Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Smart Devices and Machines for Advanced Manufacturing الإثنين 20 يوليو 2020, 11:18 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Smart Devices and Machines for Advanced Manufacturing Lihui Wang , Jeff Xi Editors
و المحتوى كما يلي :
Contents List of Contributors xvii 1 Appropriate Design of Parallel Manipulators . 1 J.-P. Merlet, D. Daney 1.1 Introduction 1 1.2 Understanding End-user Wishes and Performance Indices 2 1.2.1 Establishing the Required Performances 2 1.2.2 Performance Indices . 4 1.2.3 Indices Calculation . 6 1.3 Structural Synthesis 7 1.4 Dimensional Synthesis . 8 1.4.1 Choosing Design Parameters 8 1.4.2 Design Methods 8 1.4.3 The Atlas Approach 9 1.4.4 Cost Function Approach . 9 1.4.5 Other Design Methodologies Based on Optimisation . 10 1.4.6 Exact Design Methodologies 10 1.5 The Parameter Space Approach 12 1.5.1 Parameter Space 12 1.5.2 Principle of the Method 12 1.5.3 Finding Allowed Regions . 13 1.5.4 Finding Allowed Regions with Interval Analysis . 14 1.5.5 Search for Appropriate Robots . 19 1.5.6 Design Examples 19 1.6 Other Design Approaches . 20 1.6.1 Design for Reliability . 20 1.6.2 Design for Control 21 1.7 Conclusions 21 References 21 2 Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms 27 Clément Gosselin 2.1 Introduction and Definitions . 27 2.2 Mathematical Conditions for Balancing . 28x Contents 2.3 Static Balancing 30 2.3.1 Static Balancing of a Planar Four-bar Linkage . 30 2.3.2 Spatial 6-dof Parallel Mechanism . 31 2.4 Gravity Compensation 36 2.5 Dynamic Balancing 40 2.5.1 Dynamic Balancing of Planar Four-bar Linkages . 40 2.5.2 Synthesis of Reactionless Multi-dof Mechanisms 44 2.5.3 Synthesis of Reactionless Parallel 3-dof Mechanisms 44 2.5.4 Synthesis of Reactionless Parallel 6-dof Mechanisms 47 2.6 Conclusions 47 References 47 3 A Unified Methodology for Mobility Analysis Based on Screw Theory . 49 Zhen Huang, Jingfang Liu, Qinchuan Li 3.1 Introduction 49 3.2 Basic Screw Theory and Mobility Methodology 51 3.2.1 Dependency and Reciprocity of Screws . 51 3.2.2 Modified Grübler-Kutzbach Criterion 54 3.2.3 Four Key Techniques 55 3.3 Mobility Analysis of Single-loop Mechanisms 57 3.3.1 The Bennett Mechanism . 57 3.3.2 The Goldberg Mechanism 60 3.3.3 The Bricard Mechanism with a Symmetric Plane 61 3.4 Mobility Analysis of Parallel Mechanisms . 63 3.4.1 4-DOF 4-URU Mechanism . 63 3.4.2 The CPM Mechanism . 65 3.4.3 The 4-DOF 1-CRR+3-CRRR Parallel Mechanism . 66 3.4.4 DELTA Robot 68 3.4.5 H4 Manipulator . 70 3.5 Discussions . 73 3.6 Conclusions 75 References 76 4 The Tau PKM Structures 79 Torgny Brog?rdh, Geir Hovland 4.1 Introduction 79 4.2 Non-symmetrical PKM Structures . 81 4.3 The SCARA Tau PKM . 84 4.4 The Gantry Tau PKM . 87 4.5 The Reconfigurable Gantry Tau PKM . 90 4.5.1 Kinematics and Workspace 92 4.5.2 Calibration 98 4.5.3 Stiffness 101 4.5.4 Mechanical Bandwidth . 102Contents xi 4.6 Industrial Potential of PKMs based on Tau Structures . 105 4.6.1 Performance Advantages 105 4.6.2 Life-cycle Cost Advantages 106 4.6.3 Relieving People from Bad Working Conditions . 