–516, 522, 525–527, 540, 541, 546, 553, 557, 562, 563, 577–580, 585–593 Free body diagram, 250, 432–436, 493 vector, 2, 17, 288, 302 Frenet, 159–166, 193–197 Friction, 217, 227, 246, 267, 277, 279, 431, 464, 477, 515, 517, 518, 544, 595 G Generalized active force, 525–528, 540, 557–580 coordinate, 462, 470, 477, 482, 488, 492, 497, 521–523, 525, 527, 537, 539, 544, 552, 555, 558, 564, 567, 568, 577, 584 inertia force, 525, 526, 585–593 velocities, 522, 528 Gradient, 229, 524 Gravity, 82, 210–212, 247, 257, 462, 465, 469, 477, 482, 503, 515–519, 540, 546, 552, 553, 557 center, 82, 130, 586 Guldinus-Pappus, 82, 113, 115 H Hamilton equations, 528–531, 551, 552, 555, 556 Helical motion, 294–298 I Impulse, 234–238, 415 Impulsive force, 235 Independent contour, 330, 392, 397 vector, 5 Inertial reference frame, 211, 237, 307–309, 462, 482, 525 Inertia matrix, 87, 91, 116–119, 126, 127, 129, 130, 419, 483, 504, 573, 574, 586 Initial conditions, 178, 179, 238, 252, 256–258, 261, 264, 271, 279, 467, 468, 474, 475, 477, 481, 482, 487, 495, 518–520, 555–557 Instantaneous center, 309–311 radius of curvature, 151, 152, 155, 165 Invariant, 36, 91, 97, 127 J Jacobian, 524 Jacobi identity, 532 Joint rotational, 382, 392, 397, 597 translational, 392, 397, 453, 455, 477, 597 Joules, 217, 218 K Kinematic chain, 322–328, 330, 355–357, 436–446, 477, 518, 565 Kinematics, 143–208, 281–409, 436–446, 477, 479, 489, 518, 522, 560, 565, 572 Kinetic energy, 216–218, 221–223, 248, 250, 280, 421–423, 526, 530, 538–540, 545, 552, 553, 560, 561, 573–575, 593 Kronecker delta, 23, 30, 31 matrix, 23 L Lagrange equations of motion, 527, 558 identity, 20–22 Lagrangian, 528, 530, 549, 554 Left-handed, 14 Leibnitz property, 532 Linear combination, 5, 17 independence, 5 momentum, 209, 234–237, 242, 243, 414–417 space, 35 spring, 218–219, 227, 595 Linearity, 532 Line of action, 1, 2, 291 Link, 166, 168, 171, 173, 197, 202, 279, 312–324, 326, 328–330, 335–337, 339, 341–348, 351–353, 355, 356, 365–368, 372, 376, 377, 379, 381–393, 395–398, 400–406, 432–446, 449–452, 455–459, 461–466, 469–474, 477, 479, 480, 487–493, 497–520, 552, 553, 558, 560, 562, 565, 567–579, 584, 587, 596, 597606 Index Load, 81, 432, 452 Loop, 31, 32, 43, 169, 170, 196, 197, 321–335, 344, 377 M Magnitude, 1, 3, 6, 8, 10, 13, 29, 36, 37, 39, 40, 42, 47, 48, 52, 65–67, 88, 143, 145–147, 149, 153, 156, 158, 159, 161, 165, 166, 168, 171, 175, 176, 181, 182, 186, 191, 194, 208–210, 214, 216, 227, 235, 241, 245, 272, 282, 284, 286, 288, 291, 292, 300, 318–320, 358–360, 412, 428, 430, 431, 510, 512–514, 545 Mass center, 77–79, 88–91, 93, 100–102, 104–111, 114–116, 124, 129, 133, 134, 243, 411–414, 417, 419, 424, 427–431, 446, 464, 465, 469, 471, 477, 479, 482, 499, 500, 502, 517, 544, 552, 553, 558, 562, 567, 570–574, 584–586, 596 element, 86, 87, 91, 411 Maximum second moment, 98, 99 Method of decomposition, 78 Minimum second moment, 99 Mobile reference frame, 281, 288, 296, 298 Module, 1, 3, 92, 329 Moment of inertia, 85–89, 91–93, 100, 117–119, 122–124, 126, 128, 129, 133, 134, 136, 137, 141, 428–430, 437, 449, 452, 464, 465, 472, 477, 491, 517, 553, 560, 