Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Motion Control of Underactuated Mechanical Systems الإثنين 13 يوليو 2020, 1:41 am | |
|
أخوانى فى الله أحضرت لكم كتاب Motion Control of Underactuated Mechanical Systems Intelligent Systems, Control and Automation: Science and Engineering Javier Moreno-Valenzuela , Carlos Aguilar-Avelar
و المحتوى كما يلي :
Contents 1 Introduction . 1 1.1 Background 1 1.1.1 Underactuated Systems . 1 1.1.2 Nonlinear Dynamics and Control . 3 1.1.3 Parameter Identification . 6 1.1.4 Motion Control of Underactuated Systems 7 1.2 Motivations and Objectives . 9 1.3 Outline 9 2 Preliminaries 13 2.1 Fundamentals of Nonlinear Systems 13 2.2 Fundamental Properties 15 2.3 Concepts of Stability . 15 2.4 Barbalat’s Lemma 18 2.5 Boundedness and Ultimate Boundedness 18 2.6 Feedback Linearization 19 2.7 Artificial Neural Networks . 22 2.7.1 Universal Function Approximation Property . 24 3 Identification of Underactuated Mechanical Systems 27 3.1 Introduction 27 3.2 Identification of the Furuta Pendulum . 28 3.2.1 Dynamic Model . 28 3.2.2 Filtered Regression Model . 30 3.2.3 Discretization of the Filtered Regression Model 32 3.2.4 Experimental Platform 33 3.2.5 Motion Control Experiment 34 3.2.6 Joint Velocity Calculation . 35 3.2.7 Least Squares Algorithm 36 3.2.8 Results of the Identification Procedure . 37 vii3.3 Identification of the Inertia Wheel Pendulum . 40 3.3.1 Dynamic Model . 40 3.3.2 Filtered Regression Model . 42 3.3.3 Discretization of the Filtered Regression Model 43 3.3.4 Experimental Platform 44 3.3.5 Motion Control Experiment 45 3.3.6 Joint Velocity Calculation . 45 3.3.7 Least Squares Algorithm 46 3.3.8 Results of the Identification Procedure . 47 3.4 Concluding Remarks 49 4 Composite Control of the Furuta Pendulum . 51 4.1 Introduction 51 4.2 Dynamic Model . 52 4.3 Control Problem Formulation . 53 4.4 Design of the Proposed Scheme . 54 4.4.1 Feedback Linearization Part 54 4.4.2 Energy-Based Compensation . 55 4.4.3 Summary of the Composite Controller . 59 4.5 Analysis of the Closed-Loop Trajectories 60 4.6 Controller for the Performance Comparison 61 4.6.1 Output Tracking Controller 61 4.7 Experimental Evaluation . 62 4.7.1 Experimental Results . 62 4.7.2 Performance Comparison 65 4.8 Concluding Remarks 68 5 Feedback Linearization Control of the Furuta Pendulum 69 5.1 Introduction 69 5.2 Dynamic Model and Error Dynamics . 70 5.3 Control Problem Formulation . 72 5.4 Design of the Proposed Scheme . 72 5.5 Analysis of the Closed-Loop Trajectories 73 5.5.1 Ultimate Bound . 78 5.5.2 Boundedness of the Error Trajectories 79 5.6 Controllers for the Performance Comparison . 80 5.6.1 PID Controller 80 5.6.2 Output Tracking Controller 81 5.7 Experimental Evaluation . 82 5.7.1 Experimental Results . 82 5.7.2 Performance Comparison 85 5.8 Concluding Remarks 91 viii Contents6 Adaptive Neural Network Control of the Furuta Pendulum 93 6.1 Dynamic Model and Error Dynamics . 94 6.2 Control Problem Formulation . 96 6.3 Design of the Proposed Scheme . 96 6.4 Analysis of the Closed-Loop Trajectories 99 6.5 Controllers for the Performance Comparison . 108 6.5.1 PID Controller 108 6.5.2 Jung and Kim Controller 109 6.5.3 Chaoui and Sicard Controller 109 6.6 Experimental Evaluation . 110 6.6.1 Experimental Results and Performance Comparison . 110 6.7 Concluding Remarks 118 7 Composite Control of the IWP 119 7.1 Introduction 119 7.2 Dynamic Model . 121 7.3 Control Problem Formulation . 