107 4.7 Conclusions 108 References 109 5 Layout and Force Optimisation in Cable-driven Parallel Manipulators 111 Mahir Hassan, Amir Khajepour 5.1 Introduction 111 5.2 Static Force Analysis 112 5.3 Optimum Layout for the Redundant Limb . 115 5.3.1 Background on Convex Optimisation . 117 5.3.2 Optimum Direction of the Redundant Limb . 121 5.3.3 Multiple Poses 124 5.3.4 Multiple Redundant Limbs . 125 5.3.5 Case Study 126 5.4 Minimising Cable Tensions 130 5.4.1 Case Study 132 5.5 Conclusions 133 References 134 6 A Tripod-based Polishing/Deburring Machine . 137 Fengfeng (Jeff) Xi, Liang Liao, Richard Mohamed, Kefu Liu 6.1 Introduction 137 6.2 Hybrid Machine Design 139 6.2.1 Description of the Machine . 139 6.2.2 ParaWrist Design 141 6.3 Motion Planning . 142 6.3.1 Tripod Constraints 143 6.3.2 Inverse Kinematics . 145 6.3.3 Motion Planning . 145 6.4 Motion Simulation, Part Localisation and Measurement . 146 6.4.1 Forward Kinematics for Motion Simulation and Part Measurement . 146 6.4.2 Three-point Method for Part Localisation 148 6.5 Tripod Stiffening 150 6.5.1 Compliance Modelling . 151 6.5.2 Tripod Stiffening 152 6.6 Compliant Toolhead Design . 153 6.6.1 Axial Compliance Design . 153 6.6.2 Radial Compliance Design . 154 6.7 Tool Control . 157 6.7.1 Parameter Planning Based on Contact Model . 157xii Contents 6.7.2 Control Methods . 159 6.7.3 Model-based Control 160 6.8 Test Examples 163 6.9 Conclusions 164 References 165 7 Design and Analysis of a Modular Hybrid Parallel-Serial Manipulator for Robotised Deburring Applications . 167 Guilin Yang, I-Ming Chen, Song Huat Yeo, Wei Lin 7.1 Introduction 167 7.2 Design Considerations 169 7.2.1 Robot Modules . 169 7.2.2 6-DOF Hybrid Parallel-Serial Manipulator 170 7.3 Forward Displacement Analysis . 172 7.3.1 3RRR Planar Parallel Platform . 173 7.3.2 PRR Serial Robot Arm . 176 7.3.3 Entire Hybrid Manipulator 178 7.4 Inverse Displacement Analysis . 179 7.4.1 Orientation Analysis . 179 7.4.2 Position Analysis 180 7.4.3 Parallel Platform Analysis 180 7.5 Instantaneous Kinematics . 181 7.5.1 3RRR Planar Parallel Platform . 181 7.5.2 Entire Hybrid Manipulator 182 7.6 Computation Examples . 183 7.7 Application Studies 184 7.8 Conclusions 186 References 187 8 Design of a Reconfigurable Tripod Machine System and Its Application in Web-based Machining . 189 Z. M. Bi, Lihui Wang 8.1 Introduction 189 8.2 Related Work 190 8.3 Design of Reconfigurable Tripod Machine Tools 191 8.4 Kinematics, Dynamics and Optimisation . 193 8.4.1 Inverse Kinematics . 194 8.4.2 Direct Kinematics . 195 8.4.3 Stiffness Model . 196 8.4.4 Dynamic Model 202 8.4.5 New Criterion in Optimisation . 205 8.5 Integrated Design Tools 206 8.5.1 Modelling Tool . 207 8.5.2 Analysis Tool 209 8.5.3 Simulation Tool 211Contents xiii 8.5.4 Optimisation Tool . 211 8.5.5 Monitoring Tool . 212 8.6 Web-based Machining: a Case Study . 213 8.6.1 Testing Environment 213 8.6.2 Tripod 3D Model for Monitoring . 214 8.6.3 Web-based Machining 215 8.7 Conclusions 217 References 217 9 Arch-type Reconfigurable Machine Tool . 219 Jaspreet S. Dhupia, A. Galip Ulsoy, Yoram Koren 9.1 Introduction 219 9.2 Design and Construction 221 9.2.1 Arch-type RMT Specifications . 