587 Momentum vector, 532 Monoloop, 322 Motion angular, 144–145 circular, 154–155, 256 curvilinear, 147–158, 217 free fall, 259, 264 helical, 294–298 oscillatory, 166, 168, 171, 173 planar, 285, 298–299, 306, 311, 328, 367, 427–429 rectilinear, 146–147, 166 relative, 143, 158–159, 197, 304, 309, 322, 326, 431 rotational, 92, 284, 286, 289–295, 299, 335 spatial, 299 spherical, 299 straight line, 146, 213 three-dimensional, 165, 215, 422 translational, 286–289, 299 Moving centrode, 311–321 N Newton second law, 209–216, 234, 237, 250, 260, 270, 271, 307–309, 412, 414, 431, 525 third law, 235, 412, 413 Newton-Euler, 430, 465, 472, 473, 480, 484, 491, 492, 515, 517–519 Non accelerating, 307, 308 centroidal axes, 95 holonomic, 524 homogeneous, 100 linear, 465, 474 parallel, 298, 300 rotating, 307, 308 zero, 5, 17, 20, 21, 28, 32 Norm, 1, 8, 44, 49, 361, 371, 372, 382, 388–390, 392 Normal acceleration, 177, 292 coordinates, 148–155, 163, 250 direction, 159, 214, 250 plane, 193 unit vector, 150, 151, 160, 190, 192 vector, 161, 164, 192, 193 O Orientation, 1–3, 10, 79, 91, 96, 99, 161, 165, 300, 302, 303, 394, 397, 429, 533 Orthogonal axes, 80, 97, 99 component, 6, 161, 162, 200, 282, 535 matrix, 26 reference frame, 6 transformation, 36 Orthonormal basis, 197 matrix, 535 Osculating plane, 160, 161, 165, 190, 193 P Parallel, 1–4, 9–11, 13, 16, 20, 68, 88, 89, 91, 122, 146, 157, 159, 165, 186, 214, 237, 238, 286, 288, 289, 297, 301, 302, 311, 317, 328, 367, 383–386, 389–391, 404, 424, 428, 451, 495, 497, 524, 567, 572–574, 586, 597 axis theorem, 93–97, 117, 118, 125, 126, 129, 430 Parallelogram law, 3, 4Index 607 Partial derivative, 165–166, 497, 499, 540, 571 solution, 335 Particle, 73, 77, 78, 82, 85, 143–280, 324, 326, 411–418, 421, 428, 495, 497, 501–505, 509, 510, 521–525, 578, 585, 586, 593, 595, 596 Period, 13, 166, 171, 182, 201, 223, 254, 415 Permutation symbol, 29–34, 65, 69, 70 tensor, 34 Point of application, 2, 442, 455, 456, 479 Poisson bracket, 531–533 formulas, 284, 288, 305 Polar coordinates, 155–157, 186, 189, 203, 214, 219, 227 moment of area, 96–97, 141 moment of inertia, 119, 123, 124, 134, 136, 137 Position vector, 10–11, 39, 45, 73–75, 77, 78, 85, 143, 146–148, 155, 158, 163, 175, 177, 189, 198, 200, 204, 236, 237, 245, 247, 250, 268, 281, 284, 286, 304, 305, 325, 331, 341, 342, 359, 365, 366, 374, 375, 411, 414, 418, 421, 437, 439, 440, 442, 445, 450, 451, 462, 470, 471, 477, 479, 482, 486, 488, 489, 499, 501, 502, 521, 522, 524, 537, 544, 558, 570–572, 584, 585 Potential energy, 221, 227–233, 250, 527, 528, 530, 549, 552, 553 Power, 8, 217–220 Primary reference frame, 269, 281, 304–309 Principal axes, 90–93, 97–100, 420–423, 425, 504, 572–574, 586, 597 axes of inertia, 420, 425, 572 centroidal moment, 420, 422, 425 direction, 116, 119, 120, 124, 127 ellipsoid of inertia, 93 moment of inertia, 91, 100 Product of area, 94–96, 98, 99 of inertia, 90, 91, 94, 116, 117, 119, 125, 129, 137 Projectile, 212, 277 R Radius of curvature, 150–153, 155, 161, 164, 165, 177, 181, 182, 202, 203, 205, 314 of gyration, 87, 92 Rectangular component, 36, 52, 414 Rectifying plane, 190, 193 