122 7.4 Design of the Proposed Scheme . 122 7.4.1 Feedback Linearization Controller . 122 7.4.2 Energy-Based Compensation . 124 7.4.3 Summary of the Composite Controller . 128 7.5 Analysis of the Closed-Loop Trajectories 128 7.6 Integral Extension 130 7.7 Controller for the Performance Comparison 131 7.7.1 LQR Motion Controller . 131 7.8 Experimental Evaluation . 131 7.8.1 Swing-up Control ? Motion Control . 132 7.8.2 Experimental Results . 133 7.8.3 Performance Comparison 135 7.9 Concluding Remarks 140 8 Feedback Linearization Control of the IWP . 141 8.1 Dynamic Model and Error Dynamics . 143 8.2 Control Problem Formulation . 145 8.3 Design of the Proposed Scheme . 145 8.4 Analysis of the Closed-Loop Trajectories 146 8.5 Controllers for the Performance Comparison . 150 8.5.1 State Feedback Controller . 150 8.5.2 Particular Feedback Linearization Controller . 151 8.6 Experimental Evaluation . 154 8.6.1 Experimental Results . 155 8.6.2 Performance Comparison 157 8.7 Concluding Remarks 158 Contents ix9 Adaptive Control of the IWP . 159 9.1 Introduction 159 9.2 Dynamic Model and Error Dynamics . 160 9.3 Control Problem Formulation . 163 9.4 Design of the Proposed Schemes 163 9.4.1 Model-Based Controller . 163 9.4.2 Neural Network-Based Controller . 165 9.4.3 Regressor-Based Adaptive Controller 167 9.5 Analysis of the Closed-Loop Trajectories 168 9.5.1 Analysis for the Neural Network-Based Adaptive Controller . 168 9.5.2 Analysis for the Regressor-Based Adaptive Controller 170 9.6 Controller for the Performance Comparison 171 9.7 Experimental Evaluation . 171 9.7.1 Experimental Results . 171 9.7.2 Performance Comparison 173 9.8 Concluding Remarks 175 10 Discussion on Generalizations and Further Research 177 10.1 Introduction 177 10.2 Generalization for Linear Systems . 178 10.3 Motion Control for 2-DOF Underactuated Mechanical Systems . 181 10.4 Motion Control of Higher DOF Underactuated Mechanical System: FJR as Case Study 182 10.4.1 Model 182 10.4.2 Control Problem 183 10.4.3 Open-Loop System 183 10.4.4 Output Design and Feedback Linearization Control . 184 10.5 Concluding Remarks 187 Appendix A: MATLAB Codes for Parameter Identification of the Underactuated Mechanical Systems in Chap. 3 189 Appendix B: Conditions to Ensure that Matrix A in Chaps. 5 and 6 is Hurwitz . 201 Appendix C: Convergence Proof of the Swing-up Controller for the IWP in Chaps. 7 and 8 205 Bibliography 209 Index 221 x ContentsAcronyms AGN Additive Gaussian noise AMC Advanced motion controls DAQ Data acquisition board DC Direct current DOF Degrees of freedom FJR Flexible joint robot IAE Integral of absolute error IDA-PBC Interconnection and damping assignment-passivity based control ISE Integral of squared error IWP Inertial wheel pendulum LQR Linear quadratic regulator LS Least squares MAV Mean absolute value MIMO Multi-input–multi-output NMPC Nonlinear model predictive control PC Personal computer PCI Peripheral component interconnect PD Proportional derivative PI Proportional integral PID Proportional-integral-derivative PWM Pulse-width modulation RMS Root mean square SISO Single-input–single-output TORA Translational oscillator with rotational actuator UAV Unmanned aerial vehicle UUB Uniformly ultimately bounded VTOL Vertical take-off and landing
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Motion Control of Underactuated Mechanical Systems رابط مباشر لتنزيل كتاب Motion Control of Underactuated Mechanical Systems
|
|