224 9.3 Dynamic Performance 225 9.3.1 Cutting Process Parameters 226 9.3.2 Frequency Response Functions 228 9.3.3 Stability Lobes 231 9.4 Conclusions 236 References 236 10 Walking Drive Enabled Ultra-precision Positioners . 239 Eiji Shamoto, Rei Hino 10.1 Introduction 239 10.2 One-axis Feed Drive . 240 10.2.1 Driving Principle and Control Method . 240 10.2.2 One-axis Walking Device . 241 10.2.3 Open Loop Control . 242 10.2.4 Laser Feedback Control 243 10.2.5 Methods to Overcome Disadvantages 244 10.3 Three-axis Feed Drive 245 10.3.1 Three-axis Walking Device 245 10.3.2 Walking Algorithm for Simultaneous 3-axis Drive 247 10.3.3 Three-axis Positioning System with Laser Feedback Control 251 10.3.4 Results of 3-axis Positioning 252 10.4 Conclusions 255 References 255 11 An XYTZ Planar Motion Stage System Driven by a Surface Motor for Precision Positioning . 257 Wei Gao 11.1 Introduction 257 11.2 The XYTZ Surface Motor . 259xiv Contents 11.3 The Decoupled Controller 264 11.4 The XYTZ Surface Encoder 271 11.5 Precision Positioning by the XYTZ Stage System 277 11.6 Conclusions 279 References 279 12 Design and Analysis of Micro/Meso-scale Machine Tools 283 K. F. Ehmann, R. E. DeVor, S. G. Kapoor, J. Cao 12.1 Introduction 283 12.2 Overview of Worldwide Research on the mMT Paradigm . 285 12.3 Overview of mMT Developments in USA . 288 12.4 Development of a Three-axis mMT . 289 12.4.1 Design Considerations for the NU 3-axis mMT . 289 12.4.2 Physical Realisation of the NU 3-Axis mMT . 290 12.4.3 Performance Evaluations 292 12.5 Development of a Five-axis mMT 294 12.5.1 Design Considerations for the UIUC 5-axis mMT . 295 12.5.2 Motor and Bearing Placement 298 12.5.3 Summary of 5-axis mMT Design . 301 12.5.4 Evaluation of Performance . 301 12.5.5 Analysis of 5-axis mMT Motion Parameters 304 12.5.6 Examples of Micro-scale Machining on the UIUC 5-axis mMT 305 12.6 A Hybrid Methodology for Kinematic Calibration of mMTs . 306 12.6.1 Design of the Measurement System . 307 12.6.2 A Hybrid Calibration Methodology 308 12.6.3 Off-machine Measurements 309 12.6.4 On-machine Measurements 309 12.6.5 Kinematic Error Modelling . 310 12.6.6 Validation of Calibration Methodology 311 12.7 Challenges in mMT Development 312 12.8 The Status of mMT Commercialisation Worldwide . 313 12.9 Conclusions 314 References 315 13 Micro-CMM . 319 Kuang-Chao Fan, Ye-Tai Fei, Weili Wang, Yejin Chen, Yan-Chan Chen 13.1 Introduction 319 13.2 Structure of a Micro-CMM . 321 13.2.1 Semi-circular Bridge Structure . 321 13.2.2 Co-planar XY Stage 322 13.2.3 Z-axis Design 323 13.3 Probes . 324 13.3.1 Focus Probe 324 13.3.2 Contact Probe . 327Contents xv 13.4 Actuator and Feedback Sensor . 329 13.5 System Integration and Motion Control . 332 13.5.1 System Assembly 332 13.5.2 Motion Control . 332 13.5.3 System Errors . 332 13.6 Conclusions 334 References 334 14 Laser-assisted Mechanical Micromachining 337 Ramesh K. Singh, Shreyes N. Melkote 14.1 Introduction 337 14.2 Development of LAMM-based Micro-grooving Process . 339 14.2.1 Basic Approach . 339 14.2.2 LAMM Setup for Micro-grooving 339 14.3 Process Characteristics . 341 14.3.1 Design of Experiment . 341 14.3.2 Results and Discussion . 342 14.4 Process Modelling 347 14.4.1 HAZ Characterisation and Thermal Modelling 347 14.4.2 Force Modelling in Laser Assisted Micro-grooving . 