Reference frame, 6, 10, 19, 22–24, 26–28, 35, 36, 75, 79, 87, 100, 106, 109, 111, 116, 143, 146–148, 152, 158, 160, 165, 166, 171, 189, 193, 194, 197, 198, 200, 201, 211, 212, 219, 228, 232, 233, 237, 238, 268–271, 281–283, 285, 286, 288, 289, 296, 298, 300, 303–309, 317, 323–325, 339, 353, 365–367, 369, 373, 381, 393, 397, 424, 426, 427, 462, 482, 495, 497, 499, 504, 509, 521, 525, 526, 533–537, 552, 558, 565, 567–571, 586, 595 Relative acceleration, 286, 306, 309, 326, 367, 383, 385 displacement, 277 motion, 143, 158–159, 197, 304, 309, 322, 326, 431 position, 283 velocity, 284, 306, 321, 322, 324, 367, 394 Resolution of components, 5–8 of vectors, 5–8 Resultant, 4, 5, 42, 44, 45, 48, 49, 65–67, 81, 82, 277, 279, 414, 431, 525 Rheonomic, 524 Right-handed, 2, 13, 14, 31 Rigid body, 2, 86, 87, 89–93, 281–409, 411–520, 568, 573, 574, 578, 586, 593 Rolling motion, 430–431 Rotating unit vector, 145–146, 156 Rotation transformation, 533–536 S Scalar product, 11, 13, 20, 175 triple product, 15–18, 31, 56, 59–61, 422 Scleronomic, 524, 530 Second moment, 87, 93–99 Sense, 1–3, 9–11, 14, 161, 288, 291, 318, 404, 464, 516, 519 SI units, 210, 211, 217, 218 Sliding direction, 338, 342, 356, 367, 383, 385, 389, 391, 434, 435, 440, 441, 443, 444, 453, 454, 456, 458, 459, 461, 492 line, 544 vector, 2 Solid, 38, 75, 77–78, 132, 313 Space centrode, 311 Spatial angular momentum, 417–421 Spring constant, 219, 229, 250, 276608 Index Strength, 73, 74, 77 Surface, 1, 2, 75–79, 82–84, 92, 102, 113, 115, 116, 133, 205, 211, 246, 430, 431, 515, 522–524, 544 Symbolic, 7, 8, 10, 15, 17, 31, 37, 39, 40, 53, 57, 61, 101, 169, 189, 231, 240, 361, 466, 539, 540, 545 Symmetry anti, 532 axis, 80, 94, 101, 102, 108, 109, 111, 122, 124 plane, 74, 80 skew, 35, 532 T Tangential coordinates, 148–154 Temperature, 1 Tensor alternating, 29, 30 antisymmetric, 30 completely antisymmetric, 30 inertia, 419, 420 magnitude, 29 permutation, 34 second order, 34–36 symmetric, 29, 35, 420 zero-order, 36 Tensorial product, 28 Time derivative, 19, 143, 145, 146, 149, 150, 153, 154, 156, 158, 159, 186, 187, 198, 236, 237, 269, 305, 306, 465, 531 Torsion, 162–164, 205 Transfer theorem, 94–96, 464 Translation, 88–90, 286–289, 295, 296, 298, 299, 311, 552 pure, 286, 287 Transmissible vector, 2, 3 Transpose, 19, 24, 29, 535, 539, 570, 578, 584, 589, 590 Triangle inequality, 20 U Unconstrained dynamical system, 524 Unit vector, 3, 5, 6, 8–14, 22, 39–41, 65, 67, 75, 87, 91, 145–146, 149–152, 155–161, 163, 165, 186, 190, 192, 193, 195, 200, 215, 217, 219, 238, 245, 268, 281, 282, 288, 304, 495, 497, 524, 533–535, 537, 565, 567, 569–572 Unity tensor, 28, 29 V Variation, 528 Varignon theorem, 14 Vector addition, 3–4 (cross) product, 13–15, 52 Velocity, 1, 143, 209, 281, 414, 523 Volume, 17, 75, 76, 78, 82, 84, 86, 88, 109–111, 113, 114, 130, 133, 141 W Work, 1, 8, 215–222, 224, 225, 227, 229–234, 247, 248, 422, 572 Z Zero vector, 3, 6, 10
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Dynamics - Analytical and Numerical Calculations with MATLAB رابط مباشر لتنزيل كتاب Advanced Dynamics - Analytical and Numerical Calculations with MATLAB
|
|