354 14.5 Summary and Future Directions . 362 References 363 15 Micro Assembly Technology and System . 367 R. Du, Candy X. Y. Tang, D. L. Zhang 15.1 Introduction 367 15.2 Micro Grippers . 368 15.2.1 Pneumatic Grippers 369 15.2.2 Capillary Force Grippers 369 15.2.3 Bio-inspired Grippers . 372 15.2.4 Force Feedback . 374 15.3 Precision Positioning 376 15.3.1 Servomotor . 376 15.3.2 Linear Motor . 377 15.3.3 Piezoelectric Motor . 379 15.3.4 Image Based Feedback . 380 15.4 A Sample Micro Assembly System 380 15.5 Conclusions 382 References 383 Index 385 Index 6-axis drive, 252 Abbé principle, 323, 334 acceleration acceleration capability, 295, 301, 304 acceleration limiter, 252 angular acceleration, 44, 203 linear acceleration, 203–204 accuracy acoustic emission, 313, 315 actuation, 22, 40, 43, 84, 87, 105, 111, 130, 141, 169, 172–173, 188, 376 actuator piezo-actuator, 288 piezoelectric actuator, 243, 245, 281, 384 voice-coil actuator, 288 affine, 118, 130–132 analysis interval analysis, 14–16, 18, 24 workspace analysis, 5, 186 angle grid, 259, 271–275, 277, 279 astigmation principle, 324 atlas approach, 9 autocollimation, 271, 273–274, 280 backward neural network, 332 balancing dynamic balancing, 27–29, 40, 45, 47–48 force balancing, 29, 36, 40–41, 48 static balancing, 27–31, 35, 39–40, 47 bandwidth bandwidth, 79, 81, 102, 105–108, 213–214, 229, 274, 304 bandwidth conservation, 214 closed-loop bandwidth, 304 beam splitter, 273–274, 324 bearing aerostatic bearing, 288–291 air bearing, 242, 280 cable-driven, 111–114, 126, 133 calibration calibration, 16, 24, 81, 85, 107, 109, 283–285, 306–308, 310– 312, 315, 317–318, 328 calibration methodology, 283, 285, 307–308, 311–312 kinematic calibration, 315, 318 compensation compensation gravity compensation, compromise programming, 23 condition number, 4–5, 9, 21 constraint common constraint, constraint couple, 54, 64–69, 72–73 constraint force, 53, 56, 70386 Index constraint order, 57 redundant constraint, 50–51, 54–55, 68–69, 76 control behavioural control, 191, 213 continuous path control, 252 contouring control, 252–253 feedback control, force feedback control, 374 motion control, NC control, 215–216 point-to-point positioning control, 252, 254 convex set, 111, 117–118, 120–121 cost function, 9–10 customisation, 217 cylinder, 67, 111–115, 158, 160, 219, 221, 236, 302, 318 cylindroid, 75 data packet, 215 deburring, Delta robot, 7, 9, 23, 50, 55, 68, 80– 81, 84, 109 design, design for control, disturbance observer, 257, 268–270, 279, 384 Dykstra’s projection algorithm, 111, 120–123, 130–134 elastic deflection, 355, 360–361 end-effector, equilibrium, 27, 112, 202, 204, 355, 360–361 error focus error, 325, 329 following error, 252, 304–305 interference error, 257, 264, 266– 270 straight motion error, 245 Euclidean distance, 120–121, 131 fast tool servo, 274, 281 FEM, 86, 156, 322 fixture, 140, 149 flexure 1-DOF flexure, 307 freedom degree of freedom, full-cycle freedom, 50–51 local freedom, 55 passive freedom, 55, 64, 68, 72–73 translational freedom, 54, 68–70, 72–73 frequency eigenfrequency, 86 frequency response, 108, 219, 223, 228, 236, 293–294 structural frequency, 229, 235, 303Index 387 genetic algorithm, 22, 205, 212, 218 Grassmann line geometry, 52 gripper, 193, 368–369, 371–373, 376, 380, 382 group theory, 7, 75 Grübler-Kutzbach criterion, 49–50, 54, 75 guideway, hardened steel, 338, 341, 362 heat affected zone, 339, 347, 362, 364–365 hyperboloid, 53, 58–61 hyper-rectangle, 118–120 impact hammer, 228–229, 231, 293 index global conditioning index, 5, 9 performance index, 3–6, 9–10, 13, 22 industrial applications, 81, 89, 108 integrated toolbox, 189–190, 206– 208, 211 interferometer, 244, 251, 258, 306, 319–320, 330–331 interpolation, 332 intersection set, 121, 123, 131–132 invar steel, 322 isosceles triangle, 57 Jacobian, 4, 11, 21, 79, 81, 96, 101, 104, 182–183, 196, 198–201, 206, 209 Java 3D, 191, 213–215 kinematic coupling, 289, 307, 309– 310 kinematic design, 23, 76, 109, 169, 177, 188 kinematic mount, 290 kinematics direct kinematics, 195, 218 inverse kinematics, 92, 94–99, 137, 143, 145–146, 157, 164, 179, 181, 188, 194, 211, 311 parallel kinematics, 139 laser interferometer, Lie algebra, 51, 75, 77 line vector, 51–54, 59–61, 74 linear encoder, 100, 160, 162, 165, 258, 290, 377 Lissajous plot, 331 machine coordinate measuring machine, micro lathe, 285–286 mMT, 283–292, 294–296, 299– 307, 309–310, 312–315, 318 machine chatter, 226 machine dynamics, 219 magnet, 247, 260–261, 384 manipulability, 9, 21, 23, 25, 181, 205–206, 209–210 manipulator, mechanism Bennett mechanism, 50, 57–61, 76 Bricard mechanism, 61, 75 four-bar linkage, 30–31, 40, 42–44, 48, 57, 59, 147 Goldberg mechanism, 60–61, 76 Gough-Stewart platform, 24–25, 55 H4 mechanism, 51, 61, 70–73, 75 multiple-loop mechanism, 49 paradoxical mechanism, 50–51, 77 parallel mechanism, single-loop mechanism, MEMS, 247, 283, 314, 319, 337– 338, 363, 384 micro assembly, 367–368, 376, 380– 384 micro ball, 327, 335 micro EDM, 287, 316388 Index micro endmill, 304, 364 micro extrusion, 286 microfactory, micromachining, 337–338, 363–365 minimisation, 9, 112, 115–117, 120– 124, 131, 311 minimum chip thickness effect, 304 mirror, 28, 242, 274, 280, 327–328 mobility global mobility, 57 nominal mobility, 55, 73 model dynamic model, kinematic model, kinetostatic model, mass-spring-damper model, 81 parametric model, 193, 208 scene-graph model, 214 stiffness model, 196, 198, 201 thermal error model, 306 volumetric error model, 293 modelling dynamic modelling, 21 kinematic modelling, 176, 237, 310 process modelling, 339, 347 thermal modelling, 347 modular robot, 169, 176, 191, 237 motion purity, 205–207, 217 motor DC motor, 288 linear motor, 141, 257, 259–261, 263, 279, 289–291, 367–368, 376–379, 383–384 planar motor, 245, 247, 280 surface motor, 257–260, 262, 264, 271–272, 274, 277, 279–280 ultrasonic motor, 244, 319, 330 multi-spot, 274 nanopositioning, 326, 335, 379 NEMS, 319, 325–326 non-negative orthant, 119–120, 130 objective function, 122, 205, 212 optimisation optimisation convex optimisation, 116 optimum, over-tensioning, 115 pair cylindrical pair, 50, 52 generalised kinematic pair, 57, 68, 71 kinematic pair, 50–52, 55–57, 65, 68–69, 71, 73–75 prismatic pair, 50, 52, 55, 65, 71 revolute pair spherical pair, 50, 52, 68, 71 pallet, 284, 289, 309 parallel manipulator parallel-serial manipulator, 167–170, 172, 183, 185–186 parameter space, 9, 12–13, 18 parasitic motion, 7 Pareto, 10, 23 passive leg, 144, 152, 191–193, 198, 200–202, 204–205 passive link, 193, 199, 201 physical programming, 23 PID controller, 264, 266–269, 279 piezo transducer, 329 piezo-electric accelerometer, 293 piezo-electric load cell, 292 planar artifact, 307, 309 planar motion platen, 257, 259–263, 269, 277 ploughing, 304Index 389 Plücker coordinate, 52, 59, 65 polishing, 137–143, 146, 153–154, 161, 163–166, 187, 189, 348 polyhedral cone, 118–119 positioning positioning resolution precision positioning 384 probe contact probe, 324, 327–328 focus probe, 324–326, 328–329, 334 non-contact probe, 324–325 touch probe, 327–328 projection, 111, 120–121, 123, 130– 131, 134, 168 reactionless, 28, 40, 42–48 real-time monitoring, 208, 213–214 reciprocal product, 53 reciprocal screw, 54–56, 59, 61, 63– 65, 67–71, 73–74, 77 reconfiguration, 90–91, 98, 108, 189, 219–223, 225, 228–229, 232– 236 redundant limb, 111–116, 124–130, 132–134 regulus, 59 relative accuracy, 283, 285, 304–305 reliability, 20, 106, 220 repeatability, 86, 105, 222, 290, 295, 302–303, 309, 313, 332, 381 resolution robotised deburring, 167–170, 184– 187 rubbing, 304 running drive, 244–245 SCARA screw system screw theory, 7, 49–52, 57, 73, 75, 77, 199, 222, 237 sensitivity, 10, 317, 328–329 sensor angle sensor, 259, 271–274, 279 capacitance sensor, 292 serial kinematic chain, 57, 73, 77 settling time, 162, 244–245, 265 signal processing, 214 single pose, 124 singularity, 3, 5, 11, 24, 54, 57, 65, 98, 172, 188, 206 skew line, 53 slope, 271, 281, 329 spherical joint, 31, 36, 46, 141, 143, 145, 147, 150, 191, 193, 198, 205 spindle air-turbine spindle, 290 spindle stability lobe stage co-planar stage, 319, 322–323, 332 linear stage rotary stage, 295–297 stiffness dynamic stiffness, 225, 292–294, 303 rotational stiffness, 210 static stiffness, 101, 103, 105, 292– 293, 299, 301, 303, 322, 360 stiffness matrix, 11, 101, 151, 197– 198, 200–201 translational stiffness, 210 straightness, 284, 332–333390 Index streaming, 213 structure link structure, 79, 81–83, 87–91, 98, 108 non-symmetrical structure, 81, 83 surface encoder, 257–259, 271–272, 274–277, 279–281 surface roughness, 142, 166, 342, 345–346 synthesis dimensional synthesis, 7–8 structural synthesis, 7 telescoping ball bar, 306, 309 tension, 111–112, 114–115, 125–126, 129, 133, 151, 369–370, 372 tensionability, 112, 115, 131 tetrahedron, 57 tool touch-off system, 284 tracking, 25, 106, 138, 217, 264, 269–270, 279, 317 trial and error, 8 tripod, 137, 139, 141, 143–145, 147, 150–155, 160, 164, 166, 189– 194, 198, 201–202, 205–218, 375 twist, 53–57, 60, 176–177 ultra-precision positioner, 255 uncertainty, 3–4, 7, 10, 13, 16–17, 19, 189, 352 ?-factor, 50, 54–56, 64 velocity angular velocity, 203, 241–243, 252 velocity walking drive wave plate, 324, 330 web-based machining, 190, 213, 215–217 workspace wrench, 53, 111, 114, 132–134, 151 XYT table, 245, 255 zero-pitch, 52, 74–75
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Smart Devices and Machines for Advanced Manufacturing رابط مباشر لتنزيل كتاب Smart Devices and Machines for Advanced Manufacturing
|
|